Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Survey of phytoseiid mites (Acari: Mesostigmata, Phytoseiidae) in citrus orchards and a key for Amblyseiinae in Vietnam

Xiao-Duan Fanga, Van-Liem Nguyenb, Ge-Cheng Ouyanga, Wei-Nan Wua

a Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, Guangdong, China.

b Plant Protection Research Institute, Duc Thang, Bac Tu Liem, Ha Noi, Viet Nam.

Original research

ABSTRACT

Citrus is the second largest fruit crop in Vietnam. Phytoseiid mites are important natural enemies of mite pests and small insects in citrus orchards. By examining the specimens collected from three citrus orchards in the Mekong Delta in the south of Vietnam, a new record of phytoseiid mite *Amblyseius obtuserellus* Wainstein and Begljarov, 1971 was found and two other species *Amblyseius largoensis* (Muma, 1955) and *Euseius ovalis* (Evans, 1953) were also obtained. Herein, they are re-described and illustrated based on the current specimens. A key for Amblyseiinae in Vietnam is also provided.

Keywords Amblyseius; Euseius; taxonomy; description

Introduction

Vietnam is long and narrow, located in the east of Indochina Peninsula. Vietnam shares its land borders with China to the north, Laos and Cambodia to the west, and surrounded by the south China sea to the east and south. Its climate is characterized by the interplay of the East Asian and South Asian Monsoons, cold surges in the winter months and a long rainy season which extend beyond summer (Nguyen \textit{et al.} 2014). Latitude of the south (8°10′ N–10°48′ N) is more southern than Hainan Island (18°10′ N–20°10′ N) in China, and its temperatures vary less in the southern plains around the Mekong Delta. Vietnam is one of the 25 countries considered to possess a high level of biodiversity (Vietnam Environment Protection Agency, 2005, \textit{electronic source}) (Sohn and Park, 2009). Until now, only 15 species of phytoseiid mites (Acari: Phytoseiidae) have been recorded in Vietnam (Nguyen \textit{et al.} 2016; Nguyen and De Clercq, 2018; Thuan \textit{et al.} 2019; Nguyen, 2019a, 2019b; Nguyen and Dao 2019; Nguyen \textit{et al.} 2019a, 2019b).

Citrus is the second largest fruit crop in Vietnam, with Mekong Delta the main citrus production area. The sampling sites in this survey are all located in Mekong Delta. Phytoseiid mites are important natural enemies of pest mites and small insects in citrus orchards (Wu \textit{et al.} 2009; Huang 2011). Phytoseiid mites have been mass-reared and widely used for biological control of pest mites and insects in citrus orchards in China (Zhang \textit{et al.} 2002; Ouyang \textit{et al.} 2007; Fang \textit{et al.} 2013, 2018). It is important to survey the native species of phytoseiid mites in citrus orchard, which is supposed to be the most adapted bio-control agents can be used in local citrus orchards. This study proposes a new record *A. obtuserellus* Wainstein and Begljarov, 1971 and two other species, *Amblyseius largoensis* (Muma, 1955) and *Euseius ovalis* (Evans, 1953), from citrus orchards in Mekong Delta.
Material and methods

Mite specimens examined in this study were collected from three citrus orchards in Mekong Delta in April 2018. One citrus orchard in Chau Thanh district, Ben Tre Province is about 5 ha, 10-year-old *Citrus reticulata × sinensis* and *Psidium guajava* Linn. interplanted, surrounded by eucalyptus on edge; SK mineral oil was mainly used in this orchard. The citrus orchard in Phong Dien district, Can Tho Province is also about 5 ha, 3-year-old *Citrus reticulata × sinensis* and *Psidium guajava* Linn. interplanted, surrounded by a wild bush on one side; mineral oil and chemical pesticides are used in this orchard. The citrus orchard in Cao Lanh district, Dong Thap is about 7 ha, only 10-year-old *Citrus reticulata × sinensis* trees planted, surrounded by other citrus orchards; chemical pesticide abamectin was mainly used in this orchard.

Mites were mounted in Hoyer’s medium and examined, measured and illustrated under a phase and DIC (differential interference contrast) microscope (Zeiss® Axio Imager A2) and picture pick-up system [ZEN 2.3 (Blue edition) © Carl Zeiss Microscopy GmbH, 2011]. Measurements are presented in μm, by their mean and range in parentheses. Morphological features of adult mites were measured as follows: dorsal shield length and width were taken from the anterior to posterior margins of the shield along the midline and from the lateral margins at s4 level; for all ventral shields, lengths were measured along their midline from the anterior to posterior margins; widths were taken from the lateral margins at s2, s5 and Z2F level respectively; cheliceral fixed digit length was measured from dorsal poroid to anterior tip and movable digit length measured from the basal articulation to the tip. The general terminology used for morphological descriptions in this study follows that of Chant and McMurtry (2007), idiosomal setal terminology follows those by Rowell et al. (1978) and Chant and Yoshida-Shaul (1991, 1992), adenotaxy and poroidotaxy terminology followed that of Beard (2001), and chaetotaxy of legs follows that of Evans (1963).

All mites collected were measured. They were deposited in GIABR (Guangdong Institute of Applied Biological Resources, Guangzhou, China). The previous records of these species mainly referenced to the Phytoseiidae Database (Demite et al. 2019).

Results and discussion

Family Phytoseiidae Berlese

Subfamily Amblyseiinae Muma

Tribe Amblyseiini Muma

Subtribe Amblyseiina Muma

Genus Amblyseius Berlese

Amblyseius obtuserellus Wainstein & Begljarov

(Figs. 1 a – e)

Description — Female (n = 8)

Dorsum — Idiosomal setal pattern: 10A: 9B: JV-3: ZV. Dorsal shield smooth (Fig. 1a), 317 (300–330) long and 200 (185–218) wide, distances between setae j1- J5 303 (289–316) and s4-s4 176 (164–186), shield nearly oval, constricted at level of R1. Setae r3 and R1 on soft membranous cuticle lateral dorsal shield, r3 at level of z4, R1 at level of shield incisions. All setae smooth, except Z4, Z5 with minute thorns. With seven pairs of solenostomes (gd1, gd2, gd4, gd5, gd6, gd8, gd9) on dorsal shield. Length of setae: j1 24 (23–26), j3 43 (40–46), j4 5 (4–6), j5 5 (4–6), j6 6 (4–8), J2 7 (5–9), J5 6 (4–7), z2 9 (7–11), z4 9 (7–11), z5 5 (4–6), Z1 7...
Female of *Amblyseius obtuserellus*. a – Dorsal shield; b – Ventral idiosoma; c – Chelicera; d – Spermatheca; e – Leg IV, genu-basitarsus.

Venter — (Fig. 1b). All ventral setae smooth. Sternal shield with sparse striation, anterior margin convex, posterior margin slightly concaved, 69 (68–71) long, 74 (73–75) wide, wider than long, with three pairs of setae st1 31 (29–33), st2 28 (25–32), st3 26 (24–30), and two pairs of lyrifissures (pst1-pst2), distance between st1-st3 55 (53–58) and st2-st2 68 (67–69). Metasternal platelets drop-shaped, each with one metasternal seta, st4 25 (24–26) and one lyrifissure (pst3). Genital shield smooth, with one pair of thin genital setae st5 27 (25–28), distance between st5-st5 59 (64–71); one pair of associated poroids on soft cuticle near posterior
corners of shield. Ventrianal shield nearly pentagonal, 112 (105–116) long, 82 (76–88) wide at level of ZV2, 78 (73–84) wide at level of anus, with three pairs of thin pre-anal setae JV1 16 (14–19), JV2 14 (11–17), ZV2 12 (10–13); Pa 14 (12–17), Pst 16 (14–19) long. Pre-anal pores crescentic, posteromedian to JV2, distance between pores 21 (19–23). Opisthogastric soft cuticle with four pairs of setae, ZV1 16 (14–19), JV2 14 (11–17), ZV3 9 (7–10), JV4 8 (6–9), JV5 59 (54–64) long. All ventral setae thin, except JV5, thicker. Two pairs of metapodal platelets, primary platelets 19 (17–21) long, 5 (3–5) wide, secondary ones 11 (10–12) long, 2 (1–2) wide.

Peritremes — Peritremes extending anteriorly between j1.

Chelicerae — (Fig. 1c). Fixed digit 32 (30–36) long, with 11 teeth, movable digit 28 (27–30) long, with four teeth.

Spermatheca — (Fig. 1d). Calyx of spermatheca tubular, 25 (22–28) long, the proximal part mostly distal part thicker, granular surface, 9 (8–10) long, 2 (2–2) wide at the junction with the vesicle, atrium and major duct indiscernible.

Legs — Genua formula for leg I 2–1/2, 2/1–1, leg II 0–2/1, 0/2–2, leg III 1–1/2, 1/2–0, leg IV 2–2/1, 0/1–1. Genua I-III each with one macroseta, Sge I 32 (29–34), Sge II 31 (28–32), Sge III 42 (39–45). Leg III with one macroseta on tibia, Sti III 30 (27–32). Leg IV (Fig. 1e) with three macrosetae on genu, tibia and basitarsus, Sge IV 82 (76–86), Sti IV 46 (40–51) and St IV 59 (56–62).

Specimens examined — 8 ♀♀, Chau Thanh district, Ben Tre Province (accession no. BT-0190, BT-0200, BT-0211, BT-0212, BT-0220, BT-0231, BT-0232, BT-0240), on Citrus reticulata × sinensis, 10IV2018, Fang X.D. coll.

Previous records — China, Japan, Russia, South Korea.

Remarks — Amblyseius obtuserellus holotype specimen was from the Primorsky Territory, U.S.S.R. (Wainstein and Begljarov, 1971; Denmark and Muma, 1989). This species was also recorded in Japan (Ehara and Yokogawa, 1977) and South Korea (Ryu and Lee, 1992). A. obtuserellus have been found in many Provinces in China, including Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Hunan and Guangdong. Wu (1982) reported that the size of its genital shield, ventrianal shield and distance between pre-anal pores are variable, but the calyx shape of spermatheca does not present differences. The calyx of the spermatheca in this species is cylindrical and long and the distal part of calyx thickened and more sclerotized.

Ehara and Yokogawa (1977), Denmark and Muma, 1989, Ryu and Lee (1992) and Wu et al. (2009) re-described this species. Geographical populations in different countries all have distinctive, granular spermathecal cervix, but they have differences in the individual size, length of some setae on dorsal shield and the macrosetae on Leg IV, and the length of cervix of spermatheca. Their measurements differences are listed in Table 1.

Amblyseius obtuserellus has 11 well-developed teeth on fixed digit and four teeth on movable digit of the chelicerae and this species may play an important role in bio-control. Its biology and bio-control application need to be further studied.

Amblyseius largoensis (Muma)

(Figs. 2 a – e, 3 a – c)

Amblyseiopsis largoensis Muma 1955: 266; Garman 1958: 76.
Typhlodromus (Amblyseius) largoensis, Chant 1959: 96.

Amblyseius magnoliæ, Denmark & Evans 2011: 69.
Typhlodromus largoensis, Hirschmann 1962.
Description — Female (n = 25)

Dorsum — Idiosomal setal pattern: 10A: 9B/JV-3: ZV. Dorsal shield (Fig. 2a) mostly smooth except anteriorly striated. Dorsal shield 355 (341–376) long and 224 (212–253) wide, distances between setae \(j1 \)- \(j5 \) 338 (326–364) and \(s4 \)-\(s4 \) 194 (181–213), shield nearly oval, slightly constricted at level of \(R1 \). Setae \(r3 \) and \(R1 \) on soft membranous cuticle laterad dorsal shield, \(r3 \) at level of between \(z4 \) and \(s4 \), \(R1 \) at level of shield incisions. All setae smooth. With six pairs of solenostomes (\(gd1 \), \(gd4 \), \(gd5 \), \(gd6 \), \(gd8 \), \(gd9 \)) on dorsal shield. Length of setae:

- \(j1 \) 36 (30–40)
- \(j3 \) 51 (41–59)
- \(j4 \) 6 (4–8)
- \(j5 \) 5 (3–6)
- \(j6 \) 7 (4–10)
- \(J2 \) 9 (6–12)
- \(J5 \) 9 (6–12)
- \(z2 \) 11 (8–14)
- \(z4 \) 9 (7–13)
- \(z5 \) 6 (4–8)
- \(Z1 \) 10 (6–14)
- \(Z4 \) 98 (89–105)
- \(Z5 \) 277 (243–296)
- \(s4 \) 95 (86–103)
- \(S2 \) 13 (9–16)
- \(S4 \) 12 (9–16)
- \(S5 \) 11 (8–15)
- \(r3 \) 12 (10–16)
- \(R1 \) 10 (7–14)

Venter — (Fig. 2b). Ventral setae smooth. Sternal shield with sparse striation, anterior margin convex, posterior margin straight, 80 (72–90) long, 77 (68–82) wide, with three pairs of setae \(st1 \) 34 (29–39), \(st2 \) 31 (27–34), \(st3 \) 30 (26–33), and two pairs of lyrifissures (\(pst1 \)-\(pst2 \)), distance between \(st1 \)-\(st3 \) 63 (57–67) and \(st2 \)-\(st2 \) 68 (60–73). Metasternal platelets drop-shaped, each with one metasternal seta, \(st4 \) 29 (26–34) and onelyrifissure (\(pst3 \)). Genital shield smooth, with one pair of thin genital setae \(st5 \) 27 (23–33), distance between \(st5 \)-\(st5 \) 74 (68–81); one pair of associated poroids on soft cuticle near posterior corners of shield. Ventrianal shield vase-shaped, 109 (99–117) long, 48 (45–53) wide at level of \(ZV2 \), 72 (64–84) wide at level of anus, with three pairs of thin pre-anal setae \(JV1 \) 20 (15–23), \(JV2 \) 17 (15–20), \(ZV2 \) 15 (12–18); \(Pa \) 18 (15–21), \(Pst \) 18 (14–21) long. Pre-anal pores crescentic, posteromedial to \(Jv2 \), distance between pores 26 (23–28). Opisthogastric soft cuticle with four pairs of setae, \(JV1 \) 17 (14–21), \(JV2 \) 10 (6–13), \(JV5 \) 64 (53–74) long. All ventral setae thin, except \(JV5 \), thicker. Two pairs of metapodal platelets, primary platelets 23 (18–27) long, 4 (3–6) wide, secondary ones 13 (9–16) long, 2 (1–4) wide.

Peritremes — Peritremes extending anteriorly between \(j1 \).

Chelicerae — (Fig. 2c). Fixed digit 32 (29–35) long, with nine teeth and \(pilus dentilis \), movable digit 29 (26–31) long, with three teeth.

Spermatheca — (Fig. 2d). Calyx of spermatheca tubular, 21 (18–24) long, 4 (2–5) wide at

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of measurements of different geographical origins of Amblyseius obtuserellus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geographical origin</td>
<td>Vietnam<sup>a</sup></td>
</tr>
<tr>
<td>Size length</td>
<td>317</td>
</tr>
<tr>
<td>Size width</td>
<td>200</td>
</tr>
<tr>
<td>Seta (j1)</td>
<td>24</td>
</tr>
<tr>
<td>Seta (j3)</td>
<td>43</td>
</tr>
<tr>
<td>Seta (s4)</td>
<td>68</td>
</tr>
<tr>
<td>Seta (Z4)</td>
<td>82</td>
</tr>
<tr>
<td>Seta (Z5)</td>
<td>161</td>
</tr>
<tr>
<td>Macroseta Sge IV</td>
<td>82</td>
</tr>
<tr>
<td>Macroseta Sti IV</td>
<td>46</td>
</tr>
<tr>
<td>Macroseta St IV</td>
<td>59</td>
</tr>
<tr>
<td>Cervix length</td>
<td>25</td>
</tr>
</tbody>
</table>

^a from eight specimens, ^b from Wainstein & Begljarov, 1971 and Denmark & Muma, 1989, ^c from Wu et al., 2009; ^d from Ehara & Yokogawa, 1977; ^e from Ryu & Lee, 1992.
Figure 2 Female of *Amblyseius largoensis*. a – Dorsal shield; b – Ventral idiosoma; c – Chelicera; d – Spermatheca; e – Leg IV, genu-basitarsus.

the opening; atrium 4 (2–5) long, 4 (3–5) wide, massive atrium as wide as cervix, connected with calyx; major duct broad, short, directly attached to atrium, and minor duct visible.

Legs — Genua formula for leg I 0 – 1/2, 2/2 – 2, leg II 0 – 1/2, 1/1 – 2, leg III 2 – 2/1, 1/1 – 0, leg IV 2 – 2/1, 0/1 – 1. Genua I-III each with one macroseta, Sge I 41 (37–45), Sge II 38 (32–41), Sge III 50 (42–55). Leg III with one macroseta on tibia, Sti III 41 (35–45). Leg IV (Fig. 2c) with three long-whipped macrosetae on genu, tibia and basitarsus, Sge IV 128 (111–138), Sti IV 101 (91–113) and St IV 65 (56–73).

Male — (n=7)

Dorsum — (Fig. 3a). Idiosomal setal pattern: 10A: 9B/JV-3: ZV. Dorsal shield mostly
smooth except anteriorly striated, same as on female, 271 (264–291) long and 184 (173–201) wide at level of setae \(s4 \), shield nearly oval, nineteen pairs of dorsal setae, all smooth. Same adenotaxy and poroidotaxy as in females. Length of setae: \(j1 \) 29 (24–31), \(j3 \) 47 (42–50), \(j4 \) 6 (4–7), \(j5 \) 5 (4–6), \(j6 \) 6 (5–8), \(J2 \) 8 (7–9), \(J3 \) 7 (5–8), \(z2 \) 9 (7–11), \(z4 \) 9 (7–10), \(z5 \) 5 (4–7), \(Z1 \) 9 (6–10), \(Z4 \) 73 (65–81), \(Z5 \) 215 (194–236), \(s4 \) 79 (75–82), \(S2 \) 11 (8–13), \(S4 \) 10 (9–11), \(S5 \) 10 (9–11), \(r3 \) 11 (9–13), \(RI \) 8 (7–10).

Venter — (Fig. 3b). Ventral setae smooth. Sternogenital shield smooth, 131 (125–143) long, wider 81 (77–87) between coxae II–III than at posterior corners 41 (38–44). Five pairs of sterigenital setae \((st1-st5) \), \(st1 \) 27 (24–30), \(st2 \) 23 (21–24), \(st3 \) 22 (20–26), \(st4 \) 21 (19–24), \(st5 \) 22 (19–24), and three pairs of lyrifissures \((pst1-pst3) \). Chaetotaxy of genua similar to female. Ventrianal shield subtriangular, 111 (106–116) long, 155 (147–161) wide at level anterior corners; transversally striated; striation on anterior part of the shield more obvious, with three pairs of thin pre-anal setae \(JV1 \) 17 (14–20), \(JV2 \) 15 (13–17), \(ZV2 \) 13 (11–17); \(Pa \) 14 (11–17), \(Pst \) 17 (15–18) long. Preanal pores crescentic, posteromedian to \(JV2 \), distance between pores 19 (18–21). Opisthogastric soft cuticle with one pairs of setae, \(JV5 \) 37 (33–40) long.

Figure 3 Male of *Amblyseius largoensis*. a – Dorsal idiosoma; b – Ventral idiosoma; c – Spermatodactyl.
Peritremes — Peritremes extending to between j1. Peritrematal shield fused with dorsal shield.

Chelicerae and spermatodactyl — (Fig. 3c). Cheliceral dentition not discernible in the examined specimens. Fixed digit 22 (20–23) long, movable digit 20 (18–22) long. Spermatodactyl L-shaped; shaft 16 (15–18), foot 8 (7–10) long.

Legs — Chaetotaxy of genua similar to female. Macrosetae on genu I 31 (29–35), genu II 31 (30–33), genu III 35 (32–38), genu IV 81 (78–85), tibia IV 69 (65–72), tarsus IV 56 (52–59).

Specimens examined — 9 ♀♀, Chau Thanh district, Ben Tre Province (accession no. BT-0121, BT-0130, BT-0140, BT-0180, BT-0250, BT-0260, BT-0281, BT-0282), on *Citrus reticulata × sinensis*, 10 IV 2018, Fang X.D. coll.; 2 ♂♂ (accession no. BT-0122, BT-0160) same locality, host, date and collector; 16 ♂♀, Phong Dien district, Can Tho Province (accession no. CT-0301, CT-0302, CT-0321, CT-0322, CT-0341, CT-0342, CT-0350, CT-0360, CT-0371, CT-0372, CT-0401, CT-0402, CT-0430, CT-0441, CT-0450, CT-0481), and 2 ♂♂ (accession no. CT-0442, CT-0482), 12 IV 2018, same host and collector; 16 ♂♀, Cao Lanh district, Dong Thap Province (accession no. DT-0490, DT-0500, DT-0521, DT-0540, DT-0522, DT-0532, DT-0550), and 3 ♂♂ (accession no. DT-0522, DT-0532, DT-0550), 13 IV 2018, same host and collector.

Previous Records — Nearctic, Neotropical, Oriental, Australasian, Ethiopian, West Palaearctic and East Palaearctic, almost including all biogeographic realms except Antarctica (Hernandes et al. 2011).

Remarks — This species is very similar to *A. herbicolus* (Chant, 1959) and *A. eharai* Amitai and Swirski, 1981, but having differences in internal shield with weak sclerotization and posterior margin straight, and calyx of spermatheca tubular. This species prefers high humidity environment, and it is the dominant species of brushes in Hainan islands in China. This species is important natural enemies of agriculture and forestry pest mites (Wu et al. 2009). In this survey, *A. largoensis* was found the dominant native species in surveyed citrus orchards in Vietnam.

Tribe Euseiini Chant and McMurtry

Subtribe Euseiina Chant and McMurtry

Genus *Euseius* Wainstein

Euseius ovalis (Evans)

(Figs. 4 a – e)

Typhlodromus ovalis Evans 1953: 458.

Description — Female (n = 2)

Dorsum — Idiosomal setal pattern: 10A: 9B/JV-3: ZV. Dorsal shield (Fig. 4a) smooth, with anterolateral striated. Dorsal shield 359 (348–365) long and 238 (230–248) wide, distances between setae j1- j5 344 (331–353) and s4-s4 206 (198–213), shield nearly oval, constricted at level of R1. Setae r3 and R1 on soft membranous cuticle laterad dorsal shield, r3 at level of z4, R1 at level of shield incisions. All setae smooth, except Z5 slightly serrate. With six pairs of solenostomes on dorsal shield (gd1, gd2, gd4, gd6, gd8, gd9). Length of setae: j1 33 (30–35), j3 14 (13–15), j4 8 (7–9), j5 7 (5–8), j6 8 (7–8), J2 12 (10–13), J5 7 (5–8), z2 10 (9–11), z4 10
Figure 4 Female of *Euseius ovalis*. a – Dorsal shield; b – Ventral idiosoma; c – Chelicera; d – Spermatheca; e – Leg IV, genu-basitarsus.

(8–12), z5 8 (7–9), ZI 11 (9–12), Z4 13 (11–14), Z5 56 (53–58), s4 14 (13–16), S2 14 (12–15), S4 14 (13–16), S5 12 (11–14), r3 13 (12–15), R1 10 (9–11).

Venter —(Fig. 4b). All ventral setae smooth. Sternal shield smooth, posterior margin not discernible in the examined specimens, 79 (78–81) wide, with three pairs of setae st1 33 (32–35), st2 29 (27–32), st3 30 (28–32), and two pairs of lyrifissures (pst1-pst2), distance between st1-st3 59 (57–60) and st2-st2 66 (65–68). Metasternal platelets drop-shaped, each
with one metasternal seta, \(st4\) 27 (25–29) and one lyrifissure (\(pst3\)). Genital shield smooth, with one pair of thin genital setae \(st5\) 30 (29–31), distance between \(st5-st5\) 78 (76–80); one pair of associated poroids on soft cuticle near posterior corners of shield. Ventrianal shield smooth, nearly oval, 105 (102–109) long, 49 (47–52) wide at level of \(ZV2\), 81 (79–83) wide at level of anus, three pairs of thin pre-anal setae, \(JV1\) migrate next to \(JV2\), \(JV1\) 29 (27–32), \(JV2\) 24 (23–26), \(ZV2\) 16 (14–19); \(Pa\) 15 (14–16), \(Psr\) 15 (15–17) long. Pre-anal pores crescentic, postmedian to \(JV2\), distance between pores 33 (31–34). Opisthogastric soft cuticle with four pairs of setae, \(ZV1\) 22 (20–23), \(ZV3\) 10 (8–11), \(JV4\) 13 (13–14), \(JV5\) 28 (27–30) long. All ventral setae thin, except \(JV5\), thicker. Two pairs of metapodal platelets, primary platelets 22 (21–23) long, 5 (4–6) wide, secondary ones 13 (12–14) long, 2 (1–2) wide.

Material examined — 2 ♀♀, Cao Lanh district, Dong Thap Province (accession no. DT-0532, DT-0560), on *Citrus reticulata × sinensis*, 13 IV 2018, Fang X.D. coll.

Previous records — Australia, China, Cook Islands, Fiji, Hawaii, India, Indonesia, Japan, Malaysia, Mauritius, Mexico, New Zealand, Papua New Guinea, Philippines, Sri Lanka.

Remarks — The calyx of the examined specimens is tubular, similar to illustration in Wu et al. (2009), but not distal flaring as illustration in Gupta (1986). Fixed digit of the examined specimens with three teeth is similar to illustration in Liao et al. (2017), but not only with one tooth as the original description (Evans, 1953).

Euseius ovalis can be mass-reared on pollen and it is the dominant natural enemy in controlling *Aceria litchi* (Keifer) (Wu et al. 1991). This species also had potentiality in controlling *Tetranychus kanzawai* Kishida (Shih et al. 1993) and *Oligonychus mangiferus* (Rahman and Sapra) (Nguyen and Shih, 2010). Liao et al. (2017) reported *E. ovalis* rarely located on the leaves with *Tetranychus* colonies and only located close to *Oligonychus* and *Panonychus* colonies.

The above three species are all found in citrus orchards in Vietnam, and they are associated with spider mites and small pests. Now, there are fifteen species reported in Vietnam in total. Nguyen et al. (2016) first reported eight phytoseiid mites were found in Ho Chi Minh city, including *A. matrinikus* Schicha and Corpuz-Raros, 1992, *Graminaseius polisensis* (Schicha and Corpuz-Raros, 1992), *Neoseiulus longispinosus* (Evans, 1952), *Paraphytoseius orientalis* (Narayanan, Kaur and Ghai, 1960) (synonym of *Paraphytoseius multidentatus* Swirski and Shechter according to Chant and McMurtry 2003, Kreiter et al. 2018), *Scapulaseius asiaticus* (Evans, 1953), *Amblyseius tamatavensis* Blommers, 1974, *Proprioseiopsis dahonagnus* (Schicha and Corpuz-Raros, 1992) and an undetermined *Typhlodromus* sp. Furthermore, *Paraphytoseius cracentis* (Corpus and Rimando, 1966), *Neoseiulus californicus* (McGregor, 1954), *Proprioseiopsis lenis* (Corpus and Rimando, 1966), *E. aizawai* (Ehara and Bhandhufalck, 1977), *E. ovalis* (Evans, 1953) and *A. largoensis* were reported to be found in the Red River Delta respectively (Nguyen and De Clercq, 2018; Thuan et al. 2019; Nguyen, 2019a, 2019b; Nguyen and Dao 2019; Nguyen et al. 2019a, 2019b). In this paper, *A. obtuserelus* was first recorded in Vietnamese fauna. Fourteen identified species all belong to the subfamily Amblyseiinae. A key to the Vietnamese Amblyseiinae species is given as below.
Key to the Vietnamese Amblyseiinae species

1. Ventrianal shield oval, JV1 migrate next to JV2 .. 2
 — Ventrianal shield non-oval, JV1 not migrate next to JV2 3

2. Spermatheca with calyx slender, tubular ... Euseius ovalis
 — Spermatheca with calyx short, saccular ... Euseius aizawai

3. Setae S4 absent ... 4
 — Setae S4 present ... 5

4. Setae S5 absent, with seven macrosetae on Leg IV Paraphytoseius orientalis
 — Setae S5 present, with five macrosetae on Leg IV Paraphytoseius cracentis

5. J2 absent .. 6
 — J2 present ... 7

6. S2 absent, Leg I with one or more macrosetae on tibia Proprioseiulus dahonagnas
 — S2 present, Leg I without elongate macrosetae on tibia Proprioseiopsis lenis

7. Ratio seta s4: Z1 < 3.0: 1: 0 ... 8
 — Ratio seta s4: Z1 > 3.0: 1: 0 ... 10

8. GeII without a macroseta ... 9
 — GeII with a macroseta ... Scapulaseius asiaticus

9. Most dorsal setae very long .. Neoseiulus longispinosus
 — Dorsal setae general long .. Neoseiulus californicus

10. Ventrianal shield vase-shaped .. Amblyseius largoensis
 — Ventrianal shield pentagonal, sub-pentagonal 11

11. Cervix bladder-like, with spines .. Amblyseius matinikus
 — Cervix tubular or funnel-like .. 12

12. Leg IV with two macrosetae on genu and basitarsus Grazinaseius polisensis
 — Leg with three macrosetae on genu, tibia and basitarsus 13

13. The calyx of spermatheca with an granular surface on the distal part .. Amblyseius obtuserellus
 — The calyx of spermatheca without an granular surface Amblyseius tamatavensis

Acknowledgements

We thank to Professors-Drs Serge Kreiter (Institut Agro Montpellier), Francisco Ferragut (UPV) and Antonio Carlos Lofego (SPSU) for revisions of an earlier version of the manuscript. This paper was supported by the Special Project of Guangdong Academy of Sciences (Grant No. 2019GDASYL-0503004), and GDAS Special Project of Science and Technology Development (2018GDASCX-0107).
References

Fang X. et al. (2020), Acarologia 60(2): 254-267; DOI 10.24349/acarologia/20204366
Fang X. et al. (2020), *Acarologia* 60(2): 254-267; DOI 10.24349/acarologia/20204366 266

