bar23 | ||||||||||||||||||||||||||||
MAPI | MAPI subsampled | Geneland geographical plots from uncorrelated frequency model. | Geneland geographical plots from correlated frequency model. | DAPC plots when K* is determined based on Ward's minimum variance method | DAPC plots when K* is determined based on a ΔBIC ≥ 6 as an evidence against the model with the higher BIC value | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Simulated data | Geographical plots of weighted mean of all ellipse values (i.e., individual genetic distances ar of Rousset 2000) and significant barrier (cells with differentiation values higher than expected under a random distribution (no FDR applied) are materialized with thick black borders) | Idem, Benjamini-Yekutieli FDR applied | MAPI analysis (no FDR applied) with subsampled (75/200) dataset | MAPI analysis (Benjamini-Yekutieli FDR applied) with subsampled (75/200) dataset | Best probability memberships | Probability memberships for cluster 1 | Probability memberships for cluster 2 | Probability memberships for cluster 3 | Probability memberships for cluster 4 | Probability memberships for cluster 5 | Best probability memberships | Probability memberships for cluster 1 | Probability memberships for cluster 2 | Probability memberships for cluster 3 | Probability memberships for cluster 4 | Probability memberships for cluster 5 | Scatter plot showing the first two components of the DAPC (when K*>2) or density plot showing the first principal component of the DAPC (when K*=2) | Probability memberships for cluster 1 | Probability memberships for cluster 2 | Probability memberships for cluster 3 | Probability memberships for cluster 4 | Probability memberships for cluster 5 | Scatter plot showing the first two components of the DAPC (when K*>2) or density plot showing the first principal component of the DAPC (when K*=2) | Probability memberships for cluster 1 | Probability memberships for cluster 2 | Probability memberships for cluster 3 | Probability memberships for cluster 4 | Probability memberships for cluster 5 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
bar23_1 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_2 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_3 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_4 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_5 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_6 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_7 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_8 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_9 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_10 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_11 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_12 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_13 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_14 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_15 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_16 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_17 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_18 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_19 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_20 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_21 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_22 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_23 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_24 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |
bar23_25 (full) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NA | NA | NA | ![]() |
![]() |
![]() |
NA | NA | NA |