

Mode opératoire

Analyse du ¹³C par spectrométrie de Masse isotopique

MO_AQUI_SM_ (03)_v2-2020

Version : 2 date : 16/12/2021

page 1/3

1. Objet et domaine d'application

Ce mode opératoire a pour but de détailler l'analyse par spectrométrie de masse du ¹³C total.

2. Documents de référence

Pyrocube software & Precision Elementar

3. Liste de diffusion et si nécessaire niveau de confidentialité

Atelier de quantification des Isotopes Stables Usagers de l'AQUI

4. Hygiène et sécurité

Sans objet

5. Principe de la méthode

Sans Objet

6. Matériels nécessaires

Sans Objet

7. Réactifs (chimiques et biologiques)

Sans objet

8. Contraintes de la méthode

Attention, ne jamais analyser d'échantillon contenant de l'acide phosphorique.

9. Contenu du mode opératoire

Les échantillons solides ou liquides sont préalablement séchés à 70°C pendant 48H à l'étuve. Un aliquote est pesé dans une capsule en étain.

¹³C total Analyseur Eurovector

Les échantillons sont alors injectés dans l'analyseur élémentaire. Après combustion à 1000°C en présence d'oxygène et de Cr_2O_3 . L'eau produit durant la combustion est piégée par une colonne de perchlorate de magnésium. Les différents gaz N_xO_y sont réduits en N_2 après passage sur une colonne de cuivre à 600°C). Le N_2 et le CO_2 sont alors séparés sur une colonne de Porapak par chromatographie en phase gazeuse.

	Rédacteur	Vérificateur	Approbateur
Nom : Fonction : Visa :	Thibaut Perez Responsable Technique	Benoit Lacombe Responsable Scientifique	Colette Tournaire Animatrice qualité

Mode opératoire

Analyse du ¹³C par spectrométrie de Masse isotopique

 $MO_AQUI_SM_ (03)_v2-2020$

Version: 2

date: 16/12/2021 page 2/3

¹³C total Analyseur PyroCube Elementar

Les échantillons sont alors injectés dans l'analyseur élémentaire. Après combustion à 920°C en présence d'oxygène et de CuO. L'eau produit durant la combustion est piégée par une colonne de Sicapent (Merk). Les différents gaz N_xO_y sont réduits en N_2 après passage sur une colonne de cuivre à 600°C). Le N_2 et le CO_2 sont alors séparés. Le CO_2 est piégé à température ambiante et relargué à 100°C

Une partie du flux d'hélium contenant le CO_2 est injecté dans le spectromètre de masse. Les différentes molécules de CO_2 de masse **44** ($^{12}C^{16}O^{16}O$), **45** ($^{13}C^{16}O^{16}O$, $^{12}C^{16}O^{17}O$, $^{13}C^{16}O^{16}O$) et **46** ($^{13}C^{17}O^{16}O$, $^{12}C^{18}O^{16}O$, $^{12}C^{17}O^{17}O$) sont séparées et quantifiées.

Calcul du 8/1000 versus PDB

Formule générale : $\delta^{13}C = \left(\left(\frac{R1}{R2}\right) - 1\right) * 1000$

Formule corrigée : δ^{13} C= 1,067 * $\left(\left(\frac{R1}{R2}\right) - 1\right)$ * 1000 - (0,0338 * R3)

$$R1 = \frac{45}{44}$$
 échantillon

R2=
$$\frac{45}{44}$$
 étalon Dans le standard PDB, il y a 1,122% de ¹³C et 98 ,878% de ¹²C R2 =0,0112372

$$R3 = \frac{46}{44}$$
 contribution du ¹⁸O

Calcul de l'abondance isotopique en ¹³CO₂ (échantillon de gaz enrichi)

$$A\% = 100 * \frac{R1}{1+R1}$$

$$R1 = \frac{45}{44}$$

Dilution isotopique

Dosage du ¹³CO₂ gazeux

Lorsque que la quantité de gaz (CO₂) produit à partir de l'échantillon est en trop faible quantité ou que ce CO₂ est trop enrichi en ¹³C, on procède à une dilution isotopique. Cela consiste à ajouter à l'échantillon gazeux de départ une quantité connue de ¹²CO₂ gazeux d'abondance

	Rédacteur	Vérificateur	Approbateur
Nom : Fonction : Visa :	Thibaut Perez Responsable Technique	Benoit Lacombe Responsable Scientifique	Colette Tournaire Animatrice qualité

Mode opératoire

Analyse du ¹³C par spectrométrie de Masse isotopique

MO_AQUI_SM_ (03)_v2-2020

Version: 2 date: 16/12/2021

page 3/3

naturelle en ¹³C connue.

Matériel utilisé

Les échantillons gazeux sont analysés par spectrométrie de masse avec l'analyseur gazeux Isoflow et le spectromètre de masse Precision (Elementar)

Les échantillons solides et liquides sont analysés par spectrométrie de masse, avec l'analyseur élémentaire Pyrocube et le spectromètre de masse Precision (Elementar).

	Rédacteur	Vérificateur	Approbateur
Nom : Fonction : Visa :	Thibaut Perez Responsable Technique	Benoit Lacombe Responsable Scientifique	Colette Tournaire Animatrice qualité