

"Electrical and calcium signalling"

E&CS group

E&CS, a group formed on March 2009

Tr. Claire Corratgé-Faillie (CDD Ing. Recherche)

← Dr. Tracey Ann Cuin (Post-doc Marie Curie)

Tr. Erwan Michard (Post-doc Agropolis Fondation)

Elsa Ronzier (PhD student)

Frédéric Sanchez (TR)

← Dr. Jean-Baptiste Thibaud (DR)

Dr. Tou Cheu Xiong (CR)

Disclosing the molecular basis of electrical and Ca²⁺ signalling in plants

Propagation of electrical signals in plants

Basipetal, then acropetal propagation of an electrical signal in Mimosa leaves

Electrical signalling and cytokinins mediate effects of lique and root cutting on ion uptake in intact plants

SERGEY SHABALA¹, JIAYIN PANG¹⁵, MEIXUE ZHOU⁵, LANA SHABALA¹¹, TRACEY A. CUIN¹, PETER NICK¹ & LARS H. WEGNER¹⁶

School of Agricultural Science, University of Taxmunia, Private Bug 54, Hobart, Tuc. 7001, Australia, *Taxmunian Invita Agricultural Research, University of Taxmunia, Kongs Meadown, Tuc. 7249, Australia, *Invitate of Botany I, Kaiserstrasse 2, D-76131 Karlsruhe, Germany and *Plant Bioelectrics Group, Karlsruhe Institute of Technology, Department of Pulsed Powering

Plant, Call and Environment (2007) 30, 240-257

dol: 10.1111/j.1365-3040.2006.

Electrical signalling and cytokinins mediate effects of lic Voltage-dependent action potentials in Arabidopsis thaliana

Patrick Favre* and Robert Degli Agosti* A.S.*

*Liboratory of Plant Physiology and Sochemistry, Plant Physiometric, University of Geneva, 3 Plant de l'Université, CH-1211 Geneva 4, 5 witnefend.
*Department of Plant Biology, University of Geneva, 30 Qualifement-Ansermet, CH-1211 Geneva 4, 5 witnefend.

Taloostory of Plant Physiometics, ELEIG, three nity of Applied Sciences of Western Switzerland, 150 ne de Presinge, CH-1254 Jusy, Switzerland

Planta (2007) 226/208-214 DOI 10.1007/s00425-006-0458-y

ORIGINAL ARTICLE

Electrical signals and their physiological significance in plants

JÖRG FROMM & SILKE LAUTNER

Fachgebiet Holzbiologie, TU Manchen, Winzererstrasse 45, 80797 Manchen, Germany

Planta (2009) 229:539-547 DOI 10.1007/s00425-008-0850-x

ORIGINAL ARTICLE

Dissection of heat-induced systemic signals superiority of ion fluxes to voltage changes in substomatal cavities

Mathias R. Zimmermann - Hubert H. Felle

Plant. Call and Environment (2009) 32, 319-326

dol: 10.1111/j.1365-3040.2008.01922

ELSEVIER

Systemic signalling in barley through action potentials

Hubert H. Felle - Matthias R. Zimmermann

Journal of Plant Physiology 168 (2011) 653-660

Contents lists available at ScienceDirect

Journal of Plant Physiology

journal homepage: www.elsevier.de/jplph

Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf

THORSTEN E. E. GRAMS', SILKE LAUTNER', HUBERT H. FELLE', RAINER MATYSSEK' & JÖRG FROMM'

¹Ecophysiology of Plants, Department of Ecology and Ecosystem Sciences, Technische Universität München, Am Hochange. 13, Freising, Germany. ²Department of Wood Biology, University of Hamburg, Leuschnerstrasse 91, Hamburg, Germany and ³Botantisches Incitial I, Justus-Liebig-Universität Gießen, Senckenbergstrasse 17, Gießen, Germany

Accession-dependent action potentials in *Arabidopsis*

Patrick Favre^a, Hubert Greppin^b, Robert Degli Agosti^{c,d,*}

- ^a Laboratory of Plant Physiology and Biochemistry, Plant Physiomatics, University of Geneva, Switzerland
- b Plant Biology Department, University of Geneva, Switzerland
- ^c Plant Physiomatics, Plant Biology Department and Faculty of Sciences, University of Geneva, Switzerland
- ^d Plant Physiomatics, University of Applied Sciences Western Switzerland, Technology, Architecture and Landscape, Switzerland

Role of electrical signalling in plants

WHAT DO PLANTS NEED ACTION POTENTIALS FOR?

Elżbieta Król, Halina Dziubińska, and Kazimierz Trębacz

Department of Biophysics, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20–033 Lublin, Poland

trap closure and enzyme secretion (eg, Droseraceae):

up to 250 mm/s

fertilisation (pollen landing on the stigma):

10-30 mm/s

defence (eg, Mimosa pudica):

4-40 mm/s

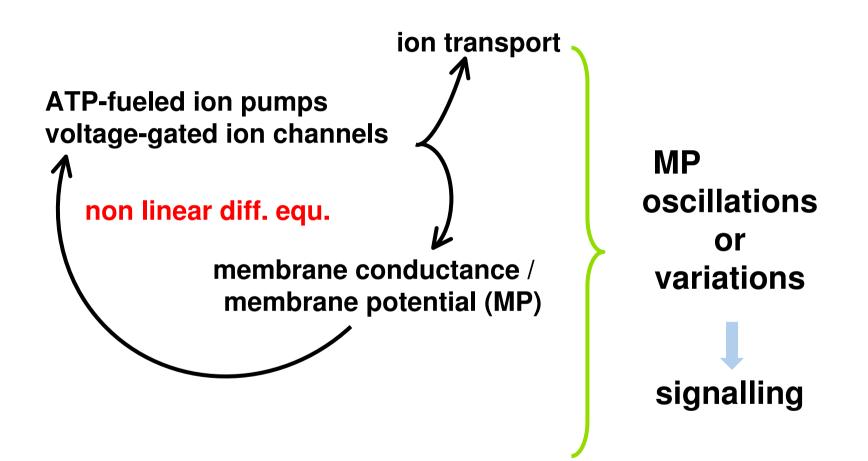
 defence/stress in non specialised plants/tissues (cold, light/dark, heat/burning, etc.):

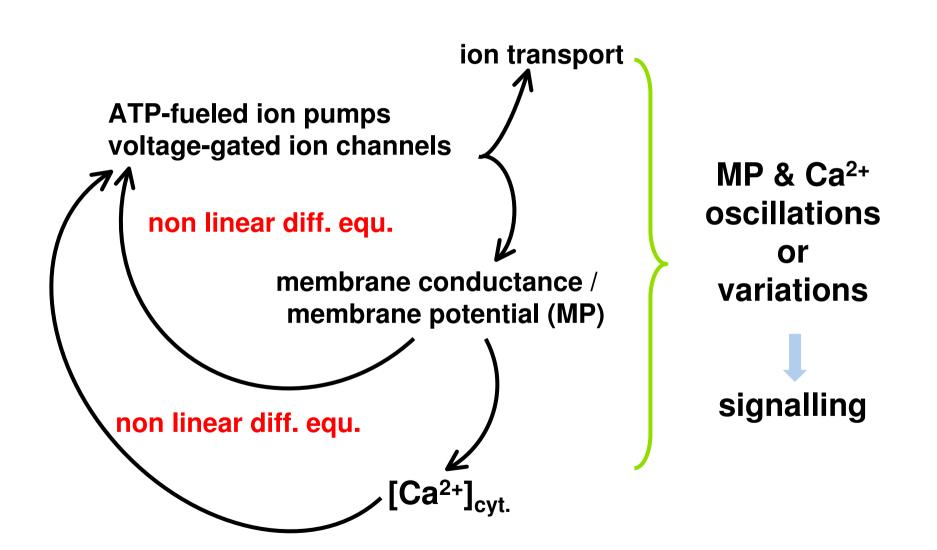
1-10 mm/s

including Arabidopsis

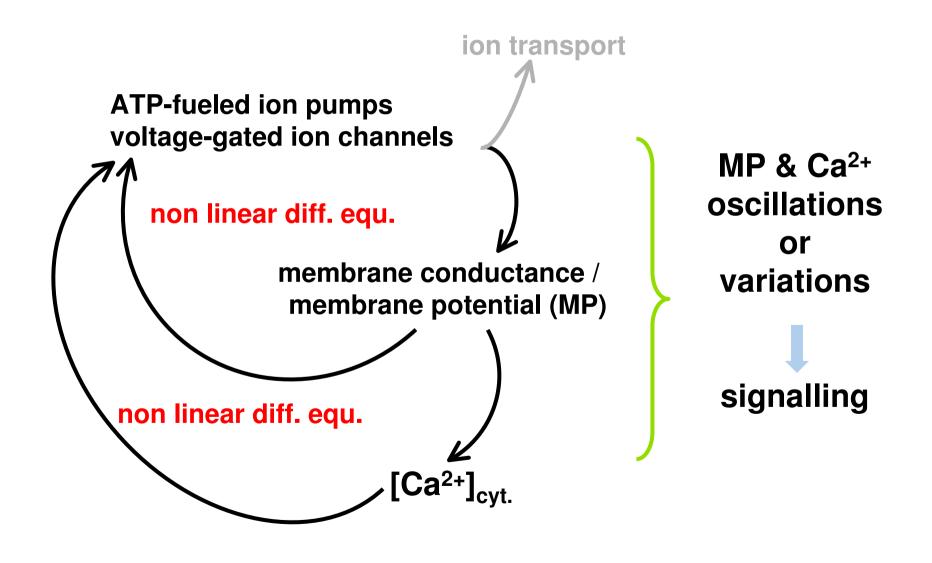
What is an action potential?

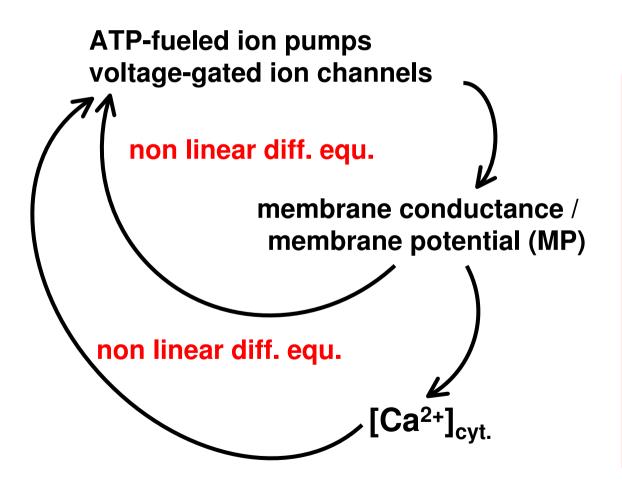
- Self-propagating, transient electrical signal
- Rapid depolarisation then repolarisation of membrane potential
- Travels from cell to cell with constant speed


In animal cells...


In plants...

- everything is much slower than in animals
- no Na⁺ involved in plant APs
- ion fluxes in plants during AP:
- Ca²⁺ influx into the cell
- then Cl⁻ & K⁺ efflux
- but we don't know which channels are involved


Need for mathematical modelling


Need for mathematical modelling

We focus on voltage (and Ca²⁺) waves

Our research aims

Addressed questions

- which ion transporters contribute to APs?
- how do they interplay to make an AP?
- how do APs travel?
- how is Ca²⁺ involved?
- do Ca²⁺ waves occur and travel?

E&CS group: the aims

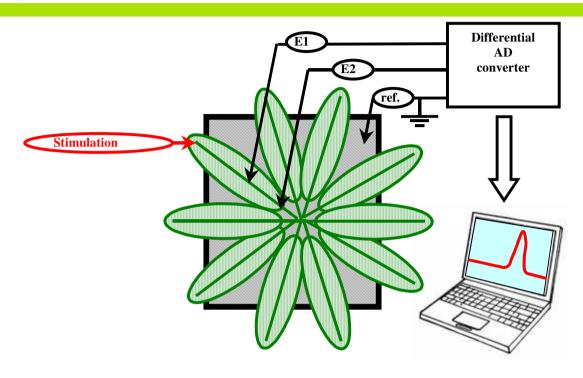
- to uncover the molecular mechanisms behind electrical signals in plants
- to disclose mechanisms of regulation by Ca²⁺ of K⁺ voltage-gated channels
- to establish in planta Ca²⁺ imaging at BPMP
- to evidence Ca²⁺ waves travelling through plant tissues

E&CS group: the tasks

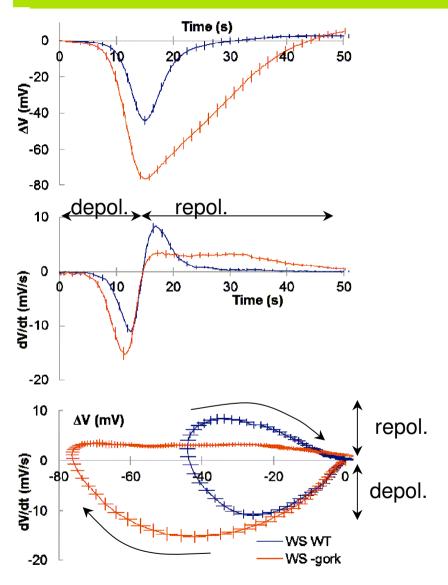
- Install AP recording at BPMP
- Compare action potentials in WT and mutant lines
- (AKT2 and GORK genes)
- Computer-assisted modelling:

 a single-cell ("0D" model),
 a file of cells ("1D" model)
 a complex network of cells ("2D/3D" model)

- Regulation of Shaker channels by CPKs
- New tools for Ca²⁺ imaging
- Ca²⁺ waves in relation to APs?


Recording action potentials

mechanical stimulation



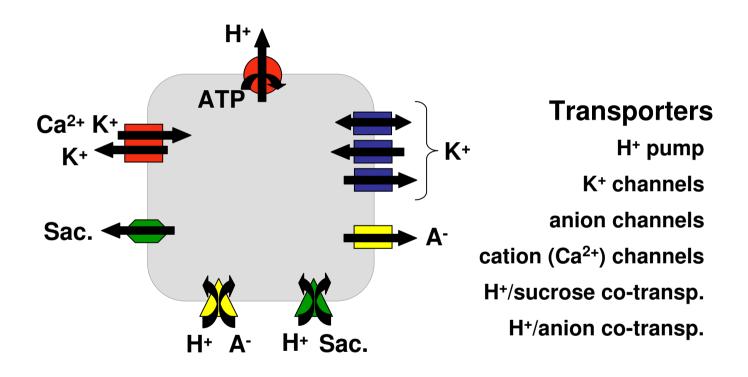
The AKT2 channel controls "excitability"

Line	WS ecotype			Col-0 ecotype	
	akt2-1	WT	AKT2-NN	akt2-2	WT
Excitability (%)	41%	51%	59%	63%	88%
Amplitude (mV)	38.1 ± 10.6	47.2 ± 11.2	53.0 ± 9.2	52.0 ± 12.3	62.2 ± 5.5
Width (sec)	6.6 ± 2.1	10.9 ± 4.2	6.7 ± 1.6	7.8 ± 2.5	7.8 ± 1.5
Speed (mm s ⁻¹)	1.2 ± 0.4	1.3 ± 0.3	1.1 ± 0.4	1.0 ± 0.2	1.2 ± 0.4

WS plants are less excitable than Col-0 plants knocking-out the *AKT2* gene decreases excitability AKT2 (phosphorylated) increases excitability

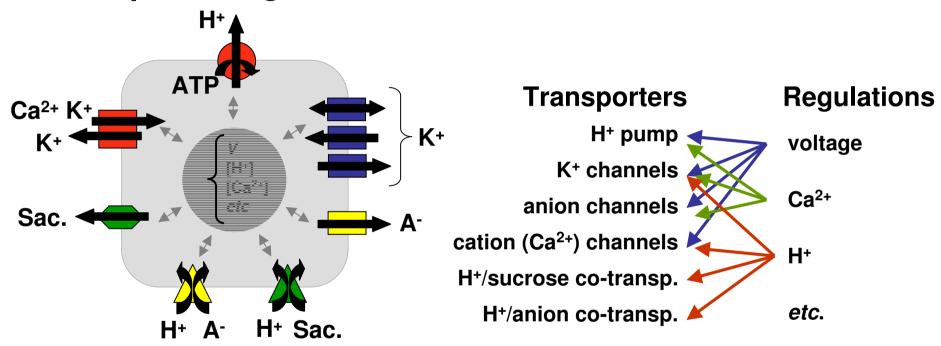
The GORK channel controls the shape of APs

knocking-out GORK lengthens and amplifies the AP


knocking-out GORK has little effect on depolarising currents but flattens time-course of repolarising currents

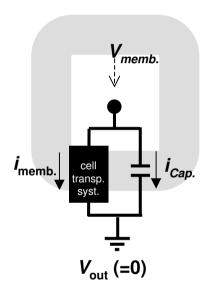
knocking-out GORK suppresses the voltage-dependence of repolarising currents

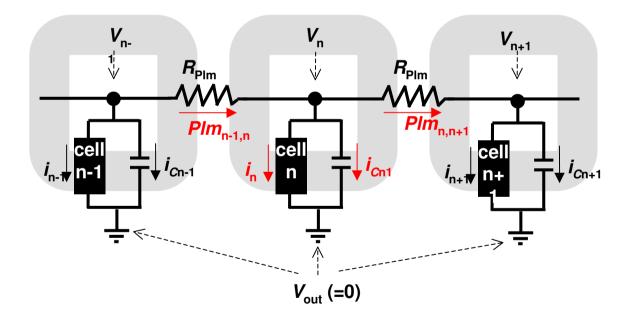
GORK is the main V-gated repolarising transporter


What about the model?

functional model of a cell membrane

What about the model?

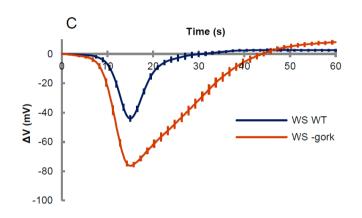

functional model of a cell membrane + transporter regulations

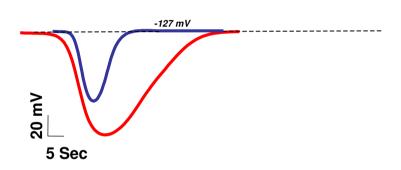

application of laws of biophysics and biochemistry (Nernst, Goldman-Hodgkin-Katz, mass action, Michaelis...)

What about the model?

electrical model of a cell membrane...

... and of a file of cells

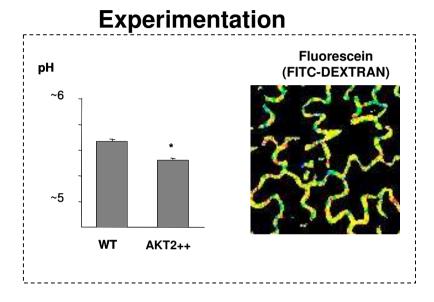



application of laws of electricity (Kirchhoff, Ohm...)

The model confirms experimental results

exp. WT/gork-

modelled exp. WT/gork-



knocking out the GORK gene

- increases the AP amplitude
- lengthens de AP (slows the repolarisation phase)
- lets the propagation speed unchanged

Model predictions

 overexpressing AKT2 should decrease the leaf apoplastic pH

- ABA application should trigger APs in leaves
- propagating APs make "Ca²⁺ waves"

soon tested!

E&CS group: the tasks

- Install AP recording at BPMP
- Compare action potentials in WT and mutant lines
- (AKT2 and GORK genes)
- Computer-assisted modelling:

 a single-cell ("0D" model),
 a file of cells ("1D" model)
 a complex network of cells ("2D/3D" model)

- Regulation of Shaker channels by CPKs
- New tools for Ca²⁺ imaging
- Ca²⁺ waves in relation to APs?

