Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
PLANT INHABITING MITES
(ACARI : PROSTIGMATA & MESOSTIGMATA)
OF SOME NORTHERN TUNISIAN CROPS

BY S. KREITER¹, P. AUGER¹, K. LEBDI GRissa²,
M.-S. TIXIER¹, B. CHERMITI³ & M. DALI³

(Accepted Septembre 2001)

TUNISIA, PHYTOSEIIDAE
TETRANYCHIDAE
TENUIPALPIDAE, ERIOPHYIDAE
APPLE, GRAPEVINE, CITRUS

SUMMARY: Authors give a report on the results of collections of plant inhabiting
mites carried out between 1994 and 2001 in 4 main perennial crops in 5 regions of
Northern Tunisia: vegetable productions in greenhouses, apple and citrus
orchards, and grapevines. Thirty-seven species, belonging to 8 families of mites
were found, among which 30 species are new for the Tunisian fauna.

Eight species of tetranychid mites were known
from Tunisia (BOLLAND et al., 1998). Oligonychus
afrasaticus (McGregor), Panonychus citri (McGregor),
Panonychus ulmi (Koch), Petrobia tunisiae Man-
son, Petrobia marsai Manson and Tetranychus urticae
Koch were reported by several authors (PAGLIANO,
However, Eutetranychus orientalis (Klein) and Tetra-
nychus evansi Baker et Pritchard have been actually
found by the senior author and reports of these
2 species were included in the world catalogue of
BOLLAND et al. (1998) without details of collections.
These details are reported in this paper.
Only one phytoseiid, Phytoseiulus persimilis
Athias-Henriot, has been identified from the Gafsa
region by RAMBIER (1972).

Thus, up to date the plant inhabiting mite fauna in
Tunisia consists only in 7 species (and 2 more already
partially cited).

In this paper we report results of surveys carried
out during 7 years in 5 regions of the Northern
Tunisia (North, West Center, Cap-Bon, Bizerte and
Sahel regions), in 3 main crops : apple and citrus
orchards, and grapevines.

MATERIAL AND METHODS

Plant inhabiting mites were collected from various
cultivated or uncultivated plants from 1994 to 2001,
some years during different seasons, by collecting
directly on leaves of host-plants. Mites were then

1. Ecole Nationale Superieure Agronomique/Institut National de la Recherche Agronomique, UFR d'Ecologie animale et de Zoologie
agricole, Laboratoire d'Acarologie, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France.
2. Institut Nationale Agronomique, Departement de Protection des Plantes, Laboratoire de Zoologie agricole, Tunis, Tunisie.
3. Ecole Superieure d'Horticulture de Chott-Mariem, Departement de Protection des Plantes, Laboratoire de Zoologie agricole, 4042
Sousse, Tunisie.

gently transferred with a fine hairbrush into small plastic vials containing 70° alcohol and 2% of glycerine. Mites were then cleared in laboratories with lactic acid, mounted on slides using HOYER's medium and then identified using a phase contrast microscope.

The generic classification of CHANT & McMurtry (1994) is used for the Typhlodrominae and Phytoseiinae and generic classification of MORAES et al. (1986) for the Amblyseiinae.

Specimens of each species are deposited in the mite collections of each collaborating institutes. Some specimens are deposited in the mite collections of at least one other collaborating institute.

The following abbreviations are used in this paper: INRA (Institut National de la Recherche Agronomique; Centre de recherche de Montpellier, France), ENSA.M (Ecole Nationale Supérieure Agronomique de Montpellier, France), ESHE (Ecole Supérieure d'Horticulture et d'Élevage de Chott-Mariem), INAT (Institut National Agronomique de Tunisie).

RESULTS

Thirty-seven species of plant inhabiting mites have been found. Seven of them have been already mentioned and 30 are new for the Tunisian fauna: 13 phytoseids, 7 tetranychids, 2 tenuipalpids, 4 eriophyids, 1 tarsonemid, 1 tydeid and 1 stigmaeid.

MESOSTIGMATA

PHYTOSEIIDAE

AMBLYSEIINAE:

Euseius scutalis (Athias-Henriot)

[Typhlodromus scutalis Athias-Henriot, 1958: 183.]

This species seems very common all around the Mediterranean region. It was described from Algeria (ATHIAS-HENRIOT, 1958) and mentioned in Turkey (COBANOGLU, 1989), and Spain on Citrus sp. (FERRAGUT et al., 1983; GARCIA MARI et al., 1985 and 1986). This species seems common in the driest regions of the northern Tunisia.

PREVIOUS RECORDS: Algeria, Egypt, India, Iran, Israel, Jordan, Turkey, Lebanon, Pakistan (MORAES et al., 1986).

SPECIMENS EXAMINED: Mateur (North region), Sousse (Sahel region), Tekilsa and Slimane (Cap-Bon region), on Malus domestica Borkh, July 2000; Sousse (Sahel region), on Citrus sp., April 2000; Sidi Saheb, near Kairouan (Sahel region), on Hibiscus sp. near citrus orchard, May 2001.

Euseius stipulatus (Athias-Henriot)

[Amblyseius stipulatus Athias-Henriot, 1960a: 294.]

This species was described from Algeria (ATHIAS-HENRIOT, 1960a & b). It seems to be restricted to Mediterranean coastal regions in France where small populations have been observed on grapevines (KREITER et al., 2000). E. stipulatus has been reported in Spain (FERRAGUT et al., 1985; GARCIA MARI et al., 1987; VILLARONGA et al., 1991), and Italy (NICOTINA et al., 1990; NICOTINA & CIOFFI, 1997). It is a common species on citrus leaves throughout the Mediterranean Basin (FERRAGUT et al., 1983; GARCIA MARI et al., 1985, 1986). It is also found in Greece in several crops (PAPAIOANNOU-SOULIOTIS et al., 1994) and Turkey (MCMURTRY, 1977). E. stipulatus seems to feed on red spider mites and eriophyid mites. This species also consume pollen (FERRAGUT et al., 1987).

PREVIOUS RECORDS: Algeria, France, Greece, Italy, Portugal, Spain, Turkey, Yougoslavia (MORAES et al., 1986).

SPECIMENS EXAMINED: Bou Argoub, Hammamet, Maamoura, and Tazarka (Cap-Bon region), on Citrus sp., July 1994; Beni Khaled, Bou Argoub, Grombalia, Hammamet, Menzel Bouzefa, Nabeul, Soliman (Cap-Bon region), on Citrus sp., November 1994; Intilaka, Korb a, and Takilsa (Cap-Bon region), on Citrus sp., October 1995; Mateur (North region), Sousse (Sahel region), Tekilsa and Slimane (Cap-Bon region), on Malus domestica Borkh, July 2000.
Iphiseius degenerans (Berlese)

[Seiulus degenerans Berlese, 1889: 9.]

Described in Italy during the 19th century (Berlese, 1889), this species has a wide distribution. It was found in Israel on Citrus sp. (Porath & Swirs, 1965), in Citrus sp. and olive trees in Greece (Papaioannou-Souliotis et al., 1994) and on grapes in Italy (Vacante & Tropea Grazia, 1987).

Preceding records: Algeria, Egypt, Greece, Israel, Italy, Kenya, Lebanon, Madeira Islands, Madagascar, Malawi, Portugal, Rwanda, South Africa, Tanzania, Turkey, Georgia, Zaire (Moraes et al., 1986).

Specimens examined: Sousse (Sahel region), on Citrus sp., April 2000; Sousse (sahel region), on Hibiscus syriacus L. near citrus orchard, April 2001.

Neoseiulus barkeri Hughes


This species has been used largely in the last twenty years in experiments for biocontrol of thrips, particularly the onion thrips Thrips tabaci Lindeman on glasshouse cucumber (Hansen & Geitly, 1987; Hansen, 1988; Brodsgaard & Hansen, 1992) and the western flower thrips, Frankliniella occidentalis Perigande. It has been commercially mass-produced in Europe since the beginning of the 1980's (Ramakers & Lieburg, 1982). Selection for non-diapause strains was also effected within the species (Van Houten et al., 1995). As a thrips predator, it is known to be more effective on first stage larvae of its prey (Bakker & Sabelis, 1986). N. barkeri was reported in vineyards in Sicily (Ragusa & Chilla, 1989) and France (Kreiter et al., 2000) and in various crops in Greece (Papaioannou-Souliotis et al., 1994).

N. barkeri is widespread throughout the world (Moraes et al., 1986), and the biological characteristics have been documented because of its use in controlling thrips on Cucurbitaceae in greenhouses (Castagnoli, 1989). It also feeds on red spider mites and eriophyid mites (Momien, 1995). This species was found in Israel on Citrus sp. (Porath & Swirs, 1965).

Preceding records: Algeria, Brazil, China, France, Georgia, Germany, Guinea, Hawaii, Israel, Japan, Italy, Netherlands, Spain, Turkey, Ukraine, United Kingdom, USA (Moraes et al., 1986).

Specimens examined: Beni Khiar (Cap Bon region), on Oxalis sp. in citrus orchard, October 1995.

Neoseiulus californicus (McGregor)

[Typhlodromus californicus McGregor, 1954: 89.]

N. californicus has been mentioned in various crops in Spain (Ferragut et al., 1983; Garcia Mari et al., 1985; Garcia Mari et al., 1986; Villaronga et al., 1991), Italy (Nicotina & Cioffi, 1997), France (Kreiter et al., 2000) and in Greece (Papaioannou-Souliotis et al., 1994).

This very widespread species (Moraes et al., 1986), which McMurtry and Croft (1997) consider to be specialised, migrates from the grassy layer to fruit trees or grapevines and vice-versa (Raworth et al., 1994; Auger et al., 1999). It is a specialist predator of T. urticae on annual plants and woody species, and of P. ulmi (and perhaps eriophyid mites) on trees and less frequently on grapevines. These biological features have only recently been studied (Castagnoli & Amato, 1991; Castagnoli & Simoni, 1991 & 1994; Castagnoli et al., 1995; Auger et al., 1999).

Preceding records: Algeria, Argentina, Brazil, Chile, France, Guatemala, Japan, Peru, Spain, Uruguay, USA (Moraes et al., 1986).

Specimens examined: Sousse (Sahel region), on Lycopersicon esculentum Miller in greenhouses, April 2000; Mateur (North region), on Malus domestica Borkh, July 2000.
Phytoseiulus persimilis Athias-Henriot


This species was the only phytoseiid already known from the Tunisia, mentioned from Gafsa (Rambier, 1972).

Phytoseiulus persimilis was first collected in Algeria in 1955 and is known mainly from Mediterranean climates all around the world (Takahashi & Chant, 1993). Its distribution of this species was considerably extended during the last 30 years because of its predatory faculties (Kostiainen & Hoy, 1996). Many studies deal with this specialist predator (McMurtry & Croft, 1997) because of its economic importance, especially in greenhouses to control T. urticae populations (Van Lenteren & Woets, 1988). Some studies report for example the close relationships between plants attacked by T. urticae and P. persimilis (Drukker et al., 1997; Jansen, 1999).

Previous records: Algeria, Australia, Chile, France, Greece, Israel, Lebanon, Libya, New Caledonia, Peru, South Africa, Spain, USA (Moraes et al., 1986).


Phytoseiinae

Phytoseius finitimus Ribaga

[Phytoseius finitimus Ribaga, 1902: 178.]

The individuals found in Tunisia probably belong to the species P. finitimus which is confused in other studies with Phytoseius plumifer Canestrini & Fanzago. A big confusion between these 2 species has existed during a long time and a tentative solution is presently in progress (Duso, personal communication and under press in Acarologia).

Specimens belonging probably to P. finitimus (but this has to be confirmed) has already been reported on grapevines in Spain (Ferragut et al., 1985; Villaronga et al., 1991), Hungary (Dellei & Szentrey, 1991), Italy (Liguori, 1980; Cornio, 1985; Castagnoli & Liguori, 1986; Duso & Ren, 1997), Portugal (Carmona & Ferreira, 1989), Greece (Papaioannou-Souliotis et al., 1994) and France (Kreiter et al., 2000). P. finitimus seems to feed on P. ulmi (Duso & Moretto, 1994) and various eriophyid mites (Rasmy & El-Banawy, 1974b), and it consumes pollen (Zaher et al., 1969; Rasmy & El-Banawy, 1975). Local conditions in Corsica, i.e. high relative humidity and very hairy-leaved grapevine varieties, seem to be very suitable for this species (Rasmy & El-Banawy, 1974a; Duso & Moretto, 1994; Kreiter et al., 2000). Several experimental introductions have been carried out in Corsica in various productive vineyards (Salva, unpublished data). As also noted for Kampimodromus aberrans (Oudemans), side effects of pesticides on this species have only been investigated in the field (Sentenac et al., 1999). This species was also found on Citrus sp. in Spain (Ferragut et al., 1983; Garcia Marí et al. 1985).

Previous records: Algeria, France, Greece, Iran, Israel, Italy, Russia, Spain, Turkey, USA, Yugoslavia (Moraes et al., 1986).

Specimens examined: several vineyards in Cap-Bon region, Vitis vinifera L., July 1995.

Typhlodrominae

Neoseiulella tiliarum (Oudemans)

[Typhlodromus tiliarum Oudemans, 1930: 51.]

This species seems common in many Mediterranean countries, especially in Algeria, France, Greece (Papaioannou-Souliotis et al., 1994) and Yugoslavia.

Previous records: Algeria, Austria, Azerbaijan, Canada, England, France, Germany, Greece, Hun-
Specimens examined: Sousse (Sahel region), on Malus domestica Borkh, July 2000.

Typhlodromus (Anthoseius) perforatus (Athias-Henriot)

[Typhlodromus perforatus Athias-Henriot, 1960b: 72.]

Biolocal characteristics of this species remain unknown.

Previous records: Algeria (MORAES et al., 1986).

Specimens examined: Sousse (Sahel region), on Malus domestica Borkh, July 2000.

Typhlodromus (Anthoseius) rhenanoides Athias-Henriot


This species seems restricted to Mediterranean coastal regions in France. T. rhenanoides has however been reported in French Antilles, Hawaii and California (USA). This species was described from Algeria (ATHIAS-HENRIOT, 1960a & b), but it is always found in small populations on grapevines in France (KREITER et al., 2000). It was also found in Citrus sp. in Spain (FERRAGUT et al., 1983; GARCIA MARI et al., 1985) and in many crops in Greece (PAPAIOANNOU-SOULIOTIS et al., 1994).

Biological characteristics of this species have been investigated recently. It seems to be polliniphagous (RAGUSA & TSOLAKIS, 1998) but the specific diets have not yet been documented.

Previous records: Algeria, Armenia, Azerbaijan, Georgia, Greece, Hungary, Israel, Kazakhstan, Lebanon, Turkey, Russia (MORAES et al., 1986).

Specimens examined: several vineyards in Cap-Bon region, Vitis vinifera L., July 1995.

Typhlodromus (Typhlodromus) ex hilaratus Ragusa

[Typhlodromus exhilaratus Ragusa, 1977: 380.]

This species was found in many crops in France (unpublished data), Italy and Greece (PAPAIOANNOU-SOULIOTIS et al., 1994). Many studies deal with this species in Italy because of its dominance in several Italian vineyards (CASTAGNOLI & LIGUORI, 1986; CASTAGNOLI et al., 1989, LIGUORI & GUILDI, 1990).

Previous records: Greece, Italy (MORAES et al., 1986), France (unpublished data).
Specimens examined: Sousse (Sahel region), on Malus domestica Borkh, July 2000.

Typhlodromus (Typhlodromus) phialatus
Athias-Henriot
[Typhlodromus phialatus Athias-Henriot, 1960b: 100.]

T. phialatus, which was thought to be strictly endemic to Mediterranean region, is much more widespread as it was detected in several regions from France (Kreiter et al., 2000), but always in low densities. It is commonly found on various crops in the Mediterranean Basin, especially on citrus fruit in Spain (Ferragut et al., 1983; García Mari et al., 1985, 1986) and on grapevines in Spain (Ferragut et al., 1985; García Mari et al., 1987; Villaronga et al., 1991), and Greece (Papaioannou-Souliotis et al., 1994).

In addition, it has been reported in eastern Europe (Moraes et al., 1986). It feeds on red spider mites and consumes pollen (Ferragut et al., 1987).

Previous records: Algeria, Germany, Jordan, Moldavia, Russia, Spain, Ukraine (Moraes et al., 1986).

Specimens examined: El Gobba and Hammamet (Cap-Bon region), on Citrus sp., June 1994; Monastir (Sahel region), on Citrus sp., November 1994; several vineyards in Cap-Bon region, on Vitis vinifera L., July 1995; Slimane (Cap-Bon region) and Sousse (Sahel region), on Malus domestica Borkh, July 2000.

With Phytoseiulus persimilis already known, the number of known species of phytoseiid mites in Tunisia is now of 14.

Prostigmata
Tetranychidae
Bryobiinae

Bryobia rubrioculus (Scheuten)
[Sannio rubrioculus Scheuten, 1857: 104; Bryobia rubrioculus (Scheuten) van Eyndhoven, 1956: 45; Bryobia arborea Morgan & Anderson, 1957: 385.]

Previous records: several countries in the world and especially in Algeria, Lebanon and Morocco (Bolland et al., 1998).

Specimens examined: Mateur (North region) and Sousse (Sahel region), on Malus domestica Borkh, August 2000; Sousse (Sahel region), on Malva sp. near greenhouses and orchards, April 2001.

Petrobia (Tetranychina) harti (Ewing)
[Neophytopius harti Ewing, 1909: 405.]

This species was also found in Citrus sp. in Spain (Ferragut et al., 1983; García Mari et al., 1985).

Previous records: several countries in the world, and especially Egypt, and Israel (Bolland et al., 1998).

Specimens examined: Beni Khiar and Bir Bou Regba (Cap-Bon region), on Oxalis sp. in a citrus orchard, October 1995.

Tetranychinae

Eotetranychus carpini (Oudemans)
[Tetranychus carpini Oudemans, 1905: 79.]

This species was recorded on grapes in many countries of southern Europe, for example in France (Kreiter et al., 2000), Italy (Vacante & Tropea Grazia, 1987) and Greece (Papaioannou-Souliotis et al., 1994).

Previous records: several countries in the world and especially in Algeria, Lebanon, and Morocco (Bolland et al., 1998).

Specimens examined: Grombalia and Khlidia (Cap-Bon region), on Vitis vinifera L., in June 2000.

Eotetranychus pruni (Oudemans)
[Tetranychus pruni Oudemans, 1931: 195.]

This species has been reported on various Prunus sp. in Greece (Papaioannou-Souliotis et al., 1994).

Previous records: several countries, especially in Algeria and Morocco (Bolland et al., 1998).
Eutetranychus orientalis (Klein)
[Anychus orientalis Klein, 1936: 3; Sayed, 1946: 143; Eutetranychus orientalis (Klein), Baker & Pritchard, 1960: 464.]

Eutetranychus orientalis is an important pest of Citrus sp. in the Middle East, Africa and Asia (JEPPSON et al., 1975) but can be found on a lot of other plants (WALTER et al., 1995). This species seems very common in all the Mediterranean area on grapes and citrus (HASSAN et al., 1986; PAPAIOANNOU-SOULIOTIS et al., 1994).

Previous records: several countries in the world, especially Egypt, Israel, Jordan, and Lebanon (BOLLAND et al., 1998).

Specimens examined: Beni Khiair, Bir Bou Regba, Bou Argoub, El Gobba, Hammamet, Khliidia, Mraïssa, Mrazga, Nabeul (Cap-Bon region), Sousse (ESHE) and Kairouan (Sahel region), Tunis (INAT, North region), on Citrus sp., November 1994, July and October 1995, October 2000, and July 2001; Sousse (ESHE, Sahel region), on Ricinus communis L., April 2001.

Panonychus citri (McGregor)
[Tetranychus citri McGregor, 1916: 284.]

This species was also found in Citrus sp., especially in Italy (VACANTE & TROPEA GRAZIA 1985), in Greece (PAPAIOANNOU-SOULIOTIS et al., 1994), in Spain (FERRAGUT et al., 1983; GARCIA MARÌ et al. 1985) and in France, in Corsica and the French Riviera (KREITER et al., unpublished data).

This species was already known from Tunisia on Citrus sp. (MILLET, 1959).

Previous records: several countries in the world, and especially in Lebanon, Libya, Morocco and Tunisia (BOLLAND et al., 1998).


Malus domestica Borkh, from January to June, 1998; Tunis (INAT, North region), on Solanum nigrum L., July 2001.

Tetranychus turkestani (Ugarov & Nicholski)

[Otodetranychus turkestani
Ugarov and Nikolski, 1937: 28.]

This species have been found on many plants in Greece (PAPAIOANNOU-SOULIOTIS et al., 1994) and is present in all the countries of the Mediterranean area.

PREVIOUS RECORDS: several countries of the world, and especially Algeria and Morocco (BOLLAND et al., 1998).


Tetranychus urticae Koch

[Tetranychus urticae Koch, 1836 : 10.]

This species is found all over the world. It was mentioned on Citrus sp. in Spain (FERRAGUT et al., 1983; GARCIA MARI et al. 1985), Greece (PAPAIOANNOU-SOULIOTIS et al., 1994), and Tunisia (CUENOD, 1958).

PREVIOUS RECORDS: several countries of the world, and especially Algeria, Morocco, and Tunisia (BOLLAND et al., 1998).


With O. afrasiaticus, P. tunisiae and P. marsai, already reported but not found in our survey, the number of Tetranychidae from the Tunisian fauna is now of 13.

Tenuipalpidae

Brevipalpus lewisi McGregor

[Brevipalpus lewisi McGregor, 1949: 17.]

This species has been found all over the world. It was mentioned on grapes and Citrus sp. in Greece (PAPAIOANNOU-SOULIOTIS et al., 1994).

PREVIOUS RECORDS: Australia, Columbia, Egypt, France, Hungary, India, Japan, Russia, Spain, Taiwan, USA, Yugoslavia (GHAI & SHENHAR, 1984).

SPECIMENS EXAMINED: Hammamet, Korba, Mrazga (Cap-Bon region), on Citrus sp., October 1995; Mrazga (Cap-Bon region), on Cydonia oblonga Miller near a citrus orchard, October 1995; Sousse (ESHE, Sahel region), on Citrus sp., October 1995.

Tenuipalpus granati Sayed

[Tenuipalpus orchidarum Sayed, 1942: ; Tenuipalpus granati Sayed, 1946 : 100.]

This species is found all over the Mediterranean area. It was mentioned on grapes in Egypt (HASSAN et al., 1986), Greece (PAPAIOANNOU-SOULIOTIS et al., 1994), and Sicily (VACANTE & TROPEA GRAZIA, 1987).

PREVIOUS RECORDS: Egypt, Greece, India, Israel, Morocco, Russia (GHAI & SHENHAR, 1984).

SPECIMENS EXAMINED: several vineyards in Cap-Bon region, on Vitis vinifera L., July 1995.
ERIOPHYIDAE

Aceria shedoni (Ewing)

[Eriophyes shedoni Ewing, 1937: 193.]

Previous Records: several countries, in all citrus growing areas of the World (AMRINE & STASNY, 1994).

Specimens examined: Maamoura and Somoa (Cap-Bon region), on Citrus sp., October 1995; El Gobba, Khldia, Tekilsa (Cap-Bon region) and Sousse (Sahel region), on Citrus sp., June 2000.

Phyllocoptruta oleivorus (Ashmead)

[Typhlodromus oleivorus Ashmead, 1879: 160; Phyllocoptruta oleivorus (Ashmead) Keifer, 1938: 193.]

Previous Records: several countries, in all citrus growing areas of the World (AMRINE & STASNY, 1994).

Specimens examined: Hammamet (Cap-Bon region), on Citrus sp., October 1995.

Aculops lycopersici (Massee)

[Phyllocopites lycopersici Massee, 1937: 403.]

Previous Records: on Lycopersicon esculentum L. in several countries of the World (AMRINE & STASNY, 1994).

Specimens examined: Tekilsa (Cap Bon region), on Lycopersicon esculentum L. in open field, June 1997; Sousse (ESHE, Sahel region), on Lycopersicon esculentum L. in greenhouses, April 2000 and April 2001; Sidi Thabet (North region), on Lycopersicon esculentum L. (in greenhouses and in open field), June 2000.

Aculus schlechtendali (Nalepa)

[Phyllocptes schlechtendali Nalepa, 1890: 41.]

Previous Records: on Malus domestica Borkh in several countries of the World (AMRINE & STASNY, 1994).

Specimens examined: Kasserine (West center region), Mateur (North region), Sousse (Sahel region), Slimane, and Tekilsa (Cap Bon region) on Malus domestica Borkh, June 2000.

TARSONEMIDAE

Phytonemus pallidus (Banks)

Tarsonemus pallidus Banks, 1899: 294.

Previous Records: on Fragaria sativa L., in several countries of the World (LINDQUIST, 1986).

Specimens examined: Nabeul (Cap-Bon region), on Fragaria sativa L., May 2000.

TYDEIDAE

Lorryia formosa Cooreman

[Lorryia formosa Cooreman, 1958: 7.]

This species was also found in Citrus sp. in Spain (FERRAGUT et al., 1983; GARCIA MARI et al. 1985).

Previous Records: many countries of the World, in all areas of citrus production, especially in Algeria, and Morocco (GERSON & SMILEY, 1990).


STIGMAEIDAE

Zetzellia mali Ewing

[Caligonus mali Ewing, 1917: 499.]

This predatory mite is common in vineyards and orchards of the Mediterranean area. It was often observed preying on mobile forms of Eriophyid mites, for example on Caleptrimerus vitis (Nalepa) and Colomerus vitis (Pagenstecher) on vines (VACANTE & TROPEA GRAZIA, 1987).

SPECIMENS EXAMINED: Hammamet (Cap-Bon region), on Citrus sp., October 1995; Mateur and Mornag (North region) and Sousse (Sahel region), on Malus domestica Borkh, June 2000.

ANYSTIDAE

Anystis baccarum (L.)

[Anystis baccarum Linne, 1758:]


SPECIMENS EXAMINED: Sousse (Sahel region), on Malus domestica Borkh, June 2000.

CONCLUSION

Thirty-seven species of plant inhabiting mites are presently recorded from some crops of the Northern Tunisia.

ACKNOWLEDGEMENTS

These surveys were only possible to do with the help of the French Ministry of Foreign Affairs in 1994, 1995, 2000, and 2001 and of the Tunisian Ministries of Agriculture and Foreign Affairs. We are grateful to all people that have helped the organisation of surveys, and especially: J.-C. ONILLON (INRA Antibes, France), M. H. Ben Hammouda (ESHE Chott-Mariem, Sousse), and citrus growers in Cap-Bon region. Many thanks are due to David BARTHE (during this period: ENSA.M/INRA Acarologie Montpellier) who has helped to collect mites at the end of 1994 and mounted most of the specimens collected.

REFERENCES


Ferragut (F.), Garcia Mari (F.), Costa-Comelles (J.), Laborda (R.), 1987. — Influence of food and temperature on development and oviposition of Euseius stipula­


Moraes (G. J. de), McMurtry (J. A.), Denmark (H. A.), 1986. — A catalog of the mite family Phytoseiidae. References to Taxonomy, Synonymy, Distribution and Habitat. — Embrapa ed. and Pub., Brasilia: 353 pp + VII.


Ragusa (S.), Tsolakis (H.), 1998. — Life-History data of Typhlodromus rhenanoides Athias-Henriot and Typhlodromus cryptus Athias-Henriot (Phytoseiidae) fed on pollen under laboratory conditions. — Phytophaga, 8: 3-11.


SENTENAC (G.), KREITER (S.), WEBER (M.), RUELLE (B.), RINVILLE (C.), AUGER (P.), 1999. — Effets non intentionnels de quelques produits phytopharmaceutiques sur Typhlodromus pyri, Kampimodromus aberrans et Phytoseius plumifer. — Phytophaga-La défense des végétaux, 521: 34-41.


