
Multi-Elemental Analyses Service (SAME)
The Multi-Elemental Analyses Service (SAME), created officially in july 2016, is devoted to the atomic quantification from plant samples (roots, leaves, fruits, seeds, cellular fluids…) as well as from soil material. Basically, the samples (dry material) are digested by acidic hydrolysis that disrupts molecular structures to release their atomic content (phosphorus, calcium, magnesium, sodium, iron, zinc…). After this hydrolysis step, the chosen elements are quantified by atomic emission spectrometry. The service proposed by the platform includes the hydrolysis of the samples, the choice of elements and the quantification by spectrometry. The equipment is composed of a microwave with 2×24 reactors for the acidic digestions and a microwave-plasma atomic emission spectrometer (ICP-OES, Agilent) equipped with an autosampler.
Access
Contact: umr-ipsim-same@supagro.fr
Staff
Expertise
Equipment / Technologies
training
News
Publications
Coffigniez F*, Robert M*, Lullien-Pellerin V✉ (2025) Phytic acid decrease along hydrothermal treatment of bambara groundnuts: a deep assessment of the mechanisms involved. LWT-Food Sci. Technol., (in press)
Robe K, Stassen M, Watanabe S, Espadas J, Gonzalez P, Rossille A, Li M, Hem S, Roux A, Santoni V, Chamieh J, Dubos C✉, Izquierdo E✉ (2025) Coumarin-facilitated iron transport: an IRT1 independent strategy for iron acquisition in Arabidopsis thaliana. Plant Commun., (in press)
Robe K✉, Lefebvre-Legendre L, Cleard F, Barberon M✉ (2024) Four ZIPs contribute to Zn, Fe, Cu and Mn acquisition at the outer root domain. bioRxiv,
Jacquier L, Fiorenza C, Robe K, Han J-P, Cleard F, Fuchs C, Ramakrishna P, Loubery S, Lefebvre-Legendre L, Barberon M (2024) Directional cell-to-cell transport in plant roots. bioRxiv,
Hocedez J, Gotty K, Hequet V, Chay S, Léopold A, Dray S, Pillon Y✉ (2024) Community ionomics reveals a diversity of mineral nutrition in a species-rich shrubland on infertile soil. J. Veg. Sci., 35(5):e13301
Gao F*, Li M*, Dubos C✉ (2024) bHLH121 and clade IVc bHLH transcription factors synergistically function to regulate iron homeostasis in Arabidopsis thaliana. J. Exp. Bot., 75(10):2933-2950
Hereil A (2024) Deciphering the Genetic Architecture of Abiotic Stress Tolerance in Tomato through GWAS and Genomic Prediction [Génétique d’association et prédiction génomique de la tolérance au stress abiotique chez la tomate]. Thèse de doctorat,
Nguyen NNT, Lamotte O, Alsulaiman M, Ruffel S, Krouk G, Berger N, Demolombe V, Nespoulous C, Dang TMN, Aimé S, Berthomieu P, Dubos C, Wendehenne D, Vile D✉, Gosti F✉ (2023) Reduction in PLANT DEFENSIN 1 expression in Arabidopsis thaliana results in increased resistance to pathogens and zinc toxicity. J. Exp. Bot., 74(17):5374-5393
Vidal Elgueta A✉, Navarro N, Uribe M, Robe K, Gaymard F, Dubos C, Pérez MF, Roschzttardtz H✉ (2021) 2000 years of agriculture in the Atacama desert lead to changes in the distribution and concentration of iron in maize. Sci. Rep.-UK, 11:17322
Gao F, Robe K, Dubos C✉ (2020) Further insights into the role of bHLH121 in the regulation of iron homeostasis in Arabidopsis thaliana. Plant Signal. Behav., 15(10):1795582
Robe K*, Gao F*, Bonillo P, Tissot N, Gaymard F, Fourcroy P, Izquierdo E, Dubos C✉ (2020) Sulphur availability modulates Arabidopsis thaliana responses to iron deficiency. PLoS one, 15(8): e0237998
Oliveira de Araujo T, Isaure M-P, Alchoubassi G, Bierla K, Szpunar J, Trcera N, Chay S, Alcon C, Campos da Silva L, Curie C, Mari S✉ (2020) Paspalum urvillei and Setaria parviflora, two grasses naturally adapted to extreme iron-rich environments. Plant Physiol. Bioch., 151:144-156
Drain A*, Thouin J*, Wang L, Boeglin M, Pauly N, Nieves-Cordones M, Gaillard I, Véry A-A, Sentenac H✉ (2020) Functional characterization and physiological roles of the single Shaker outward K+ channel in Medicago truncatula. Plant J., 102(6):1249-1265
Gao F, Robe K, Bettembourg M, Navarro N, Rofidal V, Santoni V, Gaymard F, Vignols F, Roschzttardtz H, Izquierdo E, Dubos C✉ (2020) The transcription factor bHLH121 interacts with bHLH105 (ILR3) and its closest homologs to regulate iron homeostasis in Arabidopsis. Plant Cell, 32(2):508-524
Tissot N, Robe K*, Gao F*, Grant-Grant S, Boucherez J, Bellegarde F, Maghiaoui A, Marcelin R, Izquierdo E, Benhamed M, Martin A, Vignols F, Roschzttardtz H, Gaymard F, Briat J-F, Dubos C✉ (2019) Transcriptional integration of the responses to iron availability in Arabidopsis by the bHLH factor ILR3. New Phytol., 223(3):1433-1446
Carrió-Seguí A, Romero P, Curie C, Mari S, Penarrubia L✉ (2019) Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Sci. Rep.-UK, 9:4648
Alejandro S, Cailliatte R, Alcon C, Dirick L, Domergue F, Correia D, Castaings L, Briat J-F, Mari S, Curie C✉ (2017) Intracellular distribution of manganese by the trans-golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell, 29(12):3068-3084
Chay S, Mari S (2017) High Throughput Multi-Elemental Profiling of Plant Samples with the 4200 MP-AES. Agilent Technologies Eds.,
Castaings L, Caquot A, Loubet S, Curie C✉ (2016) The high-affinity metal transporters NRAMP1 and IRT1 team up to take up iron under sufficient metal provision. Sci. Rep.-UK, 6:37222
Shahzad Z, Canut M, Tournaire-Roux C, Martinière A, Boursiac Y, Loudet O, Maurel C✉ (2016) A potassium-dependent oxygen sensing pathway regulates plant root hydraulics. Cell, 167(1):87-98.e14
Saenchai C, Prom-U-Thai C✉, Lordkaew S, Rouached H, Rerkasem B (2016) Distribution of iron and zinc in plant and grain of different rice genotypes grown under aerobic and wetland conditions. J. Cereal. Sci., 71:108-115
Saenchai C*, Bouain N*, Kisko M, Prom-U-Thai C, Doumas P, Rouached H✉ (2016) The involvement of OsPHO1;1 in the regulation of iron transport through integration of phosphate and zinc deficiency signalling. Front. Plant Sci., 7:396