ON
REACTIVE
OXYGEN
SPECIES

Florence & Lionel

Sète 2019
BPMP
Brainstorming

A ROS/RNS OVERVIEW

Reactive oxygen and other oxide species, localization, detection

4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

EXPECTATION FROM THE AUDIENCE

Questions, suggestions, exchange of experience, ...

HOW IMPROVING A ROS COMMUNITY

All ideas that could improve development of tools and expertise

ON
REACTIVE
OXYGEN
SPECIES

A ROS/RNS OVERVIEW

Reactive oxygen and other oxide species, localization, detection

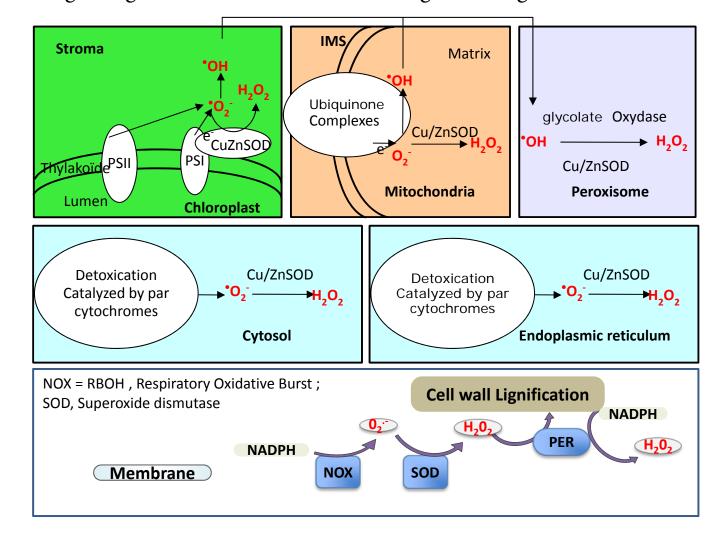
4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

THE AUDIENCE

Questions, suggestions, exchange of experience, ...

HOW IMPROVING A ROS COMMUNITY


All ideas that could improve development of tools and expertise

ON REACTIVE **OXYGEN SPECIES**

Sète 2019 **BPMP Brainstorming**

A ROS/RNS OVERVIEW > ROS/RNS are produced by the basal metabolism of the cell

Endogenous generation of ROS/RNS is essential for correct adaptation and signaling in normal cellular functioning including stress conditions

Sète 2019 **BPMP Brainstorming**

A ROS/RNS OVERVIEW >

ROS/RNS include a panel of molecules with or without radicals... a lot of them being undetectable

Reactive oxygen species (detectable) **Radicals** Non radicaux Superoxide O₂*-Hydrogen peroxide H₂O₂ Hydroxyl radical OH* Peroxyl RO₂* Ozone O₃

Alcoxyl RO* Hydroperoxyl HO₂• Acide hypochloreux HOCI Oxygène singulet O₂ Acide hypobromeux HOBr

Reactive nitric oxide species (detectable)

Radicals

Nitric oxide NO* Nitrogen dioxide NO₂*

Non radicaux Nitrous acid HNO₂

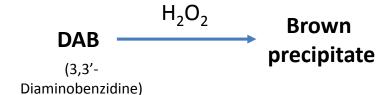
Cation nitrosylé NO+ Anion nitrosylé NO-Tétroxyde de dinitrogène N_2O_4 Trioxyde de dinitrogène N₂O₃ Peroxynitrite ONOO* Cation nitronium NO²⁺ Chlorure de nitryle NO₂CI Alkyl peroxynitrate ROONO*

Anion nitroxyle NO°

ON **REACTIVE OXYGEN SPECIES**

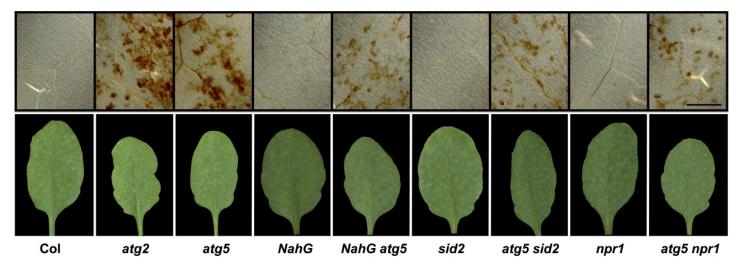
Sète 2019 **BPMP Brainstorming**

A ROS/RNS OVERVIEW > How to detect oxygen species, in cells or in acellular systems



Sète 2019
BPMP
Brainstorming

A ROS/RNS OVERVIEW >

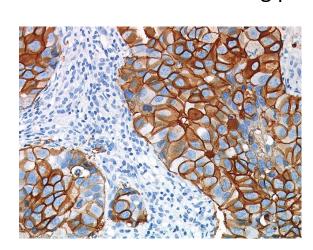

How to detect oxygen species, in cells or in acellular systems

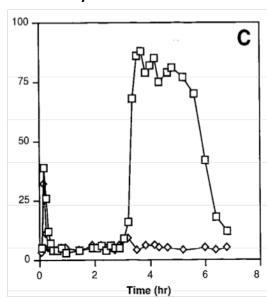
Diffuses into tissues where it precipitates into a brownish compound upon oxidation

Reacts mostly with H₂O₂ May diffuse to surrounding tissues

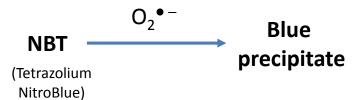
ON
REACTIVE
OXYGEN
SPECIES

Sète 2019
BPMP
Brainstorming


A ROS/RNS OVERVIEW >

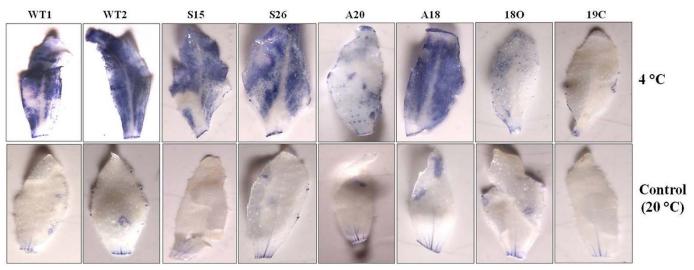

How to detect oxygen species, in cells or in acellular systems

Can be combined with histochemistry on peroxidase-treated tissues for recording peroxidase activity



May diffuse to surrounding tissues

Sète 2019 **BPMP Brainstorming**


A ROS/RNS OVERVIEW > How to detect oxygen species, in cells or in acellular systems

Diffuses into tissues where it precipitates into a blue compound in the presence of superoxide anion

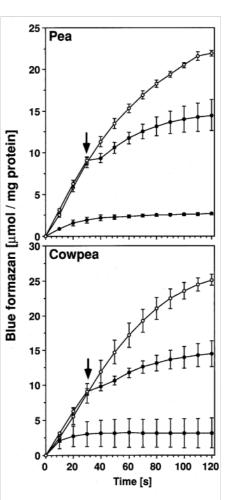
May diffuse to surrounding tissues

ON
REACTIVE
OXYGEN
SPECIES

Sète 2019
BPMP
Brainstorming

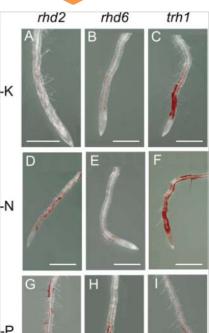
A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

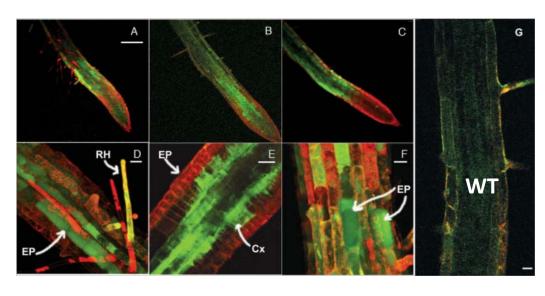


Can be used combined with kits

May diffuse to surrounding tissues


ON **REACTIVE OXYGEN SPECIES**

Sète 2019 **BPMP Brainstorming**


A ROS/RNS OVERVIEW > How to detect oxygen species, in cells or in acellular systems

ROS/RNS H₂DCF-DA **DCF**

Confocal projection of nutrient deprived Arabidopsis roots after incubation in CM-H2DCFDA (pseudo Green color) and with MitoTracker (red)

Nikon SMZ1500 dissecting microscope (460-500 nm bandpass excitation. 510-560 nm bandpass emission)

ON
REACTIVE
OXYGEN
SPECIES

A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

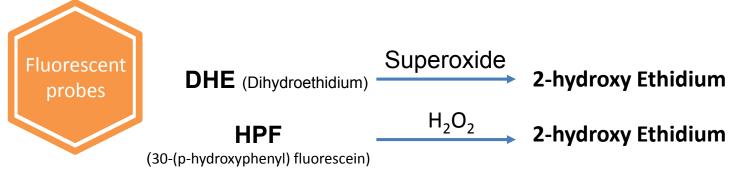
2', 7'dichlorodihydrofluorescein
diacetate
(non fluorescent)

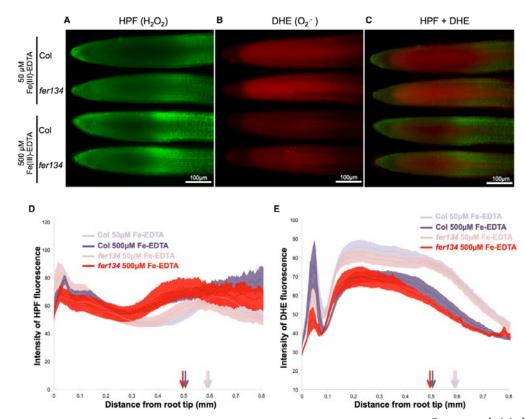
dichlorodihydrofluorescein (highly fluorescent) **excitation/emission**: 492–495/517–527 nm

Diffuses into cells and is retained in the intracellular level after cleavage by intracellular esterases.

The chloromethyl derivative (CM-H₂DCFDA) provides even much better retention in live cells than H₂DCFDA.

Best used in combination with Propidium iodide (labels cell walls but penetrates also in dead cells that may produce ROS)




React with several ROS including hydroxyl radicals and peroxynitrite (HO^- , ROO^- , ONOO) but also with H_2O_2)

Sète 2019
BPMP
Brainstorming

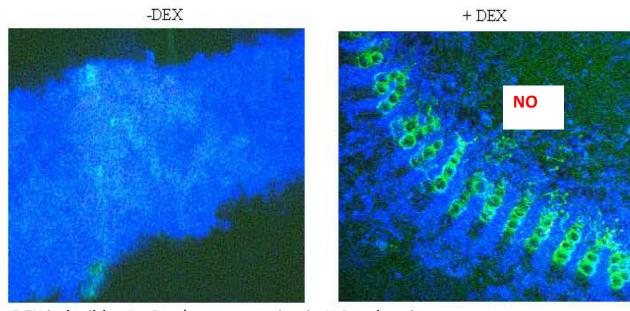
A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

Reyt et al, Molec. Plant (2015)

ON
REACTIVE
OXYGEN
SPECIES

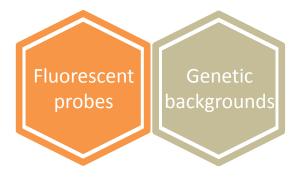
Sète 2019
BPMP
Brainstorming


A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

Main contrainst of nitric oxide:

half life < 5s; [NO] within cells is very low (detection limit for NO is 2-5 nM)



DEX inducible::AvrPto (overexpression in N Benthamiana

ON
REACTIVE
OXYGEN
SPECIES

Sète 2019
BPMP
Brainstorming

A ROS/RNS OVERVIEW

How to detect oxygen species, in cells or in acellular systems

HyPer: a genetic probe for specific detection of cytoplasmic H₂O₂

The circularly permuted YFP chromophore can be refolded upon disulfide bridge formation of the two Cys residues of OxyR.

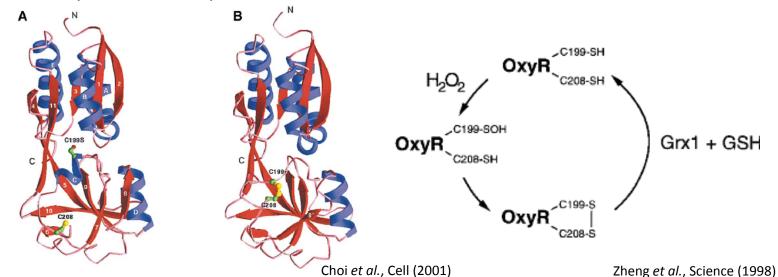
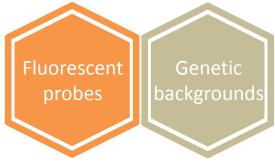
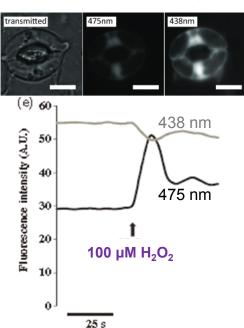
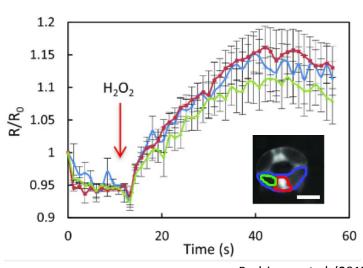



Figure 1. Structure of the OxyR Regulatory Domain

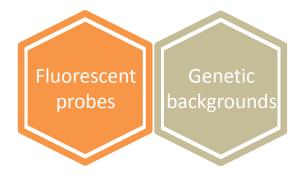
ON
REACTIVE
OXYGEN
SPECIES


Sète 2019
BPMP
Brainstorming


A ROS/RNS OVERVIEW

How to detect oxygen species, in cells or in acellular systems

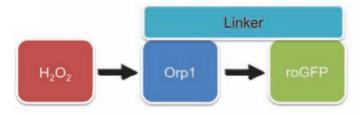
HyPer: a genetic probe for specific detection of cytoplasmic H₂O₂



Rodrigues et al. (2017)

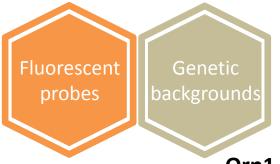
The fluorescence ratio change, here presented as $\Delta R/R_0$, is proportional to the amount of exogenously applied H_2O_2

ON
REACTIVE
OXYGEN
SPECIES

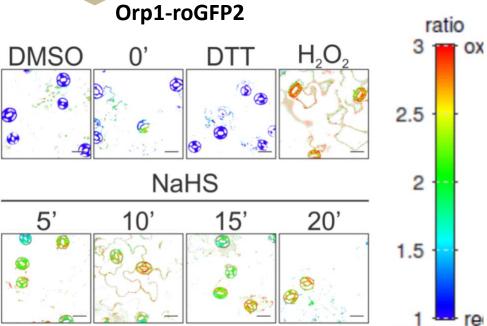

A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

Orp1-roGFP2:

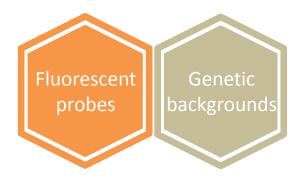

H₂O₂-specific genetic probe

ON **REACTIVE OXYGEN SPECIES**


Sète 2019 **BPMP Brainstorming**

A ROS/RNS OVERVIEW > How to detect oxygen species, in cells or in acellular systems

Orp1-roGFP2:


H₂O₂-specific genetic probe

Scuffi et al. (2018) Here again, the fluorescence ratio change is proportional to cytosolic H₂O₂ concentration

ON
REACTIVE
OXYGEN
SPECIES

A ROS/RNS OVERVIEW >

How to detect oxygen species, in cells or in acellular systems

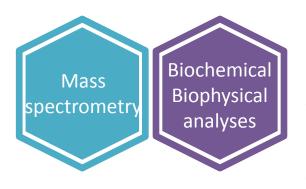
Orp1-roGFP2:

H₂O₂-specific genetic probe

Highly H₂O₂-specific probes

Allows ratiometric measurements of H₂O₂ concentrations

Generation of biological samples takes more time than using chemical probes



HyPer is a pH-sensitive fluorescent probe

ON REACTIVE **OXYGEN SPECIES**

Sète 2019 **BPMP Brainstorming**

A ROS/RNS OVERVIEW > Redox-based modifications of proteins

Redox-based PTMs:

Dynamic and versatile means to rapidly alter the activity or functional structure of proteins, including key regulators of other PTMs, such as phosphorylation, acetylation, ubiquitination, etc...

TABLE 1 Common ROS/RNS induced modifications.

Common ROS/RNS modification	∆Mass	Selective reduction	Probes/Antibody
Disulfide bond formation (S-S-)	2	Thioredoxin system	Directly by MS
Glutathionylation (S-S-G)	305.3	Glutaredoxin system	BioGEE, Anti-PSSG
Nitrosylation (SNO)	28.99	Cu/Ascorbate	Anti-SNO
Sulfenylation (SOH)	15.99	Sodium Arsenite	Dimedone based
Sulfinic acid (SO ₂ H)	31.99	Sulfiredoxin*	NO-Bio
Sulfonic acid (SO ₃ H)	47.99	_	Directly by MS
3-Nitrotyrosine	44.98	Sodium dithionite	Anti-3NT
Carbonylation (C=O)	**		Hydrazide chemistry

Adapted from McDonagh, July 2017, Frontiers in Physiology

ON
REACTIVE
OXYGEN
SPECIES

A ROS/RNS OVERVIEW

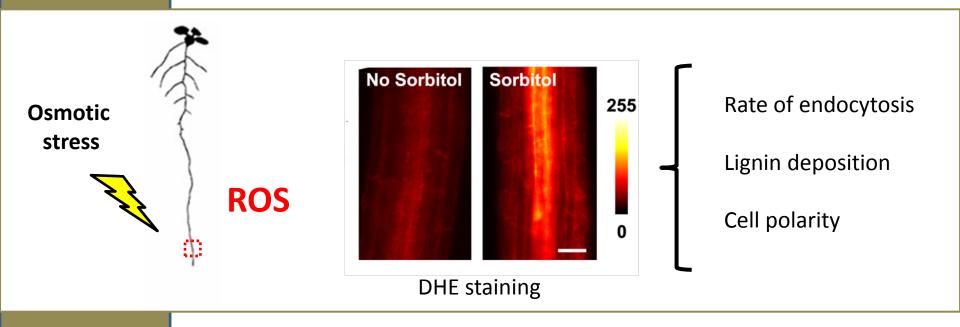
Reactive oxygen and other oxide species, localization, detection

4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

EXPECTATION FROM THE AUDIENCE

Questions, suggestions, exchange of experience, ...


HOW IMPROVING A ROS COMMUNITY

All ideas that could improve development of tools and expertise

STORIES WITH ROS

4 BPMP RESEARCH > An overview of some research projects dealing with ROS at BPMP

A contribution of Alexandre Martinière

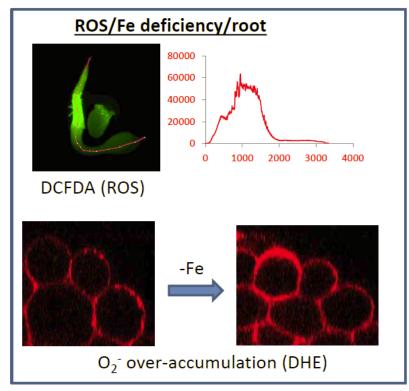
Sète 2019 **BPMP Brainstorming**

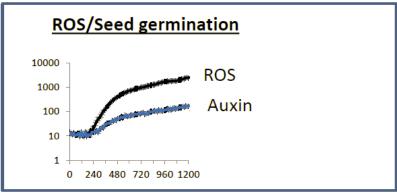
Identification of new regulators of ROS accumulation

-Candidate genes

-GWAS

4 BPMP RESEARCH STORIES WITH ROS

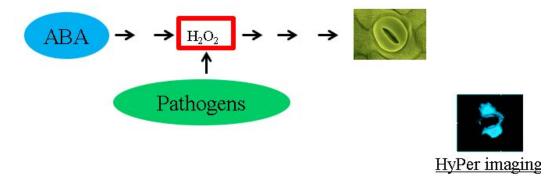

A contribution of Tou Cheu Xiong

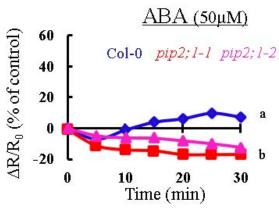

Long distance signalling /ROS

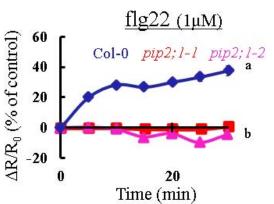
rbohF +Fe Ctrl DAB staining (H_2O_2) NBT staining (O_2^-)

ZAT12::LUC (ROS)

An overview of some research projects dealing with ROS at BPMP

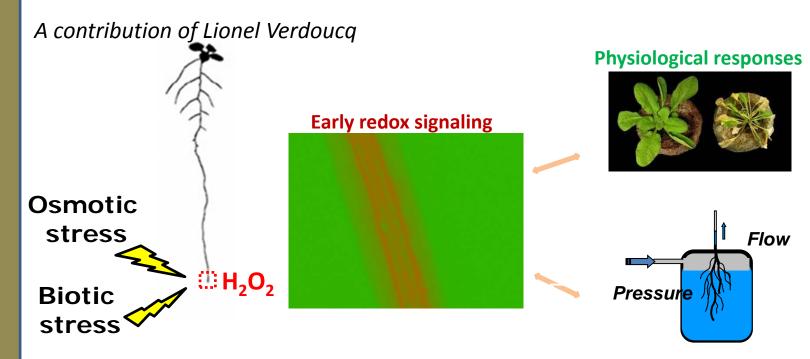





4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

A contribution of Lionel Verdoucq



PIP2;1 contributes to the accumulation of H_2O_2 induced by ABA and flg22 in guard cells

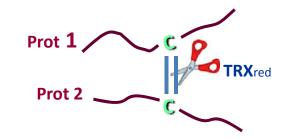
4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

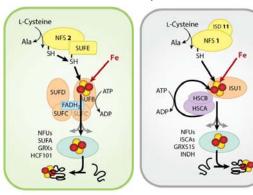
Sète 2019
BPMP
Brainstorming

Importance of H₂O₂ signature in combined stresses

- ✓ Kinetics of H₂O₂ accumulation in altered genetic backgrounds (AQP, redox homeostasis) using biosensors
- Phenotypal characterization (pathogenicity, hydraulic conductivity)


4 BPMP RESEARCH STORIES WITH ROS

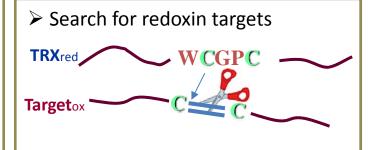
An overview of some research projects dealing with ROS at BPMP


A contribution of Florence Vignols

A Yeast Two-hybrid Strain To Reveal Labile Protein-protein Interactions Mediated By Disulfide Bonds

Proteins exhibiting active CXXC redox centers with reducing activity within cells (TRX, GRX) are major constraints for disulfide bond-mediated PPIs:

Iron-sulfer assembly machineries


➤ Extensively used for PPI studies involving FeS- or Zn-binding proteins

Sète 2019
BPMP
Brainstorming

Gal4 reporter, HIS3, trx1∆, trx2∆

CY306, a Gal4-reporter system based yeast strain, depleted of ScTRX1 and ScTRX2

➤ No more cytosolic thioredoxins

ON
REACTIVE
OXYGEN
SPECIES

A ROS/RNS OVERVIEW

Reactive oxygen and other oxide species, localization, detection

4 BPMP RESEARCH STORIES WITH ROS

An overview of some research projects dealing with ROS at BPMP

EXPECTATION FROM THE AUDIENCE

Questions, suggestions, exchange of experience, ...

HOW IMPROVING A ROS COMMUNITY

All ideas that could improve development of tools and expertise

HOW IMPROVING A ROS COMMUNITY

All ideas that could improve development of tools and expertise

B&PMP seminar on

ROS SIGNALLING in PLANTS

Thursday 12th of April 2018

cancelled for strike reasons, To recall in 2019?

Andreas J. MEYER, Chemical Signalling Lab, INES Institute, Bonn, Germany Jaakko J. KANGASJÄRVI, Viikki Plant Science Center, Univ. of Helsinki, Finland

A local B&PMP "Wine/Beer-accompanied workshop?

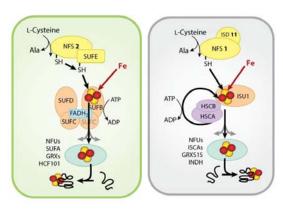
How many people interested in?

Once a year? Twice a year? More?...

Sète 2019
BPMP
Brainstorming

A Mistral-like (even shorter) training on ROS utilization & detection?

What else?...


4 BPMP RESEARCH STORIES WITH ROS

How BPMP "ROS" projects connect to national & international research

➤ Redox regulations of key components in FeS assembly, FeS protein interactomes

ANR FIRES 2011-2013 & Fe-S TRAFFIC 2014-2016, still ongoing

National Coll°: INRA Nancy, CEA Cadarache, LGDP Perpignan, CBS Montpellier, CBS Montpellier International Coll°: University Texas (US), John Innes Institute (UK), Georg-August-University (D)

OsmoPathOx: OSMOtic and PATHogen crosstalks in roots: role of redOX signaling (Projet Lionel / JP Reichheld / Fabienne Vailleau)

AAP ANR 2019, BPMP, LGDP Perpignan, LIPM Toulouse InterLabEx TULIP/Agro, on-going