Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
The family Parasitidae (Acari: Mesostigmata) – history, current problems and challenges

Kamila Hrúzová, Peter Fenďa

*Department of Zoology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia.

ABSTRACT

The family Parasitidae comprises two subfamilies, Parasitinae and Pergamasinae. A generic concept of this family is not stable and requires a revision. The number of genera varies depending on authors and their view on the systematics of the family, especially on the rank of taxa. We recognize 23 genera within Parasitinae and 22 genera within Pergamasinae, 4 of them are subdivided into subgenera. A dichotomous key for separation of genera and subgenera is provided. A new genus, *Coprocarpis* n. g. with type species *Parasitus copridis* Costa, 1963 is proposed and a diagnosis is given. The genus *Erithosoma* is not assigned to any subfamily because a description of females is missing. The most pressing taxonomic problems at generic and subgeneric levels are discussed. Fourteen new combinations are proposed.

Keywords Parasitidae, identification key, taxonomy, new genus, new combinations

Zoobank http://zoobank.org/14B78921-3F62-4F7B-8DAE-A417EDE07CC7

Introduction

Mites of the family Parasitidae Oudemans, 1901 are free living predators which can be found in soil, leaf litter, caves, dung, compost, nests of birds or small mammals, on carriions and other similar habitats. Some species are associated with beetles or bumblebees. If adults live in temporary habitats, deutonymphs are often phoretic on insects (Hyatt 1980). This different lifestyle of adults and deutonymphs leads to a situation, that from many species only deutonymphs are known. However, this is only a small problem compared to other taxonomic issues within the family.

Over last two decades, several authors (Karg 1998, 2006, Alberti et al. 1999) analysed higher classification and a position of Parasitidae within Parasitiformes but this very interesting and important topic is not crucial for practical work with parasitid mites. The identification of species or classification in the genus is often confusing or difficult because the identification keys are outdated (Tikhomirov 1977, Karg 1993) or not existing, information on the taxonomy are scattered over hundreds of publications, the generic concept and the boundaries of the genera have been changed many times.

Latreille (1795) designed the genus *Parasitus* but he changed the name first to *Carpais* (1796) and later to *Gamasus* (1802). That is the reason why Oudemans (1901) mentioned the genus *Parasitus* Latreille, 1795 while Berlese (1882) recognized the genus *Gamasus* Latreille, 1802. These names were synonymized by Trägårdh (1910). The subfamily Parasitinae was proposed by Oudemans (1901) but several different genera (e.g. *Macrocheles* Latreille, 1829, *Pachylaelaps*, Berlese, 1888, *Cyrtolaelaps* Berlese, 1887) were included in it. In following papers Oudemans (1902, 1904, 1923) mentioned the family Parasitidae, each time with a modified concept. The first review of the Parasitidae was made by Berlese (1905), where he recognized 8 subgenera within the genus *Gamasus*, the content of which is identical to present...
family Parasitidae. From that time, several revisions of the family were made and different generic concepts were proposed (Holzmann 1969, Micherdziński 1969, Tikhomirov 1977, Karg 1993).

Holzmann (1969) recognized 7 genera and combined *Eugamasus* and *Parasitus* species into the genus *Eugamasus* Berlese, 1892. She included *Parasitellus* species in the genus *Parasitus*. Most of Pergamasinae species were included in the genus *Pergamasus* Berlese, 1903. Micherdziński (1969) also combined genera *Eugamasus* and *Parasitus* into one genus, but this time it was *Parasitus* and he recognized several species-groups within this genus. Micherdziński (1969) recognized two morphological types – *Parasitus*, where he mentioned 4 genera and *Pergamasus* with 2 genera. Juvara-Baļš (1972) also distinguished 2 morphological types within Parasitidae – *Pergamasus* and *Parasitus* – for which she designed 2 subfamilies, Parasitinae and Pergamasinae. These subfamilies were previously recognized by Athias-Henriot (1971) as cohorts. Woolley (1988) even mentioned the families Parasidae and Pergamasidae and Athias-Henriot (1980a) mentioned the family Pergamasidae.

Some revisions (Bhattacharyya 1963, Evans and Till 1979, Hyatt 1980) were made only for either the family or one of the subfamilies of British Islands and again different generic concepts can be found in it. A series of three papers written by Athias-Henriot (1967a, b, c) can be considered as a revision of the subfamily Pergamasinae. The most recent identification key to Parasitidae genera and some species can be found in Karg (1993) but this key includes only German genera and provides another different generic concept. The identification keys to the majority of described genera of the subfamily Pergamasinae were published by Juvara-Baļš (2002, 2003). The majority of genera belonging to the Parasitinae are not included in any identification key.

The characters used to separate and characterized genera were changed almost with every revision. Berlese (1905) separated genera *Eugamasus* and *Parasitus* on the basis of male corniculi, Hyatt (1980) on the basis of the shape of paraxial setae on palpigena and Athias-Henriot (e.g. 1978, 1980b) often used the adenotaxy and poroidotaxy do define genera. The last mentioned characters are missing in older diagnoses of genera and that is one of problems for making a complete revision of the family. Over the last decades, many genera were designed (Athias-Henriot 1969, 1971, 1979a, b, c, 1980b, c, 1981, 1982; Juvara-Baļš 1972, 2002; Juvara-Baļš and Athias-Henriot 1972; Hennessy and Farrier 1989; Tseng 1995) but no summary work comprising these genera was done. The most recent mention of the generic concept of the Parasitidae can be found in Witaliński and Podkowa (2016). They recognize 16 genera within Parasitinae and 23 genera within Pergamasinae.

The phylogenetic relationships within Parasitidae were never tested with molecular phylogenetic methods. Such future studies could reveal real phylogenetic relationships between species and genera and lead to a completely different generic concept. The aim of our paper is to provide an identification key to all valid genera of Parasitidae, to summarize the biggest taxonomic problems within this family, to provide information to facilitate the work with these mites and thus provide the basis for future revision of the family Parasitidae.

Materials and methods

In the present paper, a dichotomous identification key to the genera and subgenera of the family Parasitidae is presented. The information presented here is derived from a study of the literature, not from the examination of type specimens. Idiosomal setal notation follows that of Lindquist and Evans (1965) with modifications as given by Lindquist (1994). The system of setal notation for the palpi follows Evans and Till (1979). The notation of adenotaxy follows Athias-Henriot (1969). The part of the identification key concerning Pergamasinae is partly adopted and modified from Juvara-Baļš (2002, 2003) and Athias-Henriot (1967a).

The subgenera are included in the key since relatively fast changing taxonomic rank of some taxa within the Parasitidae indicates practical needs of having this information in one place.
All valid genera and subgenera are included in the presented key except the genus *Erithosoma* Athias-Henriot, 1979. This genus is not assigned to any subfamily because a description of female is missing. However, all characters, by which was the genus defined, are mentioned.

Results

Identification key to genera and subgenera

1. Dorsal shield of female divided into podonotal and opisthonotal shield, occasionally present one schizodorsal shield; tritosternum of male normal, similar to that of female or modified or absent; setae of dorsal hexagon (z5, j5, j6) heterogenic in length and width or similar subfamily Parasitinae Oudemans, 1901 – 2
 — Dorsal shield of female entire; tritosternum of male with two laciniae and reduced base covered by genital lamina; all setae of dorsal hexagon (z5, j5, j6) similar in length and width subfamily Pergamasinae Juvara-Balș 1972 – 24

2. Podonotal and opisthonotal shield hypotrichous, movable digit of female chelicera with 4 teeth, peritrematal shield of female not fused to ventral shield posteriorly 3
 — Podonotal and opisthonotal shield orthotrichous or hypertrichous, movable digit of female chelicera with 3, exceptionally 4 or 5 teeth, peritrematal shield of female fused to ventral shield posteriorly or not. ... 4

3. Opisthonotum with 6 pairs of setae, trichocystic seta pd2 on telotarsus IV present Psilogamasus Athias-Henriot, 1969
 Type species: *Psilogamasus hurlbutti* Athias-Henriot, 1969
 — Opisthonostum with 5 pairs of setae, no trichocystic seta present on telotarsus IV Taiwanoparasitus Tseng, 1995
 Type species: *Taiwanoparasitus pentasetosus* Tseng, 1995

4. Opisthonotum neotrichous, all dorsal setae fine; if not neotrichous, then paraxial palpgenual setae divided apically into truncate branches; male corniculi entire, if divided, then the middle spine of tectum fringed apically; paraxial seta on palpfemur divided into several branches (2 – many), at least one paraxial seta on palpgenu divided apically, rarely both setae entire; endogynium usually with spike- or hornlike structures (Figure 1A) but exceptionally without (Figure 1B); base of male tritosternum covered by genital lamina (Figure 1C) .. 5 (neogamasidian series)
 — Opisthonotum orthotrichous or hypertrichous, some dorsal setae can be stout or others, if hypertrichous, then male corniculi deeply divided or with a cleft on its inner margin; paraxial seta on palpfemur divided or entire, both paraxial setae on palpgenu entire or if divided apically, then endogynium of female without conspicuous spine- or hornlike structures and base of male tritosternum not associated with genital lamina (Figure 1D) .. 10

5. Movable digit of female chelicera with 5 teeth, gnathotectum with 3 prongs and flanked by small denticles laterally, the middle prong fringed apically, corniculi of both sexes with protrusion on paraxial edge, peritrematal shield free posteriorly ... Colpathylax Athias-Henriot, 1980
 Type species: *Gamasus exilis* Berlese, 1883
 — Movable digit of female chelicera generally with 3 or 4 teeth, small additionally teeth can be present, gnathotectum different, corniculi entire, peritrematal shield fused to ventral shield or free posteriorly .. 6

6. Both paraxial setae on palpgenu entire, can be truncate or dilated apically or laterally; gnathotectum with 3 prongs and without accessory denticles, female epigynium clearly separated
from opisthogastric shield *Cycetogamasus* Athias-Henriot, 1980
Type species: *Pergamasus diviortus* Athias-Henriot, 1967
— At least one paraxial seta on palp genu divided apically, gnathotectum with (Figure 1E) or without (Figure 1F) accessory denticles, female epigynium clearly separated from opisthogastric shield or not .. 7

7. Both paraxial setae on palp genu divided apically .. 8
— Only proximal paraxial seta on palp genu divided apically 9

8. Opisthonotum not neotrichous, paraxial setae on palp genu divided into truncate branches, female digitus mobilis with 3 teeth, gnathotectum usually with 3 prongs without accessory denticles; glands *gvl* absent *Dicrogamasus* Athias-Henriot, 1980
Type species: *Eugamasus theodori* Costa, 1961
— Opisthonotum neotrichous, paraxial setae on palp genu cleaved in 2-many branches; female digitus mobilis with 4 teeth, often with small additional denticles, gnathotectum usually with 3 prongs, accessory denticles can be present; glands *gvl* present .. *Neogamasus* Tikhomirov, 1969
Type species: *Gamasus unicornutus* Ewing, 1909

9. Proximal paraxial seta on palp genu divided into 4–5 branches, gnathotectum with 3 prongs and flanked by small denticles laterally, glands *gvl* absent .. *Anadenosternum* Athias-Henriot, 1980
Type species: *Parasitus azaleensis* van Daele, 1975
— Proximal paraxial seta on palp genu divided into 2 branches, gnathotectum with 3 prongs but not flanked by small denticles, glands *gvl* present *Dyneogamasus* Athias-Henriot, 1979
Type species: *Neogamasus (Dyneogamasus) speculiger* Athias-Henriot, 1979

10. Both paraxial setae on palp genu cleaved apically, *al* seta on palp femur cleaved into several branches .. *Eugamasus* Berlese, 1892
— Both paraxial setae on palp genu entire, spatulate or baculiform, *al* seta on palp femur cleaved or entire .. 11

11. Corniculi significantly long and slender, extending suture palp trochanter/palp femur; middle part of anterior edge of female opisthonotum concave; male tritosternum absent .. *Cornigamasus* Evans and Till, 1979
Type species: *Gamasus coleoptratorum* var. *lunaris* Berlese, 1882
— Corniculi not significantly long, not extending suture palp trochanter/palp femur; anterior edge of female opisthonotum narrow; male tritosternum present or absent 12

12. Paraxial *al* seta on palp femur entire .. 13
— Paraxial *al* seta on palp femur cleaved .. 16

13. Pulvilli of legs II-IV with lateral lobes acuminate; metasternal shield of female fused with sternal shield or separated, junction between sternal and metasternal shield transverse (Figure 1G), tritosternum of male absent .. *Trachygamasus* Berlese, 1904
Type species: *Gamasus pusillus* Berlese, 1892
— Pulvilli of legs II-IV with lateral lobes normal, rounded; metasternal shields of female separated from sternal shield, junction between sternal and metasternal shield oblique (Figures 1H and 1I), tritosternum of male absent or present .. 14

14. Genital lamina of male very complicated, with anterior long and thin extension; arthrodial membrane of male chelicera modified into very small smooth tip; endogynium of female
15. Legs II of deutonymphs with strong slender apophyses, legs II of females sometimes with spurs or modified setae; sternal shield of deutonymphs without transverse granular band; chelicerae of deutonymphs without membranous process; tritosternum of male absent or rudimentary; corniculi of male straight. Gamasodes Oudemans, 1939
Type species: Gamasoides spiniger Oudemans, 1936
— Legs II of deutonymphs and females without spurs or modified setae; sternal shield of deutonymphs usually with transverse granular band between setae st1 and st2; chelicerae of deutonymphs with membranous process at tip of fixed digit (Figure 1J); tritosternum of male closely associated with genital orifice; corniculi of male often hooked. Poecilochirus G. and R. Canestrini, 1882
Type species: Poecilochirus carabi G. and R. Canestrini, 1882

16. Opisthogaster usually with more than 40 pairs of setae, male corniculi with cleft on inner margin. Parasitellus Willmann, 1939
Type species: Acarus fucorum De Geer, 1778
— Opisthogaster with less than 40 pairs of setae, male corniculi usually entire, rarely with cleft or deeply divided. 17

17. Female epigynium elongate, tricuspid anteriorly (Figure 1H); male chelicerae asymmetrical due to presence of variable digitiform process on spermatodactyl of right chelicera (Figure 1K); male corniculi with cleft on inner margin. Porrhostaspis Müller, 1859
Type species: Porrhostaspis lunulata Müller, 1859
— Female epigynium triangular or subtriangular (Figure 1I); male chelicerae symmetrical, corniculi entire or divided. 18

Type species: Eugamasus lyriformis McGraw and Farrier, 1969
— Sternal shield of female without sagittal desclerotized band. 19

19. Setae of dorsal hexagon similar in form and length, male tritosternum normal, biramous. Vulgarogamasus Tikhomirov, 1969
Type species: Parasitus burchanensis Oudemans, 1903
— Setae of dorsal hexagon usually distinctly different in form and length, male tritosternum absent or modified, if biramous, then base closely associated with genital orifice. Parasitus s. l. – 20

20. Paraxial seta on palpfemur comblike, slightly penniform or spatulate; arthrodial membrane of male chelicera fringed (Figure 1L); gnathotectum with considerably large middle prong. 21
— Paraxial seta on palpfemur deeply cleaved, arthrodial membrane of male chelicera baculiform (Figure 1M) or fringed; gnathotectum with 3 prongs of similar length. 22

21. Opisthonotum with more than 40 pairs of setae; paraxial seta on palpfemur spatulate or broaden distally; palptrochanter of male with strong ventral protuberance bearing two setae modified into flat paddles. Coprocarpae n. g.
Type species: Parasitus copridis Costa, 1963
— Opisthonotum usually with less than 30 pairs of setae; paraxial seta on palpfemur comblike or penniform; palptocharter of male without strong ventral protuberance, if protuberance present, then setae not modified into flat paddles Parasitus Latreille, 1795 s. s.
Type species: Acarus coleoptratorum Linnaeus, 1758

Type species: Parasitus latobacoides Karg, 1998
— Arthrodial membrane of male chelicera baculiform, female endogynium different 23

23. Male gnathosoma with hypostomal plate, spurs on genu and tibia of leg II of male usually bilobed; stI of females split apically Rhabdocarpus Athias-Henriot, 1981
Type species: Parasitus mammillatus Oudemans and Voigt, 1904
— Male gnathosoma without hypostomal plate, spurs on genu and tibia of leg II of male simple; stI of females entire Phorytocarpus Athias-Henriot, 1979
Type species: Gamasus fimetorum Berlese, 1903

24. Tarsus I without claws and pulvillus; holodorsal shield attenuated posteriorly or not; opisthonotal region of dorsal shield with less than 12 pairs of setae or hypertrichous 25
— Tarsus I with claws and pulvillus; holodorsal shield not attenuated posteriorly, opisthonotal region with more than 12 pairs of setae .. 26

25. Opisthonotum region with less than 12 pairs of setae; holodorsal shield attenuated posteriorly; male unknown .. Pergamasellus Evans, 1957
Type species: Pergamasellus delicatus Evans, 1957
— Opisthonotum region hypertrichous; holodorsal shield not attenuated posteriorly; male unknown .. Oocarpus Berlese, 1916
Type species: Oocarpus donisthorpei Berlese, 1916

26. Holodorsal, peritrematal and opisthothentic shields fused posteriorly in females and males, opisthothentic region with 8–9 pairs of ventral setae; movable digit of female chelicera with 3 teeth; idiosoma globular, well sclerotized Holoparasitus Oudemans, 1936
Type species: Gamasus calcaratus Koch, 1839
— Female holodorsal and peritrematal shield fused or separated, opisthothentic shield free; in males all shields fused, opisthothentic region with 7-32 pairs of ventral setae; movable digit of female chelicera with 3 or 4 teeth; idiosoma oval-shaped, rarely globular, if globular, then weakly sclerotized .. 27

27. Female holodorsal and peritrematal shields fused, exceptionally peritrematal shield free posteriorly, then gland pores gv1 absent and movable digit of female chelicera with 4 teeth; opisthothentic shield free; male without transverse suture on dorsal shield 28
— Female holodorsal shield only anteriorly united with peritrematal shield, the latter fused or not fused with opisthothentic shield; movable digit of female chelicera with 3 or 4 teeth or multidentate; male with or without transverse suture on dorsal shield 32

28. Podonotal region with 18–22 pairs of setae, opisthothentic region hypertrichous; opisthothentic shield with 11–32 pairs of ventral setae, gnathotectum with 3–5 prongs; female with 2 big triangular preostern sclerites, epigynium triangular or subpentagonal; femur II of male with triangular or different-shaped apophysis; idiosoma oval Pergamasus Berlese, 1903 – 29
Type species: Acarus crassipes Linneaus, 1758 sensu Berlese, 1906
— Podonotal region with 20 pairs of setae, opisthothentic region with 21-23 pairs of setae; opisthothentic shield with 7-8 pairs of ventral setae; gnathotectum trifid or triangular; female
with pre stern al sclerites almost completely fused to sternal shield, with small triangular structures remaining, epigynium heptagonal; femur II of male with triangular apophysis and axillary process bearing seta, idiosoma globular. \textit{Heteroparasitus} Juvara-Balş, 1975 – 31
Type species: \textit{Pergamasus tirolensis} Sellnick, 1968

29. Gnathotectum with 3 prongs, paraxial setae on palp genu entire, male corniculi cleaved; hyaline edge of male genital orifice acuminate; anterior angle of female epigynium subcordate subgenus \textit{Triadogamasus} Athias-Henriot, 1971
Type species: \textit{Pergamasus franzi} Willmann, 1951
— Gnathotectum with 5 prongs, middle prong can be indistinct; paraxial setae on palp genu entire or deeply divided; male corniculi entire; hyaline edge of male genital orifice lobed or acuminate; anterior edge of female epigynium not subcordate 30

30. Paraxial setae on palp genu entire subgenus \textit{Pergamasus} Berlese, 1903 s. s.
— Paraxial setae on palp genu deeply divided .. subgenus \textit{Thenargamasus} Athias-Henriot, 1971
Type species: \textit{Gamasus septentrionalis} Oudemans, 1902

31. Setae on dorsal scutum moderately long, not reaching line of the following setal row; female peritrematal shield fused with dorsal shield; gland pore \textit{gv}\textsubscript{1} present on sternal shield; gnathotectum trifid; male leg II with one spur on femur, genu and tibia; subgenital sclerite oval; movable digit of female chelicera with 3 or 4 teeth subgenus \textit{Heteroparasitus} s. s.
— Setae on dorsal scutum long, especially on opisthodorsum, reaching mid-length of setae of the following setal row; female peritrematal shield free posteriorly; \textit{gv}\textsubscript{1} absent on sternal shield; gnathotectum triangular; male leg II without spur on tibia; subgenital sclerite rectangular with denticles; movable digit of female chelicera with 4 teeth subgenus \textit{Medioparasitus} Juvara-Balş, 2002
Type species: \textit{Medioparasitus athiasae} Juvara-Balş, 2002

32. Female peritrematal shield fused with opisthogaster; extension of peritrematal shield behind stigmata discernible in male; male without transverse suture on idiosoma 33
— Female peritrematal shield free posteriorly; extension of peritrematal shield behind stigmata not recognizable in male; male with or without transverse suture on dorsal idiosoma 40

33. Podonotal region with 19–20 pairs of setae, opisthonasal region polytrichous; paraxial setae on palp genu bifid or fringed or foliaceous; pre stern al sclerites of female large, triangular, contiguous; movable digit of male chelicera with 2 teeth; subgenital sclerite present 34
— Podonotal region with 13–20 pairs of setae, opisthonasal region holotrichous (23–24 pairs of setae) or oligotrichous; paraxial setae on palp genu truncate, pre stern al sclerites of female triangular, small, distant from each other or contiguous; movable digit of male chelicera with 1 tooth; subgenital sclerite absent .. 35

34. Proximal paraxial seta on palp genu foliaceous, distal seta bifid; opisthogastic shield with 23–29 pairs of ventral setae, sclerocuticle wrinkled; movable digit of female chelicera with 4 teeth \textit{Mixogamasus} Juvara-Balş, 1972
Type species: \textit{Mixogamasus intermedius} Juvara-Balş, 1972
— Both paraxial setae on palp genu fringed; opisthogastic shield with 11-16 pairs of ventral setae; sclerocuticle smooth; movable digit of female chelicera with 3 teeth and adjacent denticles between them \textit{Phytiogamasus} Juvara-Balş and Athias-Henriot, 1972
Type species: \textit{Parasitus primitivus} Oudemans, 1904

35. Podonotal region with 13 pairs of setae, opistonotal region with 12 pairs; opisthogastic shield with 7 pairs of ventral setae; movable digit of female chelicera with 3 teeth; male

unknown .. Zelogamasus Hennessey and Farrier, 1989
Type species: Zelogamasus olichaetus Hennessey and Farrier, 1989
— Podonotal region with 17–20 pairs of setae, opisthonotal region with 23-24 pairs; opisthogastric shield with 9-10 pairs of ventral setae; movable digit of female chelicera with 4 teeth or multidentate, movable digit of male chelicera with 1 tooth. 36

36. Podonotum with 4 setae lacking (s1, r2, z3 and s3); ventrianal shield with 9 pairs of ventral setae; palptrochanter with setae v1, v2 inserted at same level; movable digit of female chelicera multidentate .. Tomeogamasus Athias-Henriot, 1971
Type species: Pergamasus falculiger Berlese, 1906
— Podonotum with 1 or 2 setae lacking (s3 or s4 and s2); ventrianal shield with 9–10 pairs of ventral setae, palptrochanter with setae v1, v2 not inserted at the same level; movable digit of female chelicera with 4 teeth. 37

37. Podonotum without setae s2 and s3; peritremes extending anteriorly to level of setae j2; female with presternal sclerites triangular, contiguous and epigynium with 0–32 pairs of denticles; male with armature of leg II of different types: with simple, triangular spurs or differently shaped apophyses .. Ernogamasus Athias-Henriot, 1971
Type species: Pergamasus leruthi Cooreman, 1951
— Podonotum with setae s2 but without s3; peritremes with different length: vestigial or reaching setae j2 or r2; female with presternal sclerites usually not contiguous, triangular, sometimes small sclerotized fragments between them and with epigynium with 0-2 pairs of denticles; male with armature of leg II simple: one apophysis and axillary process on femur and one spur on genu and on tibia Leptogamasus Trägardh, 1936 – 38
Type species: Leptogamasus suecicus Trägardh, 1936

38. Podonotal adenotaxy without gland pores gd5 and gd2; female endogynium with spherules fused; male with simple spurs on leg II or some species with big apophysis on femur and big spurs on genu and tibia subgenus Breviperigamasus Juvara-Balsă, 1981
Type species: Pergamasus semisicatus Athias-Henriot, 1967
— Podonotal adenotaxy with gland pores gd5 and gd2; female endogynium with separate spherules or with different shapes of stipula and spherules; male with armature of leg II simple: small spurs on genu and tibia and triangular apophysis and axillary process on femur 39

39. Peritremes long, apex extending anteriorly to gland pore gd2 or poroid id1; setae on opisthosoma long, their tips reaching the following setal row; female endogynium with two big spherules .. subgenus Holoperigamasus Juvara-Balsă, 1981
Type species: Pergamasus tatinellus Athias-Henriot, 1967
— Peritremes shorter, apex reaching seta r5 or s2; setae on opisthosoma short, their tips not reaching the following setal row; female endogynium with spherules and differently shaped stipula .. subgenus Leptogamasus s. s.

40. Podonotal region with 22–23 or 31–45 pairs of setae, opisthonotal region hypertrichous, with about 60 pairs of setae; opisthogastric shield with 11–30 pairs of ventral setae; paraxial seta on palpgenu fringed; movable digit of male chelicera with 2 teeth; female genital pores iv5 near posterior margin of epigynium; presternal sclerites of female triangular, contiguous Amblygamasus Berlese, 1906
Type species: Gamasus dentipes Koch, 1839
— Podonotal region with 16–21 pairs of setae, opisthonotal region oligotrichous or holotrichous; opisthogastric shield with 8–11 pairs of ventral setae; paraxial setae on palpgenu entire, spatulate; male movable digit of chelicera with 1 or 2 teeth; female genital pores iv5 on soft cuticle between epigynium and opisthogastr; presternal sclerites of female triangular or ribbon-like, or in the shape of small triangular sclerites with intermediate sclerotizations, or
16. Podonotal region with 16–20 pairs of setae, opisthogastric shield with 7–8 pairs of setae; male movable digit of chelicera with 2 teeth, femur II without axillary process, genital opening without subgenital sclerite but with sclerified tape (ribbon) linked with anterior margin of sternal shield; female with pregenital sclerites fused to sternal shield, idiosoma globular. **Ologamasiphis** Athias-Henriot, 1971

Type species: **Pergamasus epigynialis** Willmann, 1940

— Podonotal region with 20–21 pairs of setae, opisthonotal region with 23–24 pairs of setae, opisthogastric shield with 8–11 pairs of ventral setae; male movable digit of chelicera with 1 or 2 teeth, femur II with axillary process, genital opening with subgenital sclerites; pregenital sclerites of female triangular or ribbon-like or in the shape of small sclerites with intermediate sclerotizations; idiosoma oval. **Paragamasus** s. l. – 43

17. Opisthogastric shield of females with 8–9 pairs of ventral setae; females without metagynial sclerites and differentiated endogyneal structures; males without transverse dorsal suture. **Beogamasus** Athias-Henriot, 1971

Type species: **Pergamasus rothamstedensis** Bhattacharyya, 1963

— Opisthogastric shield of females with 11 pairs of ventral setae; females with metagynial sclerites and with differentiated endogyneal structures; males with or without transverse dorsal suture. **Holzmannia** Juvara-Balș, 2002

18. Podonotal region with 18–20 pairs of setae, opisthonotal region with 21–22 pairs of setae; adenotaxy with 3 pairs of opisthonotal gland pores; on ventral idiosoma **gVL** absent; female peritrematal shield anteriorly fused with margin of dorsal shield and posteriorly free; movable digit of female chelicera with 3 teeth; in males ribbon-like structure, instead of subgenital sclerite, linked with anterior margin of sternal shield. **Meriadenogamasus** Athias-Henriot, 1973

Type species: **Paragamasus (Meriadenogamasus) franzi** Athias-Henriot, 1973

— Dorsal setae **sL** absent, setae **r2** present; pregenital sclerites of females fusiform; gland pore **gVL** absent; male unknown. **Tanygamasus** Athias-Henriot, 1973

Type species: **Pergamasus perlongum** Schweizer, 1961

— Movable digit of male chelicera with spermatotremata and with 1 tooth, fixed digit without teeth; setal row S and R on opisthonomum moderately neotrichous; female endogyneal sac with 15/16 marginal laciniae; sternal shield of female posteriorly with a deep slot. **Aclerogamasus** Athias-Henriot, 1971
Type species: *Gamasus decipiens* Berlese, 1904

47. Presternal sclerites of female trapezoidal and close to each other; sternal shield of female posteriorly with slot, often deep; metagynial sclerites of female well developed; endogynial sac and spicate membrane or cluster of big laciniae present; movable digit of male chelicera with 1 tooth, fixed digit pluridentate; hyaline membrane of male genital orifice anteriorly bilobed...

...

Type species: *Paragamasus* Hull, 1918 s. s.

48. Metagynial sclerites delicate; endogynium with one pair of fused spherules; peritreme reaching level *r*4 or peritrematal shield absent; fixed digit of male chelicera pluridentate...

...

Type species: *Pergamasus ponantinus* Athias-Henriot, 1971

49. Endogynial sac without laciniae or embossing; male hypostomal grooves Q1-Q4 anteriorly angular; peritreme reaching at least *r*2 or apex ending at level *r*4, then pieces of peritremes extending beyond *r*4...

...

Type species: *Anidogamasus* Athias-Henriot, 1971

50. Middle prong of male gnathotectum shorter than lateral prongs; endogynial sac big, with large discs; ventral shield of female with small dimples; tarsus IV = 125–155 μm...

...

Type species: *Pergamasus tectecognatus* Athias-Henriot, 1967

— Middle prong of male gnathotectum longer than lateral prongs; endogynial sac with discs and laciniae or embossing; tarsus IV = 205-265 μm...

— Anchigamasus Athias-Henriot, 1971

Type species: *Pergamasus crassicornutus* Willmann, 1954

Diagnosis of a new genus Coprocarpais n. g.

Type species: *Parasitus copridis* Costa, 1963

Diagnosis — Dorsal shield of female divided into podonotal and opisthonotal shield, dorsal shield of male with transverse suture, podonotal shield of adults with twenty-twentythree pairs of heterogeneous setae, opisthonotal shield of adults with more than forty pairs of setae, dorsal shields with distinct foveate sculpture; paraxial seta on palp femur spatulate or paddle-like, with smooth or denticulate posterior margin, paraxial setae on palp genu spatulate; opisthonotum extending far on ventrum; endogynium of females often with curled structures; corniculi of males small, deeply split; male palp trochanter with big ventral protuberance bearing two setae modified into flat blades; arthrodial membrane of male chelicera fringed; gnathotectum with three prongs, the middle prong is clearly stronger; tritosternum of male rudimental; only second pair of legs of male with spurs.

The genus *Coprocarpais* n. g. is characteristic also by its ecology. Deutonymphs are phoretic on beetles from the subfamily Scarabeinae and adults live in dung. All known species are distributed in Asia except *P. copridis* with a Palaearctic distribution.

Etymology — Name *Coprocarpais* consists of two parts: 1. "copro-" means dung and refers to ecology of adult mites living in dung and 2. "-carpais" what was one of names given
by Latreille (1796) to the genus *Parasitus*, it was used also by Athias-Henriot (1979b, 1981) as a part of names of her new genera excluded from the genus *Parasitus* and reflects affinity to this genus.

Discussion

Division of Parasitidae into Parasitinae and Pergamasinae as proposed by Juvara-Balş (1972) is widely accepted. Juvara-Balş (1975) proposed also a subdivision of Pergamasinae into 3 tribes: Leptogamasini, Pergamasini and Paragamasini. Genera included in Leptogamasini are *Leptogamasus*, *Ernogamasus*, *Tomeogamasus*, *Mixogamasus*, *Phityogamasus* and *Zelogamasus*, genera within Pergamasini are *Pergamasus*, *Holoparasitus*, *Heteroparasitus* and *Ologamasiphis* and genera within Paragamasini are *Amblygamasus* and all genera mentioned in our identification key within *Paragamasus* s. 1. Juvara-Balş (1972) mentioned for the first time a division into tribes but she gave a diagnosis only of the tribe Leptogamasini, the other tribes are neither named nor characterized in the paper. Athias-Henriot (1973) mentioned the tribe Pergamasini for the first time but without any diagnosis. The first diagnoses of tribes Pergamasini and Paragamasini were given by Juvara-Balş (1975). We decided to avoid this division until phyllogenetic relationships within the subfamily will be solved.

A group of closely related genera named by Athias-Henriot (1979a, 1980b) as neogamasidian series can be recognized within Parasitinae. The content of the neogamasidian series fits with the subgenus *Neogamasus* Tikhomirov, 1969 in the sense of Tikhomirov (1977). These genera are *Neogamasus*, *Anadenosternum*, *Colpothylax*, *Dicrogamasus*, *Dyneogamasus* and *Cycetogamasus*. *Dyneogamasus* was originally proposed as a monotypic subgenus of *Neogamasus* (Athias-Henriot 1979a). That is the only existing mention of this subgenus. However, at least three more species, *Neogamasus bisiculus* Tseng, 1995, *Neogamasus pinatus* Tseng, 1995 and *Neogamasus scirpiculatus* Tseng, 1995 presumably belong to *Dyneogamasus*. For practical reasons, mainly to facilitate a work with parasitid mites, we decided to mention it as a genus but we are aware of the fact that this can be changed with a future phylogenetic analysis. These neogamasidian genera can be easily separated according to the shape of paraxial setae on palpigenus, although Hennessey and Farrier (1989) described several species with a combination of characters of more genera within neogamasidian series.

Most taxonomic problems within Parasitinae are associated with the genus *Parasitus*. The content of the family Parasitidae and that of the genus *Parasitus* as was originally defined (Latreille 1795), are overlapping. It was only a logical outcome of increasing knowledge, that new genera were excluded from the genus *Parasitus*. Most of these genera are widely accepted today. It is not surprising, that mainly species without obvious synapomorphies remained in the genus *Parasitus*, so it becomes presumably an artificial group and requires a revision. Tikhomirov (1969) separated species with homogenous dorsal setae into genus *Vulgarogamasus* but this genus also requires a revision. Among other things, on the basis of studying original descriptions of species described in the last few decades as *Vulgarogamasus*, mainly in China, we are of opinion, that some of that species belong to the neogamasidian series.

Athias-Henriot (1979b, 1981) designed two new genera, *Phorytocarpais* and *Rhabdocarpais*, previously recognized as species groups within *Parasitus*. The number of species belonging to these genera was described as species of the genus *Parasitus*, so their revisions are required. Karg (1998) mentioned them as subgenera of the genus *Parasitus* and designed a new
subgenus of South American species. These taxa are considered as genera in our identification key within *Parasitus* s.l. Several authors (Costa 1975, Tikhomirov 1977, Makarova 1996) recognized a group of closely related species within genus *Parasitus*. These species possess several morphological synapomorphies, have similar ecology and they are fairly different from type of the genus *Parasitus, P. coleoptratorum* (Linnaeus, 1758). Due to above mentioned reasons we propose a new genus, *Coprocarpais* n. g., which designation and list of its species are given in the present paper.

Division of the family Parasitidae into two subfamilies is based mainly on the dorsal shield of females, so the classification of the genus based only on males can be mistaken. We assume that the genus *Erithosoma* belongs to Pergamasinae. This genus was designed for a single known male specimen of *Erithosoma pilosum* Athias-Henriot, 1979 and its inclusion in a subfamily is uncertain. That is why we do not include this genus in the identification key. Nevertheless, as the aim of this work is to complete knowledge of taxonomy of Parasitidae, we consider necessary not to skip the characteristic of the genus as given by Athias-Henriot (1979c) which enables to distinguish this genus: dorsal shield strongly reticulated, entire, without transverse suture, neotrichous; dorsal setae long and fine, spiny apically; gland pores *gd2, gd3* and *gv3* absent, *gv1* present, *gv2* double; anterolateral angle of sternal shield very long, fused to exopodal plate; paraxial setae on palpgenu entire and truncate, paraxial seta on palpfemur divided into five branches, the proximal one is lobed; gnathotectum significantly sculptured, with three prongs; hypostome with eight simple grooves, proximally with field of small denticles; leg setae long and fine, spiny; movable digit of chelicera pluridentate, fixed digit edentate, spermatotreme simple and long, arthrodial oncophysis fringe and very short; femur II with short weak spur, axillary process on femur and seta *av1* on genu II and tibia II reduced to conical vestige.

Athias-Henriot (1978) designed the genus *Paracarpais* on the basis of characters which can be found in many species of Parasitidae and sometimes vary within a single genus (See, e.g., Athias-Henriot 1977): paraxial seta on palpfemur fringe, peritrematal shield of female fused to opisthogastic shield, gland pores *gv2* double, *gd8* and *gv3* absent, *gv1* small and synarthrodial oncophyses of male chelicerae not transformed. She included four species into genus *Paracarpais* different enough to design a separate subgenus for each of them. Traditionally these species are located in three different genera (*Parasitus, Vulgarogamasus* and *Porrhostaspis*). Witaliński and Podkowa (2016) found as the lowest as well as the highest number of ribbons in sperm of all 27 studied species within the genus *Paracarpais*. That can indicate a great intrageneric variability of this character or greater phylogenetic distance between these species. This is just one of numerous taxonomic challenges within Parasitidae awaiting a modern phylogenetic study. For the above-mentioned reasons we tended to the traditional attitude to these species and we do not mention the genus *Paracarpais* in our identification key.

There are also another taxonomic challenges within small, only rarely mentioned genera. We must point out, that genera *Psilogamasus*, known only from Tanzania, and *Taiwanoparasitus*, found in Taiwan and China, are very similar and they share several characters which are unique or rare within Parasitinae: hypotrichous dorsal shields, very short setae in anterior part of podonotum, movable digit of female chelicera with four teeth, peritrematal shields free posteriorly. Moreover a big endogynial sac is present in one of *Taiwanoparasitus* species and in *Psilogamasus*. However, a presence of a trichocystic seta on telotarsus IV is not mentioned in any *Taiwanoparasitus* species and a description of adenotaxy and poroidotaxy in *Taiwanoparasitus* is not available. The mentioned genera also differ in some characters as the number of setae on opisthnotonotum – five in *Taiwanoparasitus* vs. six setae in *Psilogamasus* but this can be an intrageneric variability. A study of types can possibly leads to their synonymization. Furthermore, we are of opinion, that the species *Vulgarogamasus brachyternalis* Ma and Lin, 2005 and *Vulgarogamasus longiscidiformis* Ma & Lin, 2005 belong to the genus *Taiwanoparasitus* as their descriptions fit in most of characters with a
diagnosis of the genus Taiwanoparasitus. The species Vulgarogamasus tenuipilosus Karg, 1998 may also belong to one of these genera and should be examined.

Great example how a taxonomic rank can change with growing knowledge is genus Pergamasus. Athias-Henriot (1967a, b, c) published a series of three articles focused on Pergamasus-species. She separated the genus into three subgenera – Pergamasus s. str., Amblygamasus and Paragamasus. Athias-Henriot (1967b) divided subgenus Pergamasus into three sections, which she raised (1971) to a subgeneric level. That is a concept accepted in several papers (Karg 1993, Stănescu and Juvara-Bâlș 2005) as in the present identification key. Although, within one subgenus can be recognized a subdivision into four species groups proposed by Juvara-Bâlș (1976). The second subgenus, Amblygamasus, was split by Athias-Henriot (1967c) into seven types of organization, which were never raised to a subgeneric level.

Athias-Henriot (1967a) divided a subgenus Paragamasus into nineteen types of organization, which she raised to generic or subgeneric level (Athias-Henriot 1971, 1980b). However, some species groups raised by Athias-Henriot (1971) to subgeneric level were raised to generic level by Juvara-Bâlș (1981, 2002). Athias-Henriot (1967a) subdivided some types of organization into sections, which were raised to subgeneric level by Juvara-Bâlș (1981). Athias-Henriot (1971) raised subgenus Paragamasus to a genus and divided it into eight subgenera but she included only some types of organization mentioned by Athias-Henriot (1967a). Athias-Henriot (1973) described another one subgenus within genus Paragamasus. This division was accepted by some authors (Juvara-Bâlș 1977, 2002, Schmölzer 1995, Dabert et al. 2011) and Witaliński and Podkowa (2016) mention these taxa as genera included in Paragamasus s. l. except Tanygamasus which they mention as a separate genus. We agree with Juvara-Bâlș (2002) that these genera are artificial and the Paragamasus group needs a revision. For practical reasons, we consider a taxonomic group Paragamasus s. l. with nine genera in presented identification key. It must be also mentioned, that Karg (1971) proposed a subgenus Lysigamasus, what is a junior subjective synonym of Anidogamasus (Juvara-Bâlș 2002).

A recent comprehensive revision of the family is still missing, however partial revisions of some genera have been already made. Athias-Henriot (1971) proposed three subgenera within genus Leptogamasus on the basis of her types of organization within genus Paragamasus (Athias-Henriot 1967a). Juvara-Bâlș (1981) redefined genus Leptogamasus, upgraded existing subgenera to the generic rank (Tomeogamasus and Ernogamasus) and designed new subgenera as mentioned in the present identification key. These subgenera were previously recognized by Athias-Henriot (1967a) as three sections of her organization type parvulus, Juvara-Bâlș (1972) mentions them as lineages of the genus and Witaliński (1978) also pointed out one of them as a species-group within genus Leptogamasus. Karg (1993) divided genus Leptogamasus into two subgenera – Leptogamasus s. str. and Valigamasus Karg, 1993, which is a junior synonym of Ernogamasus based on the same type species. This ambiguity about subgenera within Leptogamasus solved Juvara-Bâlș (2003) by publishing an identification key to genera Tomeogamasus, Ernogamasus and Leptogamasus including subgenera.

The genus Holoparasitus was also extensively studied in recent years, the taxonomic rank of its subgenera was raised to genus rank (Juvara-Bâlș 2002), many new species were described, several revisions of type specimens from old collections were made and new species-groups within the genus were defined (Juvara-Bâlș and Witaliński 2000, 2006; Witaliński and Skorupski 2002, 2003a, b, 2007; Witaliński 1994, 2004, 2006, 2017). The genus Holoparasitus comprised of three subgenera, two of which were redefined and upgraded to the generic rank by Juvara-Bâlș (2002). In the same paper, she divided both new raised genera – Heteroparasitus and Ologamasiphis – in two subgenera, key to which is included in our identification key. However, the placement of monotypic subgenus Medioparasitus in the genus Heteroparasitus is uncertain and requires more studies (Juvara-Bâlș 2002, Witaliński 2008). Recently, there are no subgenera within Holoparasitus but more than half of species is assembled into eight species groups (annulus, caesus, calcaratus, crassisetosus, inornatus, hemispaericus, mallorcae and peraltus) (Witaliński 2006, Witaliński 2017).
Finally, we want to mention one genus with an uncertain status. The monotypic genus *Oocarpais* Berlese, 1916 was proposed for a single female specimen from India without claws on tarsus I and with hypertrichous dorsal shield. The original description is very brief and no other records of this genus are known since then. Holzmann (1969) examined the type material and she considered that the species belongs to the genus *Pergamasus* because the peritremes and jugularia are different than in Berlese’s description. However, she did not mention the presence or absence of claws on tarsus I. Since she recognized only two genera, *Pergamasus* and *Ologamasus*, among mites included in Pergamasine at present, the study of type material is required. It is relevant to point out that the absence of claws on tarsus I is used as an important character to distinguish genera *Oocarpais* and *Pergamasellus* from other genera in the family, although, on the other hand, there can be observed an infrageneric variability in this character in the genus *Cornigamasus*. Female of a species *Cornigamasus ocliferus* Skorupski and Witaliński, 1997 does not possess ambulacrum with claws and pulvilli (Witaliński 2014). That is not known in any other species of the genus. Another monotypic genus, *Nemnichia* Oudemans, 1936, was proposed for a species *Zercon elegantius* Koch, 1839. Oudemans (1936) stated, that the species described by Koch (1839) did not belong to the genus *Zercon*, based on three long anal setae it is a nymph of the family Parasitidae. This genus was excluded from Parasitidae by Holzmann (1969) but it is still possible to find it placed in Parasitidae, e.g. in the Biology Catalog (Hallan 2005) so we decided to mention it here.

While preparing this paper, we encountered many species described in other genus than they belong to following this generic concept. However, it was not possible to devote all such species and they have to wait to a revision of individual genera. Nevertheless, a diagnosis of some genera is so evident and different from others, that we dare to propose following new combinations only on the basis of original descriptions:

* Dynoegamasus bicusculus (Tseng, 1995) comb. nov.
* Dynoegamasus pinatus (Tseng, 1995) comb. nov.
* Dynoegamasus scirpiculatus (Tseng, 1995) comb. nov.
* Taiwanoparasitus brachysternalis (Ma and Lin, 2005) comb. nov.
* Taiwanoparasitus longiscidiformis (Ma and Lin, 2005) comb. nov.

We propose and give diagnosis of the new genus *Coprocarpais* n. g. based on the group of closely relative species, which has been already mentioned (Makarova 1996) regarding the need of creating new genus. There is a large number of similar species groups in the Parasitidae, e. g. species groups within the genus *Amblygamasus* need an examination. As the phylogenetic relationships within Parasitidae remain unresolved, we are aware that here presented concept can be changed. However, this concept follows recent knowledge and we hope, that it will be helpful in work with Parasitidae and in acquisition of knowledge resulting into a large-scale revision of the family Parasitidae.

The Parasitidae comprises a great number of big, conspicuous, cosmopolitan and frequent mite species but work with them is limited by our insufficient knowledge on their taxonomy. A large revision should figure out this not trivial problem. To make a complete revision of the Parasitidae, the following problems have to be solved:

- Re-examination of some morphological characters omitted in early descriptions in some species (e.g. adenotaxy, poroidotaxy, idiosomal and leg chaetotaxy, shape of male cheliceral arthrodid membrane,...)
- Revision of the species deposited in the collections of early acarologists
- Modern phylogenetic analysis to resolve relationships among single taxa within the family
- Taxonomic research to determine which genera are synonyms of each other
- Validation of morphological characters used for generic concepts within Parasitidae
• Preparation of a new taxonomic concept for every valid genus
• Preparation of a catalogue of species for every valid genus
• When it will arise from the solutions of mentioned problems, than a preparation of the new identification key to genera

Acknowledgements

We wish to thank Jana Christophoryová (Department of Zoology, Comenius University in Bratislava) for her very kind help with a preparation of this manuscript. This work was financially supported by the Slovak Grant Agency KEGA (059UK-4/2014) and Slovak Research and Development Agency (APVV-14-0276).

References

