L'équipe « Intégration »

Scientifiques permanents

2001 A. Gojon
M. Lepetit
P. Tillard

Post-Docs S. El-Khafafi

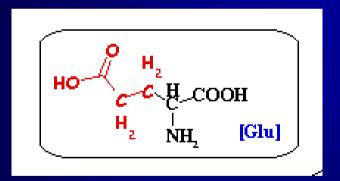
X

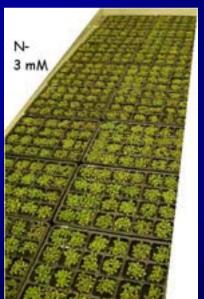
2004

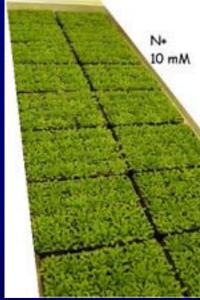
P. Nacry L. Lejay Thésards

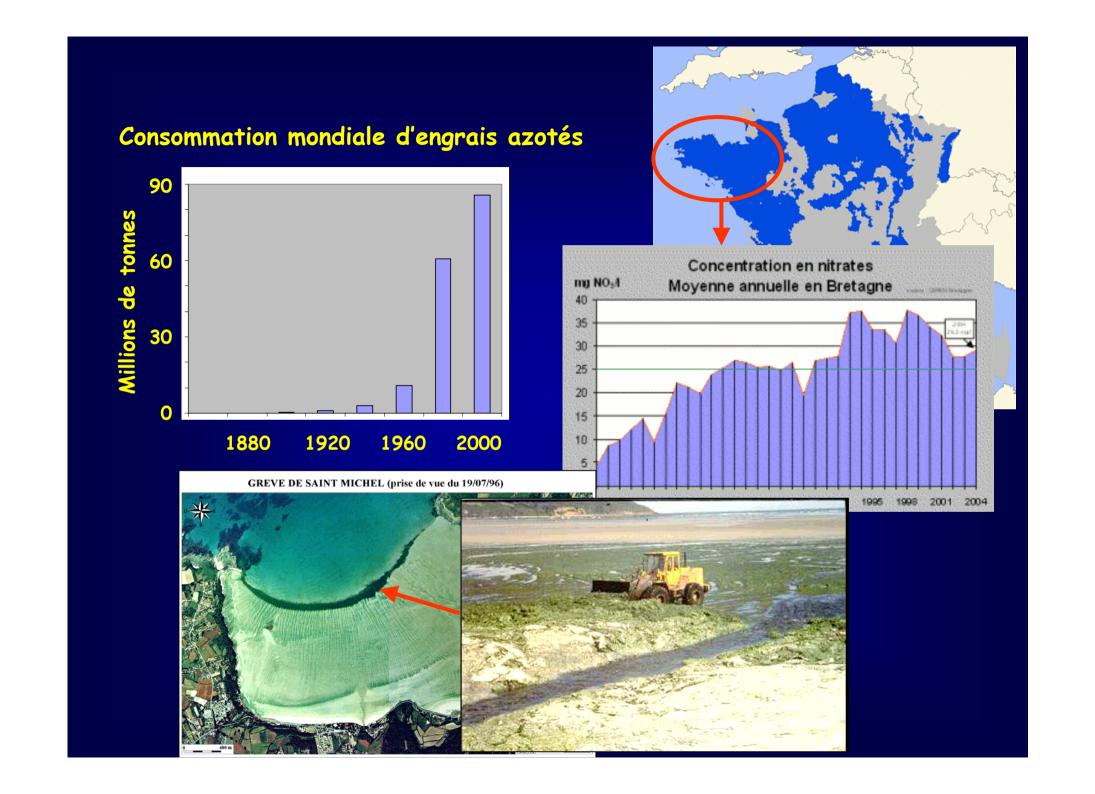
E. Mounier

T. Widiez

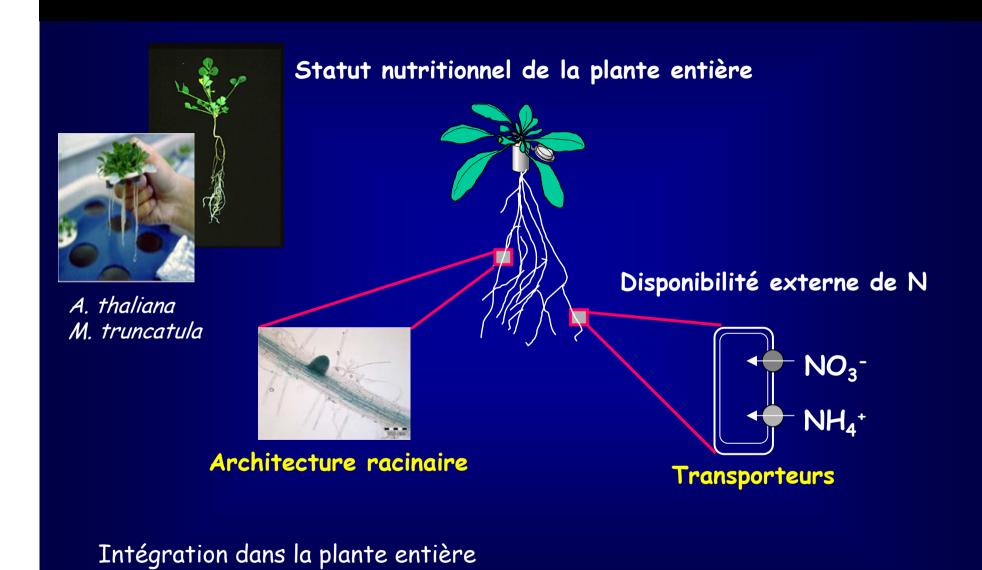

2007 B. Lacombe

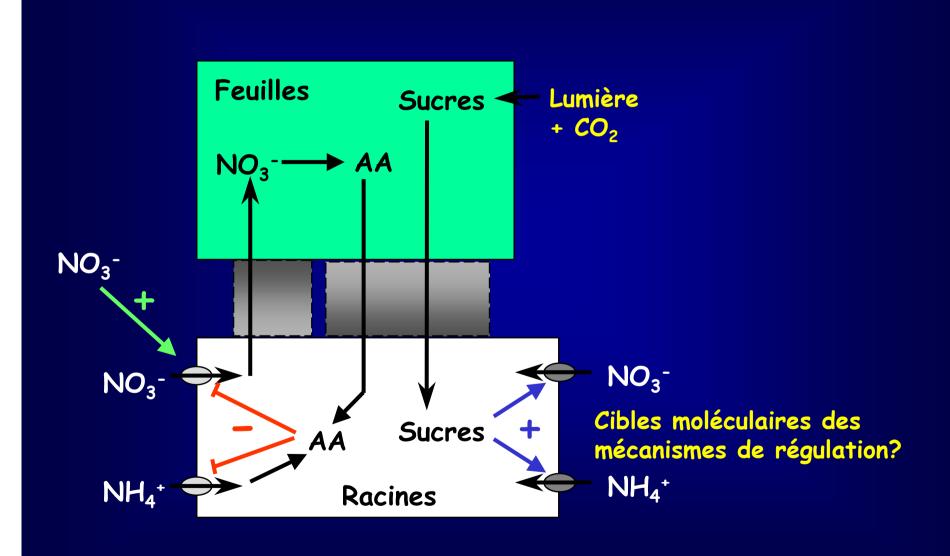

La thématique: nutrition azotée

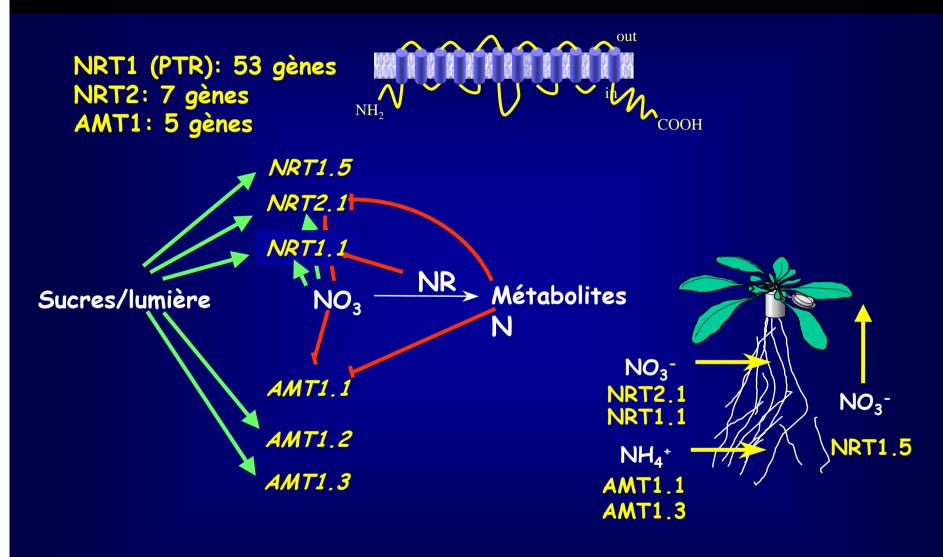

L'azote: de 1 à 5% de la biomasse sèche


Fort impact sur la croissance des plantes

Constituant des acides aminés






La thématique: régulation du prélèvement racinaire de N

Le cadre conceptuel

Les transporteurs et leurs régulations

2 transporteurs chéris: NRT1.1 et NRT2.1

2003/2004: nouvelles orientations

Caractérisation des voies de signalisation (NRT1.1, NRT2.1) NO₃-, métabolites N, sucres

Régulations post-transcriptionnelles (NRT2.1)

Prise en compte d'un niveau supérieur d'intégration

Régulation intégrée de l'acquisition des différentes sources de N (NO_3^- , NH_4^+ , N_2): *Medicago*

Interaction entre transporteurs NO_3 et développement racinaire

Interaction entre voies de signalisation (N/C)

2008: Relations structure/fonction des transporteurs Caractérisation fonctionnelle des PTR

Les stratégies expérimentales

Physiologie de la nutrition minérale d'Arabidopsis

Culture hydroponique Split-root Isotopes stables

Expression génique

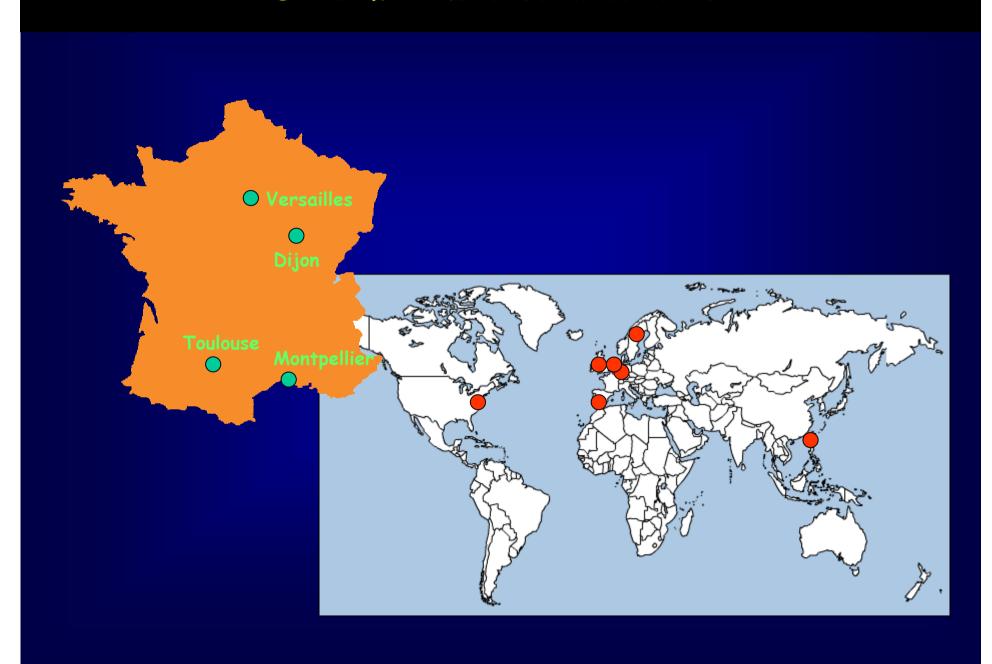
Transcriptome

Protéines

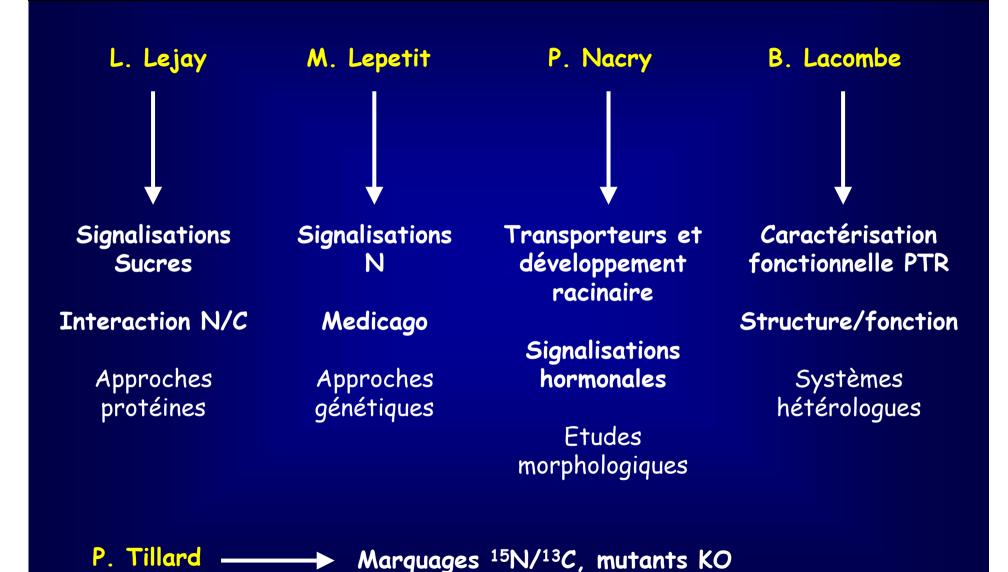
Immunologie/GFP

Voies de signalisation

Pharmacologie analyse promoteurs cribles génétiques

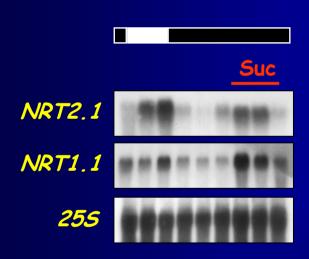

Analyses morphologiques

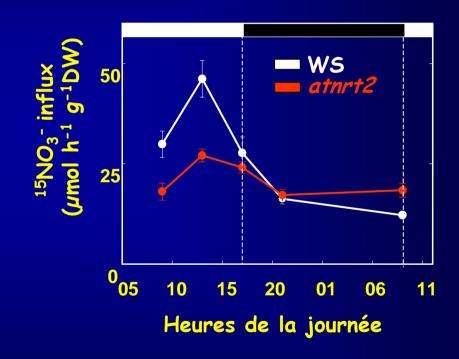
Imagerie (architecture racinaire, gènes rapporteurs)


Expression hétérologue

Ovocytes

De nombreuses collaborations




Le partage des tâches

Régulation du prélèvement racinaire par la photosynthèse

Les sucres sont des signaux gouvernant l'expression des transporteurs

La décomposition des signalisations sucres

16 gènes régulés par les sucres

PHT3.1 NRT2.1 **PHT1.4** NRT2.4 KUP2 NRT1.1 CNGC11 NRT1.5 HAK5 At3g16180 (PTR) YSL4 At5g62680 (PTR) *AMT1.3* SULTR1.1 SULTR3.5 ZIP11

3 gènes régulés par la lumière

At1g59740 (PTR) NRT1.3 AKT2

10 gènes régulés par signal en aval de HXK

 NRT2.1
 AMT1.3

 NRT2.4
 SULTR1.1

 NRT1.1
 SULTR3.5

 NRT1.5
 ZIP11

 At3g16180 (PTR)
 KUP2

5 gènes régulés par signal en amont de HXK

HAK5 At5g62680 (PTR) PHT3.1 PHT1.4 CNGC11

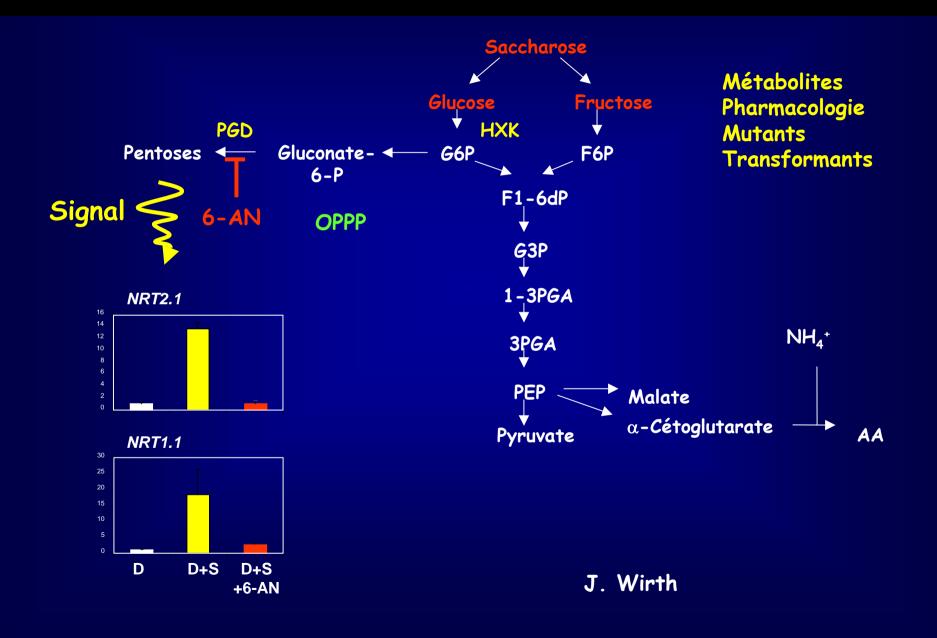
1 gène régulé par le sensing HXK

YSL4

8 gènes régulés par signal dépendant de OPPP

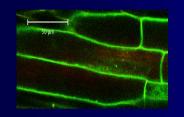
 NRT2.1
 At3g16180 (PTR)

 NRT2.4
 AMT1.3

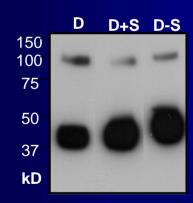

 NRT1.1
 SULTR1.1

 NRT1.5
 SULTR3.5

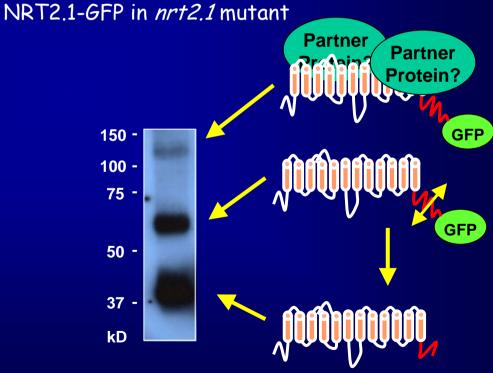
2 gènes régulés par signal indépendant de OPPP


ZIP11 KUP2

Signal sucres dépendant de OPPP


Régulation(s) post-traductionnelle(s) de NRT2.1

Combinaison immunologie et imagerie GFP



Abondance stable de NRT2.1 dans la MP

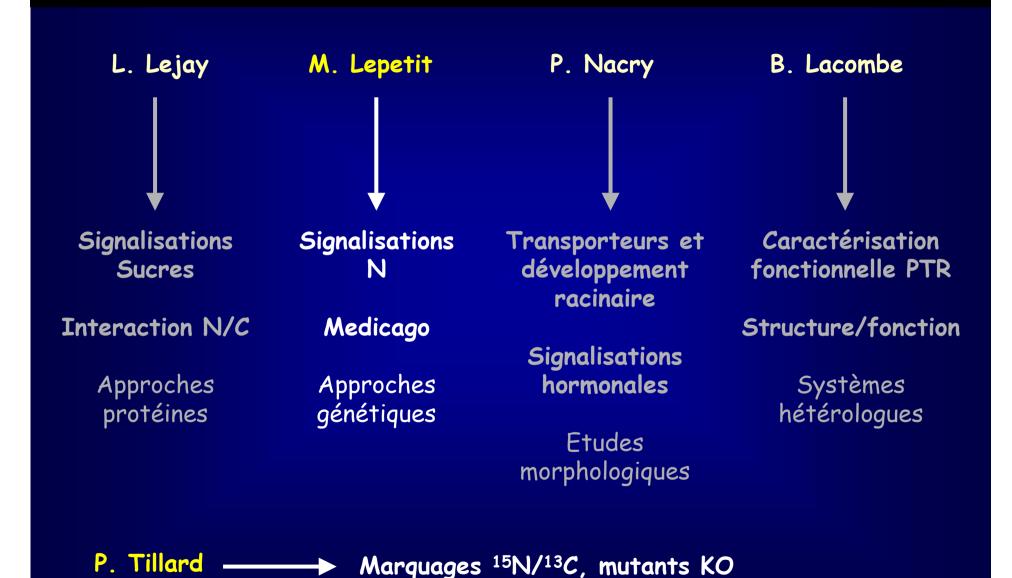
J. Wirth

Plusieurs formes de NRT2.1 dans la MP

Anti-NRT2.1 antibody

La suite

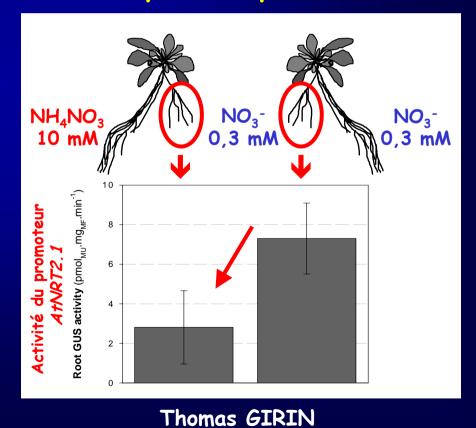
Niveau ARNm


Caractérisation de la voie dépendante de OPPP (mutants métabolisme) et de gènes régulateurs candidats (puces Affimetrix)

Interaction entre signalisations C et N: impact du statut C sur la réponse de NRT2.1 à la carence en N

Niveau protéine

Quelles régulations post-traductionnelles affectent l'activité de NRT2.1?

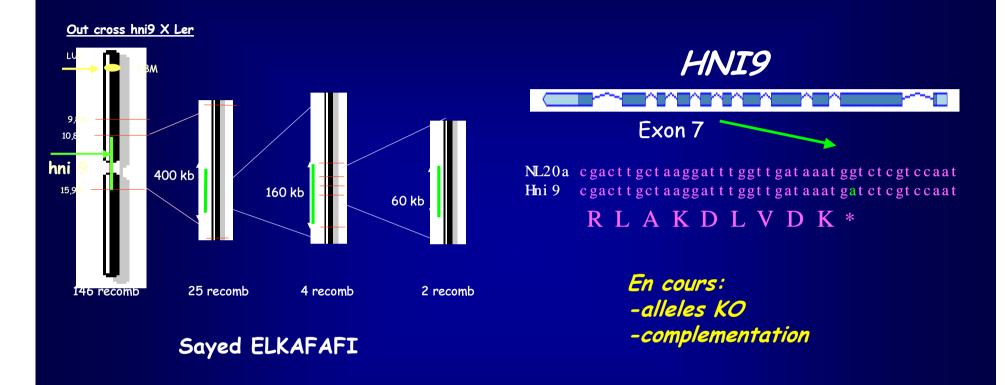

Le partage des tâches

Les métabolites N exercent un rétro-contrôle négatif sur le prélèvement de NO₃-

Statut azoté de la plante assimilation Métabolites N Transporteur de NO₃-AtNRT2.1

La répression par les métabolites N est systémique Système split-root

Identification de mutants affectés la repression par les metabolites N

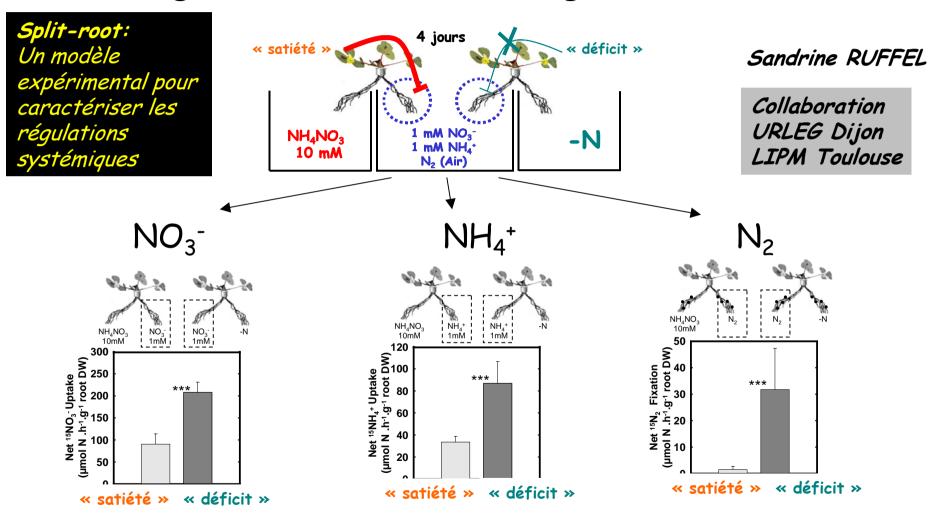


Mutants hni (high nitrogen insensitive): hni9, hni48, hni52, hni140

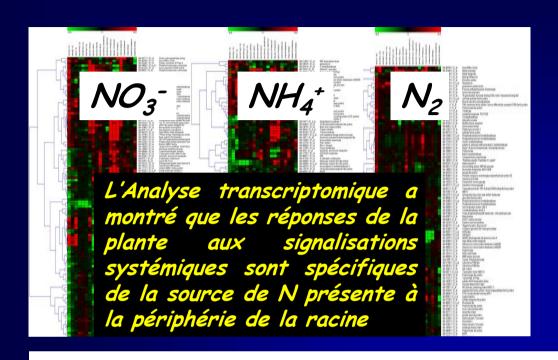
- -4 mutations récessives,
- -appartiennent à des groupes de complémentation distincts,
- -toutes cartographiées sur le chromosome 1

Thomas GIRIN & Sayed ELKAFAFI

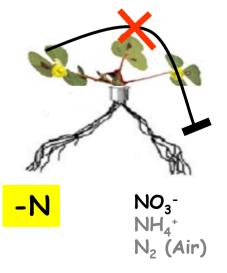
Clonage de HNI9


Sur la base des homologies de sequences avec la levure et l'homme HNI9 code un facteur de transcription sans activité de liaison à l'ADN qui participe à un complexe de impliquant plusieurs protéines.

Caractérisation fonctionnelle de *HNI9*, mécanisme? Autres mutants hni 48, 52, 140

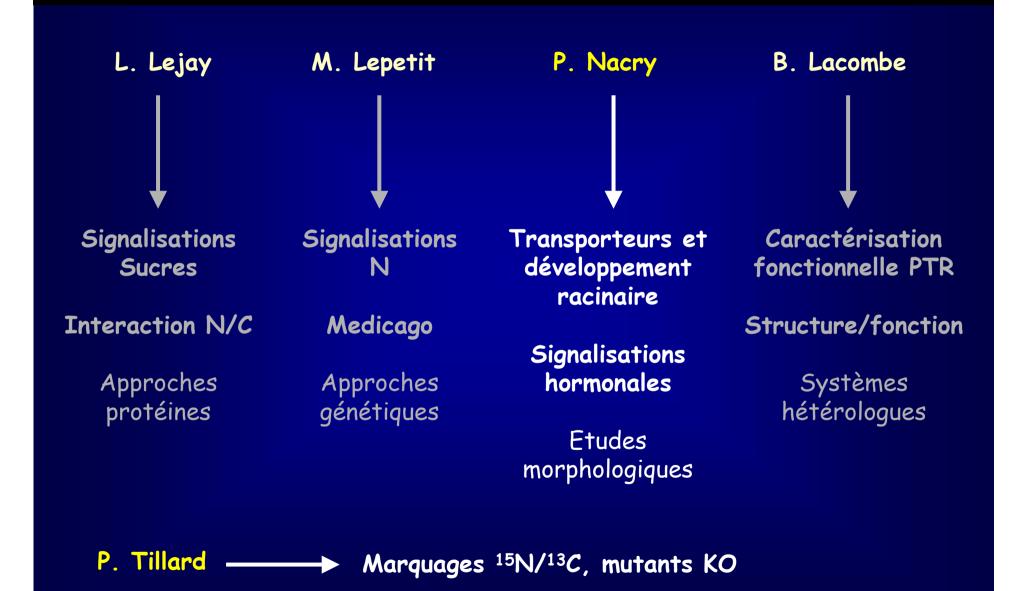

Thomas WIDIEZ

Des régulations systémiques contrôlent les autres formes d'acquisition de N par la plante

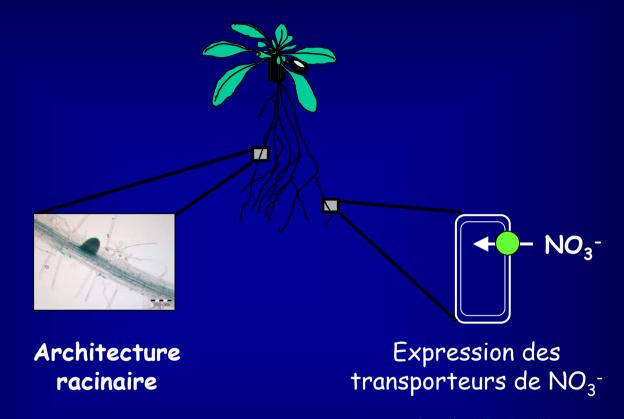

Légumineuse modèle Medicago truncatula

Des éléments nouveaux originaux...

Ce qui suggère une forte interaction entre les signalétiques locales et systémiques pour chaque source de N...

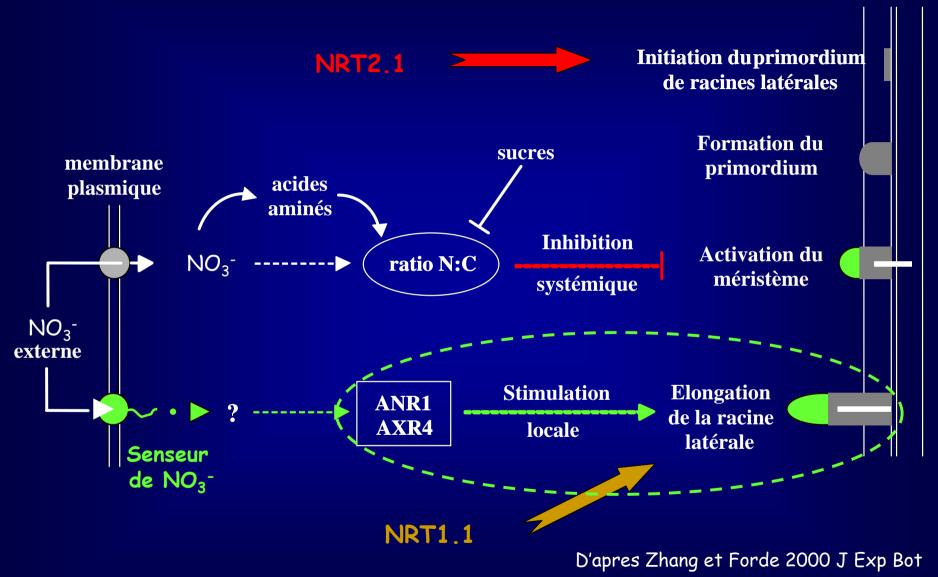


Sandrine RUFFEL

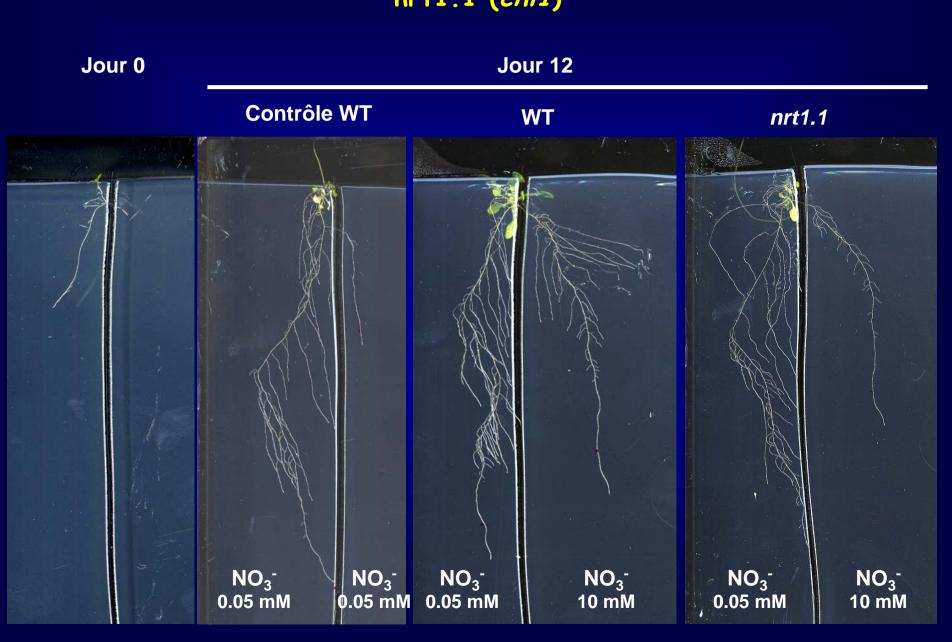

Une des conséquences physiologiques de cette spécificité est que les plantes n'ont pas la même capacité d'adaptation à une « carence » locale en N suivant la source de N

Seules les plantes cultivées sur NO₃⁻ sont capables de compenser la « carence » locale

Le partage des tâches


Réponses d'A. thaliana à la carence en azote

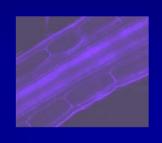
famille NRT2 : HATs 7 membres famille NRT1 : LATs 53 membres

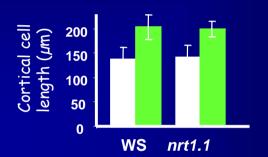

- → Comment ces deux réponses interagissent?
- → Est ce que la réponse de développement racinaire à la carence en N est modifiée chez les mutants NRT?

Deux effets opposés du NO₃ sur la croissance des racines latérales

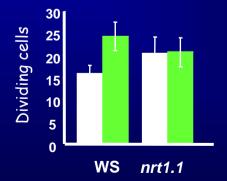
D'apres Zhang et Forde 2000 J Exp Bo Remans et al. 2006 Plant Physiol Remans et al. 2006 PNAS

La croissance des racines latérales est altérée chez les mutants nrt1.1 (ch/1)

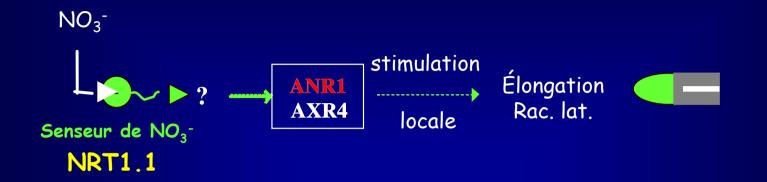


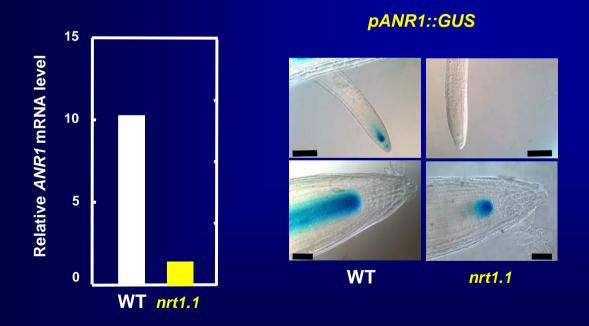

Les deux composantes de la réponse de prolifération des Rac. Lat.

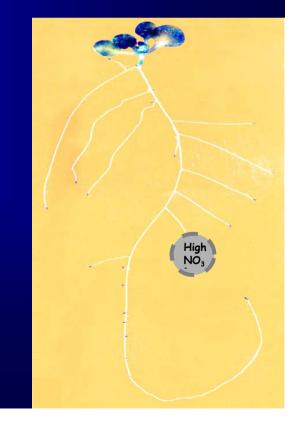
Elongation Cellulaire: indépendante de NRT1.1



Division cellulaire: dépendante de NRT1.1

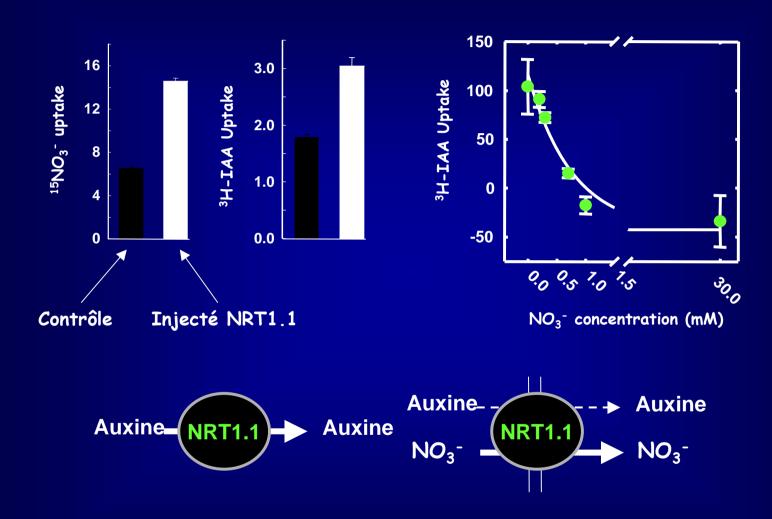



pCYC::GUS



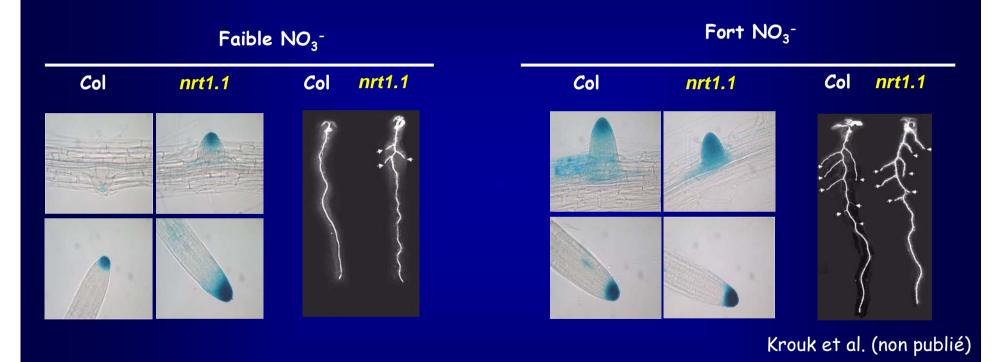
Mounier et al (non publié)

NRT1.1 contrôle l'expression d'ANR1



Remans et al. 2006 PNAS

NRT1.1 transporte du NO₃- et de l'auxine en ovocytes de Xenope

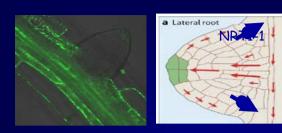


Transduction du signal NO₃- par NRT1.1: une modification de l'influx d' auxine dans la cellule

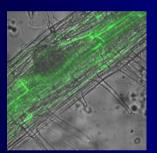
Krouk et al. (non publié)

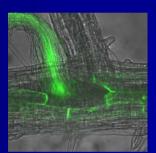
La mutation de *NRT1.1* modifie l'accumulation ou la sensibilité à l'auxine dans les Racines latérales

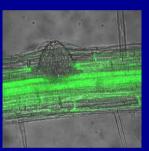
Activité du promoteur DR5 : (inductible par l'auxine) fonds génétiques Col ou ch11-5

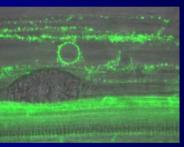



NRT1.1 limite l'accumulation ou la sensibilité à l'auxine dans les LRs à faible NO_3^-

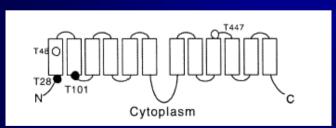

Effet répresseur de NRT1.1 sur la croissance des Rac Lat à faible NO_3^-

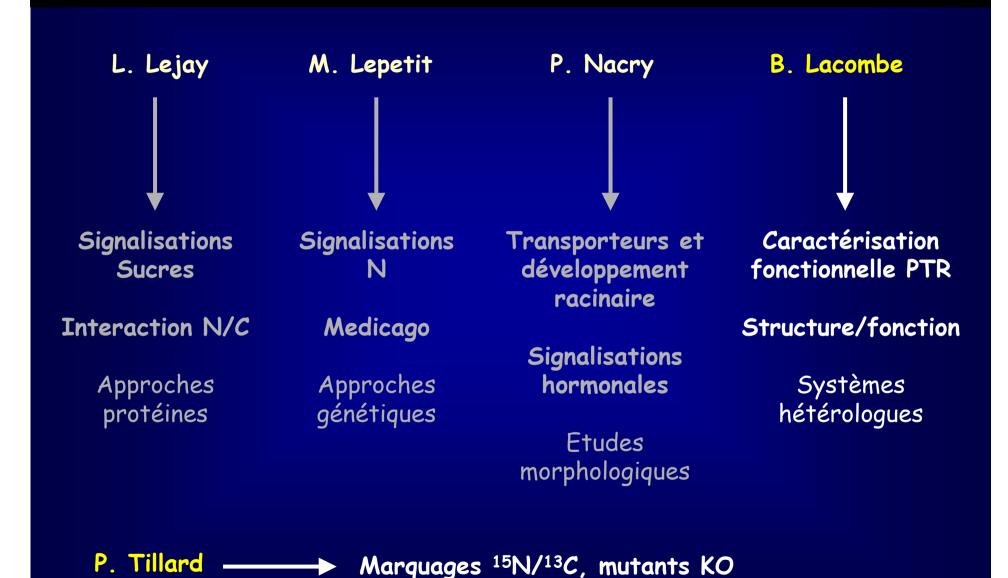

La suite





Comment NRT1.1 affecte les flux d'auxin dans les primordia





Quel est le profil d'expression et quelles régulations pour NRT1.1?

- Quelles fonctions pour les différentes parties de NRT1.1?
- Est ce que d'autres transporteurs de NO₃- sont impliqués dans des voies de signalisation?

Le partage des tâches

Bases moléculaires du transport de nitrate Caractérisation fonctionnelle de la famille NRT1

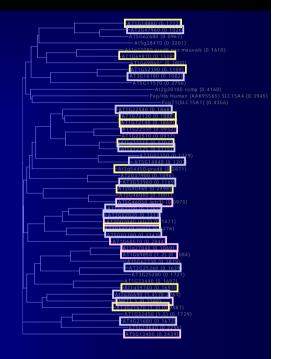
2 familles de transporteurs se partagent le gâteau:

-NRT2 en compagnie de NRT3/NAR2: haute affinité

-NRT1/PTR/POT (Peptide TransporteR/Proton coupled Oligopeptide Transporter)

haute et basse affinité (NRT1.1) ou seulement basse (NRT1.2 et 1.4)

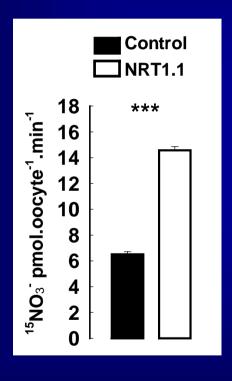
Homologie avec PepT1 (transporteur de di et tripeptides mais aussi antibiotiques)

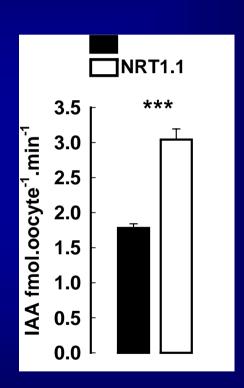

Les NRT1 d'Arabidopsis

	* 20	*	40	*	60	*	80		*	100	*	
AT1G18880 :				DDKS		RGWKVMPI		LGIVESS	SNIWIY		-ITAAKVWNIY	: 69
AT1G22540 :	мs											: 80
AT1G22550 :												: 80
AT1G22570 :												: 80
At1g27040 :		MRW	RMHGDVSKWRGYA	DNIBNKAAL	всв-н	GMLAASI	RWI AVETLEN	LAFLANA	SMINITA	KNEMHMSL	-ARSSSRUTTE	
Atlg27080_predit_pas :				RMDKTI.D	RRKI	CMDATT	TICMETIER	LCSTEWS	Aldi Ridi Lid	DMAKHWED	-WEARNWYYLI	: 64
	MSCLE											: 87
AT1G33440 :	MDVHDLSE											: 88
AT1G52190 :												: 71
At1g59740 :	MAEINKQSM											: 91
AT1G62200 :	MVNSNEEDERRILDVEESLL											: 102
AT1G68570 :												: 73
AT1G69850 (1.2) :		 :M	RURRRUSDMRGYA	TITONIO A UV	KCD-H	CMI. 8 8 CT	TULUUR TIRM	T. S.VI. S.N.S.	SHIRWIN	DRYMHMSD	-SKSAMDWIME	: 75
AT1G69860* :			MINNEKCISSS	DI.TTD	ODED	CHE AMOS	ZTTCMBTLED	LATELM	A DE RIGITALITÀ	MADRAHMUU	-VOLVEL MEN	: 68
AT1G69870 :	MVLEDRKDGSSLPGRSGSFSKS	eperintan	NDVKDTEEDGETI.	DORK	VERKD	CMDATACL	TI CMETIED	LCSTPLL	A DEPOSIT	TRVEHLEO	TIA VING 6 (TV)	: 101
At1972115 :		MTTTG1	RTSLOFFYUTD AU	DHDGI. à à	DDSMT	DMD a a r. r	TTCVSVA SD	RAVY TO	SHIRE	TODICEST	- 6 t/ 6 6 6 km/km 6 m	: 79
atlg72125 :												: 79
AT1G72130 :	MAI											: 75
AT1G72140 :	мs	rstcomet:	CATUSMRMURRSU	TROCMOS	TDSSS	AMKSSCI	THICARVARE	RAYE TA	SMILTE	RTRALGEST	- a ty a a smumit.in	: 84
AT2G02020 :	MASIDEERSLLEVEESLI											: 92
AT2G02040_(ptr2) :	MGSIEEEARPLIEEGLI											: 91
At2g26690_(1.4) :		1	VACCENTUADAY VACAVTNEDAYEM	DAKCDDAD	KSK-T	CMITTAAI	TIGTEVVED	LSTMITAL	WALLET Y	METMHLDS	STSANTWIDE	: 74
AT2G37900 :	менкиі	ידיתות זעק גב	ADDUGAMITY DEET	DEDCEMBILE-	apr	AMDAAL	TT ATERCED	LCAR-L9.	TAIL WORK	TTTI MODI.	- PM & T DM WMY	: 88
At2g38100-temp :				DIORITIE	1177	- AWARANI	-MSMICHOR	TUAMETL	MIMIL MIL.	I TNEMKLER	TILLE SATURDS	
AT2G40460 :		1	MRAARUVTODGTU	ni.ogppyi	а «и_т	DMDACSI	TI CYSARD	MARYPTA	SMINIS	TEDLUENT	TSSUDMUMMIN	: 74
AT3G01350 :				= ndorren	MDIRORTO	LCKCCPI	TUTACMED	VARK WA	SMINITE	TOUURMEN	-SD99KK WK	: 57
AT3G16180 :			толория	TGUNITANA	TDDDTK	GI.I.TMD	TTAMEGREE	VACVELL	OMINITES	I MSDVDLGL	-VECOTV EM	: 73
AT3G21670_(1.3) :		mymys	SSHCAKDCSRRAY	DYDGNDDD	KSK-T	CMI.GAGI	LTLGSELSER	TCVM TSI	MINIL WITH	LVCDLHISS	-AKSATTWIN	: 79
AT3G25260 :												: 71
AT3G25280 :												: 71
AT3G47960 :		MERK	PLRVRPSTTTTNT	DWWDSFRRRO	BKIVYI	RGMKVMPI	FITGNETFEK	LGIIRTL	SMILLWY	TSVENLKS	-YTAATI INAR	: 81
AT3G53960 :	менику											: 87
AT3G54140_(ptrl) :		-MEEKD	VYTODGTV	DIHKNPAN	кви-т	NWKACRI	FILGNECCER	LAYY MG	THERMAN	LESRLNOGN	-ATAANN TNO	: 74
At3g54450-predit :												: 62
AT4G21680 :	MDQKVRQ											: 78
AT5G01180 :		MEDDKD	IYTKDGTL	DIHKKPAN	кик-т	TWKACR	FILGTECCER	LAYY MS	THLINY	LEKOMNMEN	-VSASKSWSNO	: 75
AT5G11570 :				DOKALLVG	RTLLK	RGIPTIP	TI ASUALUK	LAYFELV	Pidjáti Lis	LTVEYGMGT	-ARAANI FLO	: 63
AT5G14940 :					MAGGEKRR	LSKSCAI	LIVIAGIER	YAFK VA	SHINT	TDVVKMSN	-SRAATTWNTO	: 57
AT5G19640 :	MAAMD PRNNGNVAPLNERERAENLE											: 109
At5g28470 :			M	DVESSSPSS-	HALIKKEK	GWRAIK	ANDSFOR	LASMSLI	GALLSVX	LMTKYNLGG	-VFLVNV NI	: 67
AT5G46040 :												: 77
AT5G46050 (ptr3) :												: 77
AT5G62680 :	MERKPLELESTOM											: 93
AT5G62730 :	-MSTNYTAINHILHFHSPNSCFLMI	MSLEFEQMO	DEANRLSAWNGYV	DWRSRPAL	RGR-H	GMLAASI	VLVVEVLEN	LAFLANA	SNLVLY	LSTKMGFSP	-SGAANAWTAR	: 106
NRT1.1 :		MSL	PETKSDDILLDAW	DFOGRPAD	RSK-T	GWASAAN	TILCIBAVER	LTTLEIG	VNLWTY	LTGTMHLGN	-ATAANTWINE	: 77
Pep/His_Human_(AAK95 :		MEGSG	GGAGERAPLLGAR	RAAAAAAAAG	AFA	RLLACGA	AVLLTELLER	AAFYCIT	SNLVLE	LNGAPFCWE	GAQASEALLLE	: 81
PepT1(SLC15A1) :				MCMSKS	HSFF	YPLSIF	FIVVNEFCER	FSYY MR.	AIUULY	FINFISWDD	-NLSTAIYHTF	: 59
AT3G45650(naxt) :			MASSVTG	DAETAISADS	STKRRG	GWITFPE	FM ATLLGLT	IAAW:WL	LNLIVY	LIEEFNVKS	-IAAAQIANIV	: 72
AT3G45660(naxt) :												
AT3G45680(naxt) :			MASLVSG	DKEAQISG-D	PGSK-R	GWITFPE	FML ATLLGLS	VISFEWVI	MNLIVE	LIEEFNIKS	-IAAAQISNVA	. : 70
AT3G45690*(naxt) :			MARSV	DTEAMTTR-D	pssk-r	GWKTFPI	FHIATLLGLS	IASFEWV	MNLVVE	LIKEFNIKS	-IAATQNSNIV	: 68
AT3G45700(naxt) :												
AT3G45710(naxt) :												
AT3G45720(naxt) :												
				ď		a .	е е	a	n 5	_		

Bases moléculaires du transport de nitrate Caractérisation fonctionnelle de la famille NRT1/PTR

Sur les 46 membres, seulement 6 ont été partiellement caractérisés :


- 3 transporteurs de nitrate (NRT1.1, 1.2 et 1.4)
- 3 transporteurs de dipeptides (ptr1, 2 et 3).


- 1- Rechercher des transporteurs de nitrate parmi les NRT1/PTR : screen 15N dans l'ovocyte
- 2- Étudier les mécanismes de transports du nitrate (couplage ?, sélectivité, voltage-dépendance, ...)
- 3- Rechercher les bases moléculaires des propriétés de ces transporteurs Etude des relations structure-fonction

Expression de NRT1.1 (CHL1) dans l'ovocyte de xénope

3H-IAA

Mécanismes de transport du nitrate

Couplage avec H+?

Sélectivité?

Voltage-dépendance?

Pharmacologie

Dans un premier temps NRT1.1 et 1.2

Influx 15N et voltage-clamp à deux électrodes

Relations Structure/Fonction

- Les NRT1 sont-ils mono ou multimériques: approches dominant négatifs
- bases moléculaires des propriétés fonctionnelles: pourquoi certains transporteurs transportent nitrate d'autres peptides, d'autres auxine?

Deux approches possibles:

- Chimères
- Mutagénèse dirigée

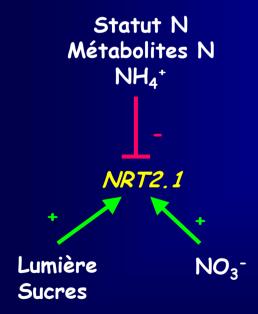
Y selectivité — G absolu pour fonction

								•			
		_12	20 *	140	_ 	160	180	* .	200	* 220	_
Pep/His_Human_(AAK95	: :	EALL!	PMGLTYLGSPFGGWLADA	ARL GRAF	I <mark>I</mark> LLSLALYLL	LULAFPI LAAPATRA	ALCGSARLLNCTAF	PGPDAAARCCSP <u>A</u> T[FAGLVLVGLGVAT	VKANITPFGAD	VKDRGPE: 18
PepT1(SLC15A1)	: .	AIYHT	PVALCYLTPILGALIAD:	SWLGKFK	IVSLSIVYT	EQAVTSWSSINDLTD	INHDG	TPDSLPVHVVLS	LIGLALIALETGO	GIKPCVSAFGGD	PEEGQEK: 15
At2g38100-temp	: .	MIIA	MAGVSAIGHLGMQFLVDA	AFIGHEW <mark>Y</mark>	ILCLSTLAFSF	FGFLAISASPILS-		GNGQKGLF	YVALTVISVGIFO	RSISLGVFTED	LEDGRNK: 12
AT5G11570	: :	NILFI	MSAATNFFPLVGAFIAD:	SYTGREF <mark>I</mark>	I <mark>GFGSSISLT</mark>	CMVLLWLTTIIRPE-	CDKLTN	-VCQPTTLLKSVLL	YSFFAL <mark>TAIGA</mark> GO	VRSSCLAFAAD	LQPNQTS: 16
AT3G16180			WVAATNFMPLVGAFLSD:								
AT1G52190	: 3	NVL FI	WSAASNFTPLLGAFLSD:	SYLGRFL	ISIASLSSFI	EWVLLWLTAMLPQVK	SPCDPTAAGS	HCGSSTASQLALL	Y <mark>SAFA</mark> LI <mark>S</mark> IGSG0	IRPCSLAFGAD	LDN-KEN: 17
AT1G69860*	: '	TL N	WSALTNFAPIIGAFISD:	SYTGKFN I	IVFGSIAELL	CMLVLTFTSLVPNLR	PPCTADQITG	QCIPYSYSQLYVL	LSGLFLLSVGTGO	IRSCSVPFSLD	FDDST : 17
AT1G69870			WSGFTNLTPLVGAYISD.								
Atlg27080_predit_pas	: :	NVŸYI	MMGLTNFAPLLGALISDA	AYIGREKI	IAYASLFSIL	CLMTVTLTACLPQLH	PPCNN-PHPD	ECDDPNKLQLGIL	FLGLGFLSIGSGO	IRPCSIPFGVD	FDQRT : 16
At5g28470	: 3	NV N	WFGSCNILTLAGAFVSDA	AYLGR FW I	LLLGSIASFI	ewgifaltaalpslr	DACIDPSNCS-	NQPAKWQLGVL	FSGLGLLAIGAGO	VRPCNIAFGAD	FDTSTKK : 17
AT5G62680	: '	TINA	rsctinfgtfvaaflod:	TYFGRYK I	LSVAVIACEL	SFVILLTAAVPQLH	-AACGTAADS	CONGREGGOIAFLE	LMGLGFLVVGAGO	FIRPCNLAFGAD	FMPKS : 19
AT3G47960	: '	TINA	rsgrinfgtflaaflod	TYFGRYK I	LSVAVIACEL	SFVILLTAAIPSLH	-VACGNKIS-	CEGPSVGQILFL	LMGLGFLVVGAGO	FIRPCNLAFGAD	FMPKS : 18
AT1G18880			YGGTSNFGTIVAAFLCD:								
AT1G22540			WSGTASLLPLLGAFVAD:								
AT1G72130	:	ANTINA	WTGTVAFLPLLGGFLAD:	SYLGREE	IIISSSLYI	GUGLUSFSTMIPS	Н	OSKDSNOLOETIF	PESLYLVAIGOGO	YNPCIKVFGAD	FDGNDHK: 16
AT1G72140	:	SNVNI	WLGTAAFLPLIWGSIAD:	FLGREE	ILLTSSFYI	GL TESATIPSIC	ID0ET	RESCVSOVKVIIF	CALYLIALGEGO	FKVCLRAFGAD	FDEODPN : 18
AT1G22550			WSGTASILPVLGAFIADA								
AT1G22570	;	VNON	WSGTASILPILGAFVADA	AVI. GRVE	TVVASLIVI	ELGLITI SASLITMG	SKORND	ASAKPSTHVNTLF	PCSLVLVATEOGO	HKPCWOAFGAD	FDAEDPK : 18
At1q72115	:	AMONA	WSGIATLLPVLGAFVADA	AFI GRYE	TITSSLIVY	LAF T SAFLIPNT	TEVTS	STSSFLNVLF	PESLYLVATIONS	HKPCVOAFGAD	FDEKDSO: 17
atlg72125	:	AMMMA	WSGISTILPLLGAFVAD	ART GRAT	TITASFIVY	ELAFLTI SAFI TPMM	TEVTS	SPSSFLNALF	FELVLVATGOSO	HERCWOAFGAD	FDEKNPO : 17
AT3G01350	: :	KLUMBL	WAGFTSMLPLFSAPLAD	DAPIDIS PE	TLASSS 7VF	NG TUTAFAGS		SATETTSSVEL	VSSLCLWSTELEV	ZIMPSI OAFCAD	LDHDLDK : 14
AT5G14940	: :	Tallow Mil.	WSGFTFMLPLFSAPFAD:	SWIND DE	TLASSSIVE	NG TETAFACS	_D	SHIRITSSIIL	TSUSUWAL ELEV	ZIMPSI OARGAD	LDYDLDH : 14
At3g54450-predit	: .	יא ואיז	WIGVSCMFPILGAFLAD:	STICDED	WIITSFIVI	TWO DESCRIPTION	1	MDRVWR	DMAL WWWAWCE CO	HUDCWWTDAAAD	GEANAE : 14
AT2G37900			WSGVTTLMPLLGGFIADA								
	: :	rangga. Panggas	WSGVTTLMPLLGGFVAD	AVI COMO	OLIVATILITI	ELTITICHETICIE	CIIQE	MCOEDRAMEVAL	TATILISION	TIME STEST GAD	FEDGHPE : 18
			WSGAVWITPIAGAYIAD								
	•	KINI WIYI	WVGTSWLTPILGAYVADA	SILGERU	FUTGGATVI	entri Liana i Arer Entri Liana i Arer	ICENG	TIPULGGANUOV	TENETT AT CARO	TENTETTCAL	FDEFDPK: 18
AT5G46040											
AT5G46050_(ptr3)	:	CD 1000	WVGTSWLTPILGAYVGDA	ALLUKETI	TACECA LYE	SUNTULINGULINGIK	rECSIIWVE	TAMADAACAADAT	OCCUPATION OF STATE	TERRETERE	FDDTDPR : 20
AT1G62200			WQGTCYITPLIGAVIAD								
AT2G02020	: :	RHUM.	WQGTCYITPLIGALIADA	ATWGRIW	TACESALYFI	GOVALI SASVPGLK	AECIGS	PCPATMACTAR	. 20 LATTWIELD	TERPLUSSICAL	FDKTDPS: 19
AT2G02040_(ptr2)	:	INVI.	WQGTCYLTPLIGAVLADA	AYWGRYW	LACESCLYF	SOSALI SASVPALK	AECIGI	MAYDATTAGOOM	r G-G-L-A L-T-A L-G-L-G-C	FIRPUVSSFGAD	FDDTDSR : 19
AT3G54140_(ptrl)	: :	NNWIT	MSGTCYITPLIGAFIADA MSGTCYATPLIGAFIADA	AYLGRYU	LATFVF LYV 5	BOTLITI SASVPGLK	GNUNADT	CHPNSSQTAVF	BANTANTALEIG	FIRPCVSSFGAD	FDENDEN: 17
	: :	KSVSI	MSGTCYATPLICATIANA	AYLGRYW	IASFVVIYIA	BOTTLITISASVPGLT	-TUSGET	CHATAGUTATT	PIARYLIARETE	GIKPUVSSFGAD	FDDTDEK: 17
AT1G68570			RAGTSSLTPLLGAFIAD:								
At1g27040	:	SEWT.	RMATAFLLALLGGFLADA	AFFSTEVI	FLISASIEFL	H IL TIQARRPSLM	PPCKS-SAAI	RCEVVGGSKAAFL	PVGLYLVSLGIG	SIKGSLPSHGAE	FDEGT : 17
AT1G69850_(1.2)	:	NDWTI	nmgtafllallggflsda	AFFSTRO	FLISASIEFL	HIILTHQARTPSLM	PSCDSPT	r-ceevsgskaaml	BAGUATAWATEAGO	GIKGSLASHGAE	FDEST : 17
AT5G62730			RMGTAFFLALLGGFLADA								
AT3G25260			PVGTSFLLTIFGGFVAD:								
AT3G25280	:	NM\(\)TI	MMGTSFLLTLFGGFIADS	5FVTHFT	FIVECCIEL	IL TFQAHNPKLL	EKDKT	PSTLQSAIL	FTGLYAMAIGTGO	LKASLPSHGGD	IDRRN : 16
AT1G33440	: :	NLWTI	FIGTVFLLSLLGGFLSD:	SYLESEF	MLVFGVIEIS	FILLSWQAHLPELR	PECNMKSTTI	HCVEANGYKAATL	TALCLVALGSGO	CLKPNIISHGAN	FQR : 18
	: :	иі⊕пт	PVGTIFIFALLGGYLSDA	AFLESFW	IIIFGFVELS	EFILLSWQAHLPQLK	PKCNP-LIDQ	TCEEAKGFKAMIF	PMALYLVALGSGO	VKPNMIAHGAD	្សានQSH : 19
At2g26690_(1.4)			PMGTSFLLCLLGGFLAD:								
NRT1.1	: :	NT¶TI	PLGTSFMLCLLGGFIAD	TFLGRYL	I <mark>AIFAAIQAT</mark>	ewsiltlstiipglr	PRCNPTTSS	HCEQASGIQLTVL	MLALYLTALGTGO	VKASVSGFGSD	FDETE : 17
			RMGTLNLLGLLGGFLADA								
AT1G32450_(1.5)			WTGTVYIFSLVGAFLSD:								
AT4G21680	: :	nnvsi	WTGTVYIFSLLGAFLSD:	SYWGRYK I	CAIFQASFVA	ELMMLSLSTGALLLE	-sgcgveDs	PCKPHSTFKTVLF	Y LSVYLIAL G Y GO	YQPNIATFGAD	JFD <mark>AE</mark> DSV : 18
AT5G19640	: :	nnvsi	WTGTVYMFSLVGAFLSD:	SYWGRYL	CTIFQVIFVI	E VGLLSFVSWFFLIK	-RGCGDGDI	ECNPPSSLGVAIF	YLSVYLVAFGYG0	HQPTLATFGAD	LDDDK : 21
AT5G13400	: :	NAVNI	PLGISQASSVLGGFLADA	AYLGRYW I	IAIFTI MYL /	C LIGITLGASLKMFV	DOSNCGOLSLLLG	NCEEAKSWOMLYL	YTVLYLTGFGAA	GIRPCVSSFGAD	FDEKSKD: 22
			5 a a D	ar t	:	G	•		a ac	r foal	Df

Les acquis originaux

La régulation des transporteurs

Mutants *hni*Voie de signalisation sucres inconnue
Régulation post-traductionnelle de NRT2.1

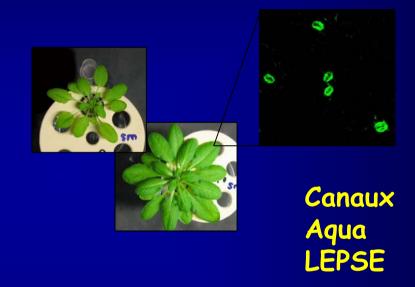

Les approches plus intégrées

Source de N et réseaux de gènes activés par la carence Transporteurs: senseurs gouvernant le développement racinaire Relation avec signalisations hormonales

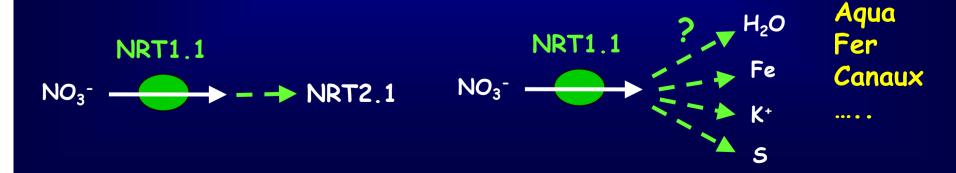
Un nouveau cadre conceptuel

Transporteurs cibles des signalisations gouvernant le prélèvement racinaire

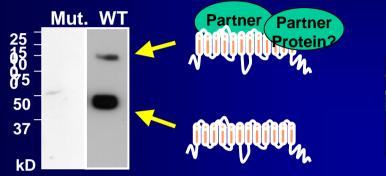
Transporteurs acteurs des signalisations gouvernant la croissance et le développement



Des idées qui nous agitent


Rôle de NO₃- dans le développement foliaire et l'activité stomatique

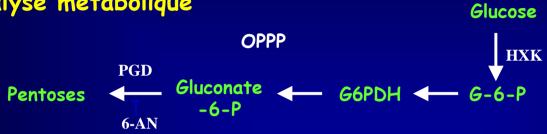
NRT1.1 exprimé dans les feuilles



L'impact des signalisations activées par les transporteurs

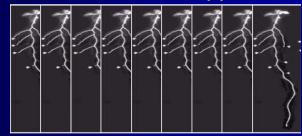
Des idées qui nous agitent

Les différents niveaux de régulation des transporteurs

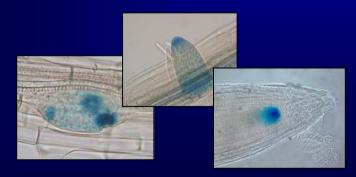


Aqua Dynamique LPF

Anti-NRT2.1 antibody


Des idées qui nous agitent

L'analyse métabolique


LEPSE

Le haut débit en développement racinaire

Metaux LEPSE

Des tissus et des cellules

IRD/CEA