Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
The first report of *Xenillus salamoni* Mahunka 1996 (Acari: Oribatida) in Poland, with the key to European *Xenillus*

Mateusz Oszust\(^a\), Piotr Klimaszyk\(^b\), Aleksandra Jagiello\(^c\)

\(^a\) Wielkopolska Wyższa Szkola Społeczno-Ekonomiczna, Środa Wielkopolska, Poland.

\(^b\) Department of Water Protection, Collegium Biologicum, Adam Mickiewicz University, Poznań, Poland.

\(^c\) Department of Animal Taxonomy and Ecology, Collegium Biologicum, Adam Mickiewicz University, Poznań, Poland.

Original research

ABSTRACT

During ecological studies carried out in the Drawa National Park, an oribatid mite species, *Xenillus salamoni* Mahunka 1996 (Liacaridae), new for Poland was found. This species is known only from Hungary and from the Central Alps and it is considered as xerophilous and a forest taxon. Additionally, a key to the identification of European *Xenillus* species was prepared.

Keywords cormorant; Drawa National Park; fauna of Poland; new record; xerophilous; Liacaridae

Introduction

Despite several surveys, the Polish fauna of Oribatida is not fully known and new taxa are still being found (for example, Konecka and Olszanowski 2019). During ecological studies carried out in the Drawa National Park, an oribatid mite species new for Poland (*Xenillus salamoni* Mahunka, 1996), was found in a heavily transformed habitat below a former cormorant colony.

Materials and methods

The study was performed on two islands: Lech (LI) (53°04′42″ N, 15°57′47″ E) and Okrzeja (OI) (53°05′10″ N, 15°58′44″ E) on the Lake Ostrowiec in the Drawa National Park (Poland). The islands are small in surface (<5 ha), domed and primarily overgrown by acidophilus oak forests with pine, and they are 1.3 km away from each other. Since 1950, a colony of cormorants has been present on LI. Over the past 60 years, the activity of the cormorants led to the deforestation of a large part of the island and the disappearance of herbal plants. Occasionally the cormorants visited OI, but never bred there. In 2015, the cormorants abandoned the island and the slow recolonisation of plants (mainly nitrophilous species) began. Nowadays, a significant part of the island is still bare. The topsoil horizon is rich in wooden detritus and well exposed to sunlight. The soil chemistry is also a distinguishing feature of the studied island. According to Klimaszyk *et al.* (2015), the nitrogen and phosphorus concentrations in the soils beneath the colony LI compared to OI are several dozen and several hundred times higher, respectively.

On both islands, 20 soil samples were collected from steep slopes. After extraction with a Tullgren apparatus (which lasted five days), all specimens were preserved in 85% ethanol and cleared on slides with 80% lactic acid. Microscopic slides were prepared with Hoyer’s...
mounting medium. Pictures were taken with a Nikon DS-Ri2 microscope camera and obtained with the aid of Nikon NIS-Elements D software (Nikon Corporation) and rendered with the Helicon Focus 7 program (Kozub et al. 2008).

To prepare the identification key of European Xenillus, the following publications were used: Csiszár 1961; Kulijev 1963, 1968; Mahunka 1979, 1996; Pérez-Íñigo 1987; Morell 1987, 1989; Gil-Martín and Subías 1997; Mahunka and Mahunka-Papp 1999; Subías and Arillo 2000; Grobler et al. 2003; Schatz 2004; Weigmann 2006; 2011; Ermilov and Kalúz 2013. Only species which were found in Europe, according to Subías (2004, updated 2020) were included in the key.

Results and discussion

In total, 44 specimens of X. salamoni were found, of which 40 were from LI and 4 from OI. The average frequency of X. salamoni on OI was 0.2 specimens per sample, while on LI, it was tenfold higher.

In Poland, only two species of Xenillus have been recorded so far: X. clypeator Robineau-Desvoidy, 1839 and X. tegeocranus (Hermann, 1804) (Niedbała and Olszanowski 2008). Xenillus salamoni differs from these species primarily by the morphology of its prodorsum (Figs. 1 and 2). The lamellar cusps of X. salamoni are fused at their bases, without intercuspidal mucro, which is present in many Xenillus species (Fig. 2A). Lamellar setae are ciliate and directed anteromedially, similar to the setae of X. clypeator, while interlamellar setae are short (but longer than in X. clypeator)(Fig. 2B, C). Sensillus is clavate with a long stalk. Another characteristic feature of X. salamoni is the reduced exobothridial setae, represented only by small alveoli and lack of interlamellar tubercules (which are present in X. tegeocranus). The body length of X. salamoni is 695–932 μm (Mahunka 1996; Schatz 2004).

Xenillus salamoni is considered to be a xerophilous and silvicolous species, which was first recorded in Hungary. Mahunka (1996) described this species from dry Tilio-Sorbetum in the Bükk National Park, and later, it was also recorded in a commercial beech forest stand in the
Mátra Mountains (Kreszivnik and Mahunka 2000). *X. salamoni* was also noted in dry grassland and in downy scree slope oaks of the Italian and Austrian parts of the Tyrol region, which are located in the Eastern Alps (Schatz and Fischer 2015; Schatz 2016). Subías (2004, updated 2020) reported *X. salamoni* in material from Abkhazia (Caucasus), but this information was not published (L. S. Subías, personal communication). Thus, *X. salamoni* is only known from a few locations in Europe and the Caucasus. Islands on Lake Ostrowiec are the first location outside mountain areas (Alps, Bükk and Caucasus mountains) on which this species was found.

Likely, the range of occurrence of *X. salamoni* in Poland is not limited to the islands on the Lake Ostrowiec, and this species might be present in other parts of the country. Because of their narrow ecology niche, *X. salamoni* and their habitats could have been overlooked during previous research. A higher abundance of this mite on LI might have been caused by previous cormorant activity that led to the deforestation of the island and changed soil chemistry (Klimaszzyk *et al.* 2015). It could create better conditions for xerophilous species like *X. salamoni*.

Cormorants can also be hypothesised as an expansion vector for this species. *Xenillus tegoeocranus* was recorded in cormorant feathers by Lebedeva *et al.* (2004), so the presence of *X. salamoni* in cormorant plumage is probable.

To verify these assumptions, further surveys on dry environments and cormorants (their colonies and feathers) should be carried out.

Key to European Xenillus

1. Notogastral setae short, dilated (or fan-shaped), well visible. Interlamellar setae long, not attached to lamellae or reduced .. 2
 — Notogaster setae of different lengths and not dilated ... 4

4. Interlamellar setae arising from lamellae. — Interlamellar setae not fused with lamellae and arising from the interlamellar region.

— Interlamellar setae longer.

9. Lamellae completely fused or fused only with each other medially. Mucro between lamellae lacking. — Lamellae not fused. Usually, the presence of at least small mucro between lamellae.

— Lamellae not completely fused.

— Interlamellar setae short.

Xenillus salamoni Mahunka, 1996. Distribution: Central Europe and Caucasus

13. Lamellar, interlamellar and notogaster setae distally ciliate. — Setae smooth and slightly ciliate along entire length.

17. Setae c1 and c2 setae short, bacilliform, both similar in size. Rostrum medially slightly or distinctly concave, laterally with small teeth. Body length: 720–1100 μm. — Xenillus tegeocranus (Hermann, 1804). Distribution: Palearctic and Oriental

18. Rostrum apically oval, with two side projections on which rostral setae are situated. Ventral setae short, needle-like. Body length: 945 μm. — Xenillus sculptrus Kulijev, 1963. Distribution: Southern Palearctic: Caucasus, Spain and Iran

Acknowledgments

The authors would like to thank Mateusz Zmudziński from the Department of Animal Morphology, at the Adam Mickiewicz University in Poznań for his help in preparing the photographs of mites, the management of the Drawa National Park for enabling the collection of material for our research, and Luis S. Subías from the Department of Zoology and Physical Anthropology at the Complutense University of Madrid for sharing information about the Caucasian record of X. salamoni. Our greatest thanks go to Professor Ziemowit Olszanowski for his help in confirming the identification of the new species and organizing the research.

References

