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Molecular phylogenetic relationships of halacarid mites suggest the
reevaluation of traditional subfamily classification
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ABSTRACT — Molecular phylogenetic relationships were examined for marine mites in the subfamilies Halacarinae,
Copidognathinae, Rhombognathinae and Halixodinae from the aquatic mite family Halacaridae by using nuclear 18S
and 28S ribosomal RNA gene sequences. The analysis revealed incongruences between the clustering obtained in the
phylogenetic trees and the current morphological classification in the subfamilies Halacarinae and Rhombognathinae
(based on 18S sequences) and in the Rhombognathinae (based on both 28S and combined 18S and 28S sequences). By
contrast, the tree clustering was consistent with the morphological taxonomic positions in the Copidognathinae and
Halixodinae subfamilies. It can be concluded that molecular phylogenetic analysis challenges the current classifications
of Halacarinae and Rhombognathinae subfamilies. Accordingly diagnostic characters for their classification should be
reevaluated.
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INTRODUCTION

The classification of mites has relayed mainly
on morphological criteria, particularly exoskeletal
characteristics (Krantz 1978; Walter and Proctor
1999). The classification was constructed tradition-
ally, based only on the morphology-based relation-
ships of mites. However, it is unclear whether such
morphological characters reflect real evolutionary
processes, partly because the traditional method in-
evitably includes arbitrary choices of the morpho-
logical characters used. In addition, it is some-
times difficult to find structural homology to be
used for morphological comparisons between or-

ganisms. Recent molecular studies on mite tax-
onomy have raised conflicts between morphology-
and molecular-based relationships challenging mite
classifications (Cruickshank 2002; Pepato et al. 2010;
Li et al. 2014; Matsuda et al. 2014), but have also
highlighted their value in evaluating mite classifica-
tions on the basis of reliable phylogenetic relation-
ships.

The vast number of Prostigmata mites, halacarid
mites (Halacaridae) are aquatic taxa which mostly
inhabit coastal sea areas (Abé 1990). Since the 1800s
the classification of halacarid mites was performed
by using morphological criteria (e.g., Bartsch 2015).
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So far approximately 1,300 species in 64 genera
have been described worldwide and there still re-
main a large number of undescribed species. On
the other hand, studies on the phylogenetic rela-
tionships among halacarid taxa are scarce. Phylo-
genetic studies based on morphological characters
have been carried out only on Rhombognathinae
mites which consist on of four genera: Rhombog-
nathus, Rhombognathides, Isobactrus and Metarhom-
bognathus (Abé 1998, 2001a, b; Abé and Bartsch
2007; Bartsch 2003, 2008, 2010). Only few studies
reported on their classification (Abé 2001b; Bartsch
2015). Thereafter, halacarid mites have been used
as partial information in the molecular phylogenetic
analyses of acariform mites (Otto and Wilson 2001;
Pepato et al. 2010; Pepato and Klimov 2015; Dabert
et al. 2016).

In this study, we analyzed nuclear riboso-
mal gene (18S and 28S) sequences of several ha-
lacarid taxa: Copidognathinae (Copidognathus), Ha-
lacarinae (Halacarus, Agauopsis and Thalassarachna),
Limnohalacarinae (Limnohalacarus), Halixodinae
(Bradyagaue and Agaue) and Rhombognathinae
(Rhombognathus, Metarhonbognathus and Rhombog-
nathides) and re-evaluated the typological classifica-
tion of the halacarid taxa by morphological criteria
based on the current molecular findings.

MATERIALS AND METHODS

We collected individual halacarid mites (Table 1).
After sufficient starvation (over six months), each
mite was stored in 70% EtOH at room temperature.
To remove the EtOH of specimen storage, each mite
was put into a microtube and air-dried at room tem-
perature for a few hours. After removal of the EtOH,
15 µl of nuclei lysis solution (Wizard Genomic DNA
Purification Kit, Promega) and 2 µl of 1% proteinase
K solution (pK, Merck) were added into the micro-
tube (Goka et al. 2001), and it was incubated at
50 °C for 120 min to soften the mite body. Previ-
ously, the hinge of a 1.5 ml microtube was cut to
remove the cap. After heat treatment, the mite was
placed inside the cap with all of the solution. Sub-
sequently, in order to take out the inner contents of
the mite’s body, we removed the gnathosoma from

the body using needles and gently squeezed out in-
ner contents from the body exoskeleton in the ly-
sis – pK solution on the cap. The cap loaded with
the mite body exoskeleton (idiosoma with legs), the
gnathosoma, and the inner body contents was care-
fully placed back in the microtube with the solution,
and the microtube, with the cap attached, was spun
down at 12,000 rpm for a few seconds. Fresh 25
µl nuclei lysis solution and 5 µl of 1% pK solution
were added into the microtube that contained the
idiosoma with legs, the gnathosoma, and the inner
contents with the primary solution, and all of the
contents were incubated again at 50 °C for 120 min
and then at 95 °C for 20 min. After incubation, the
exoskeleton and the gnathosoma were picked up for
specimen preparation. Finally, after incubation, the
extract was diluted to 10% of its original concentra-
tion using TE buffer (0.001 M EDTA, 0.01 M Tris-
HCl [pH 8.0]) following the method of Goka et al.
(2001, 2009) and used as the source of the DNA tem-
plate for PCR amplification.

Fragments of the nuclear 18S and 28S ribosomal
RNA gene (rDNA) regions were amplified by the
PCR method using the following primer sets: HAL
18S_2F (5’-GTG TCT GCC TTA TCA ACT TTC GAT
GG-3’) for the forward direction and HAL 18S_2R
(5’-GCC CCC GTC TGT CCC TCT TAA TC-3’) for
the reverse direction for 18S rDNA, and 28S_V (28ee
in Hillis and Dixon 1991) for the forward direction
and 28S_VI (reverse of 28v in Hillis and Dixon 1991)
for the reverse direction for 28S rDNA. PCR amplifi-
cations were conducted in accordance with the pro-
cedure of Goka et al. (2001), with 2 µL of each tem-
plate DNA in a total reaction volume of 50 µL. The
PCR reaction mix contained 0.2 mM of each dNTP, 2
mM MgCl2, 1.25 units of Taq DNA polymerase (Am-
pliTaq Gold), and 0.5 mM of each primer. All PCR
reagents were purchased from Perkin Elmer Ap-
plied Biosystems. Conditions for the amplification
were an initial denaturation for 9 min at 95 °C; 40 cy-
cles of 30 s at 94 °C, 30 s at 44-54 °C, and 2 min at 72
°C; and a final extension for 7 min at 72 °C. After the
removal of the primers with PEG (20% polyethylene
glycol + 2.5M NaCl) precipitation, both strands of
the PCR products were sequenced directly and au-
tomatically using the BigDye Terminator Cycle Se-
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TABLE 1: Halacarid mite samples (Order: Trombidiformes) examined in this study.
Table 1. Halacarid mite samples (Order: Trombidiformes) examined in this study.

Subfamily Subfamily Genus Collecting locality Individual No. 18S 28S

Halacaridae Copidognathinae Copidognathus The Miura Peninsula, Kanagawa Pref., Honshu, Japan KE0812_3 + +
KE0812_6 + +
KE0812_7 + +

Otaru, Hokkaido, Japan OSH0903_4Ac + +
Moorea Is., Society Islands, French Polynesia MO0903_1C + +

Acarothrix ––––– KP276481, KP276405* + +
Halacarinae Halacarus ––––– HM070350* +

Agauopsis Otaru, Hokkaido, Japan OSH0903_36A + +
The Miura Peninsula, Kanagawa Pref., Honshu, Japan ZU0802_4A + +

ZU0802_5A + +
Thalassarachna Otaru, Hokkaido, Japan OSH0903_3Th + +

––––– AY692342* +
Limnohalacarinae Limnohalacarus ––––– KP276482, KP276406* + +
Halixodinae Bradyagaue The Miura Peninsula, Kanagawa Pref., Honshu, Japan KE0812_1Br + +

KE0812_2Br + +
Agaue The Miura Peninsula, Kanagawa Pref., Honshu, Japan KE0807_8Ag + +

KE0809_2T + +
Rhombognathinae Rhombognathus Otaru, Hokkaido, Japan OSH0903_5 + +

OSH0903_37 +
Miyake Is., Tokyo Metropolis, Japan CHO0808_3 +
––––– HM070351* +

Metarhombognathus ––––– KP276483, KP276407* + +
AY692341* +

Outgroups KP276493, KP276417* + +
GQ864273, KM100954* + +
GQ864272, KM100953* + +

Rhombognathides          –––––
Allothrombium (Trombidiformes, Trombidioidea, Trombidiidae) 
Eupodidae sp. (Trombidiformes, Eupodoidea, Eupodiae) 
Rhagidia sp. (Trombidiformes, Eupoidea, Rhagidiidae) 
Eutrombicula (Trombidiformes, Trombidioidea, Trombidiidae) KP325057, KP325019* + +
Tetranychus (Trombidiformes, Tetranychoidea, Tetranychidae) AB926313, AY750695* + +
Panonychus (Trombidiformes, Tetranychoidea, Tetranychidae) AB926242, AY750698* + +
Oligonychus (Trombidiformes, Tetranychoidea, Tetranychidae) AB926281, AY750699* + +
Demodex (Trombidiformes, Cheyletoidea, Demodicidae) HQ718592, HQ718592* + +

*Referred from DNA databases.

quencing Kit ver. 3.1 (ABI) and the 3730 Genetic An-
alyzer (ABI). All of the current sequences were de-
posited to the DNA databases with accession num-
bers LC171603–LC171640.

RESULTS

In the current analysis, we used newly produced se-
quences together with additional data from DNA
databases: Acarothrix for 18S (KP276481) and
28S (KP276405), Halacarus for 18S (HM070350),
Thalassarachna for 18S (AY692342), Rhombognathus
for 18S (HM070351) and Rhombognathides for 18S
(AY692341). All sequences were aligned auto-
matically using the Clustal X program (Higgins
et al. 1996) with outgroups: Allothrombium
(KP276493, Pepato and Klimov 2015), Eupodidae
sp. (GQ864273, Dabert et al. 2010) and Rhagidia
sp. (GQ864272, Dabert et al. 2010) for 18S rDNA
and Allothrombium (KP276417, Pepato and Klimov
2015), Eupodidae sp. (KM100954, Dabert et al. 2016)
and Rhagidia sp. (KM100953, Dabert et al. 2016) for

28S rDNA. The sequences newly obtained were de-
posited in the DNA databases with accession num-
bers indicated in Table 1. Primarily, we estimated
appropriate models for 18S, 28S and combined 18S +
28S sequences using PartitionFinder ver 1.1.1 (Lan-
fear et al. 2012). On the basis of the models cho-
sen (Table 2), we constructed maximum likelihood
trees for each of the three gene regions considering
transitions and transversions at all positions with
1,000 replicate bootstrap analysis, using MEGA ver.
7 (Kumar et al. 2016).

PCR amplifications of the present halacarid mite
samples are presented in Table 1. The amplifications
of the 18S rDNA and 28S rDNA regions and the
aligned sequences of 517-520 and 526-549 base pairs
(bp) lengths, respectively, were compared by a ho-
mology search as BLAST of DDBJ. All the obtained
sequences matched to the suborder Prostigmata by
using BLAST excluding any possible experimental
contamination. Phylogenetic trees for the current
mite samples were subsequently constructed using
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TABLE 2: Calculatiuon models choosen by model estimation.
Table 2. Calculatiuon models choosen by model estimation.

choosen
Model

DNA region lnL AICc

GTR+G+I -2258.46 4635.45Nuclear 18S 
Nuclear 28S 
Nuclear 18S+28S

GTR+G  -3236.47 6565.36 
GTR+G+I -5176.94 10448.09

these two gene sequences.

For the 18S rDNA sequences, the GTR+G+I
model was chosen by lnL = –2258.46 and AICc
4635.45, which revealed the most appropriate ML
tree (lnL = –2181.42, +G = 0.4947, +I= 52.81%) (Fig-
ure 1). The 18S rDNA tree showed that each of
the subfamilies Halixodinae and Halacarinae con-
sisted of an independent cluster. However, Rhom-
bognathinae did not form a monophyletic group.
For example, the genus Rhombognathus in Rhombog-
nathinae consisted of a monophyletic cluster and
was apparently different from the lineage Rhombog-
nathides and Metarhombognathus in Rhombognathi-
nae with the largest ML distance: 0.121. In addition,
the subfamily Halacarinae was divided into three
generic clusters, Thalassarachna, Agauopsis and Ha-
lacarus (Figure 1) and the ML distances were Tha-
lassarachna vs. Agauopsis: 0.037, Thalassarachna vs.
Halacarus: 0.107 and Agauopsis vs. Halacarus: 0.107.
On the other hand, the subfamilies Halixodinae and
Copidognathinae consisted of monophyletic clus-
ters including two or three genera with ML dis-
tances 0.000 – 0.030. In Halixodinae, the clustering
of Agaue and Bradyagaue was supported by the high-
est bootstrap value.

The model chosen for the 28S rDNA sequences
was GTR+G by lnL = –3236.47 and AICc 6565.36,
which provided the most appropriate ML tree (lnL
= –3056.08, +G = 0.2834). The 28S tree revealed
different topology compared to the 18S rDNA tree
(Figure 1). In the 18S rDNA tree, the subfamily
Halacarinae was divided into three clusters, while
the 28S rDNA tree indicated the Halacarinae as
monophyletic. On the other hand, the subfamily
Rhombognathinae was divided into different clus-
ters, as in the 18S rDNA tree, irrespective of the
lower bootstrap values (Figure 1). In addition, only

a Rhombognathus sp. (OSH0903_5) showing similar-
ity to the Copidognathinae cluster showed a large
distance (ranging from vs. KE0812_6: 0.357 to vs.
KM100954: 0.583) from the other taxa in the 28S
rDNA tree, and showed smaller distance (ranging
from vs. OSH0903_37: 0.000 to vs. KM100954:
0.179) in the 18S rDNA tree. The subfamilies Hal-
ixodinae and Copidognathinae also appeared each
as monophyletic clusters. In Halixodinae, the clus-
tering of Agaue and Bradyagaue was supported by
the highest bootstrap value as in the 18S rDNA tree.

For the combined 18S and 28S rDNA se-
quences (18S + 28S), the model estimation chose
the GTR+G+I model by lnL = –5176.94 and AICc
10448.09. The tree (lnL = –4930.22, +G = 0.4525,
+I: 38.32%) by the combined 18S and 28S rDNAs
strongly indicated the separation of the Holixad-
inae–Halacarinae–Rhombognathinae (Metarhombog-
nathus) cluster to the Copidognathinae –Rhombog-
nathinae (Rhombognathus) cluster with high boot-
strap value (87%) (Figure 2). Thus, Rhombognathi-
nae was divided into two different lineages while
the other subfamilies appeared as monophyletic.

DISCUSSION

The phylogenetic trees based on sequences of the
nuclear ribosomal (18S and 28S) genes revealed
some incongruence between tree clustering and the
current classification of the subfamilies Halacarinae
and Rhombognathinae (Figure 1). By contrast, Hal-
ixodinae and Copidognathinae appeared phyloge-
netically robust and in line with the classifications
based on morphological criteria (Abé 1998; Bartsch
1993, 2006, 2008, 2010).

In the 18S tree, the three genera of Halacarinae
were divided into three different clusters. In partic-
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FIGURE 1: Maximum-likelihood phylogenetic trees based on the nuclear 18S and 28S ribosomal RNA sequences obtained for a set of
halacarid mites. Bootstrap values related to the nodes are indicated (1,000 replicates).
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FIGURE 2: Maximum-likelihood phylogenetic trees by combined nuclear 18S + 28S ribosomal RNA sequences of a set of halacarid mites.
Bbootstrap values related to the nodes are indicated (1,000 replicates).

ular, Halacarus was apparently differentiated from
the other halacarine genera, Agauopsis and Thalas-
sarachna (Figure 1). In addition, the affinity be-
tween Agauopsis and Thalassarachna was recognized
in the 28S tree and the 18S + 28S tree (Figures 1 and
2). These results suggest that the taxonomic assign-
ment of Halacarus in the higher classification should
be reevaluated. Halacarus is the type genus of
the subfamily Halacarinae. The diagnostic charac-
ters of the subfamily were sometimes mentioned in
past literature (Newell 1947, Green and Macquitty,
1987, Bartsch, 1983, 1989, 1993): antero dorsal
plate present; other dorsal plates sometimes absent;
epimeral and genitoanal plates present and some-
times fused; idiosoma generally furnished with six
pairs of dorsal setae and four or five pairs of gland
pores; three or four segmented palpi inserted later-
ally on the gnathosoma; first leg often stouter than
the other legs; solenidion on the first tarsus dorso-
lateral and that on the second tarsus dorsomedial
in position; all tarsal ends furnished with two large
lateral claws and one small median claw; carpite ab-
sent. In the diagnosis mentioned above, however,
there is no unique characteristic by which Halacari-
nae is distinguishable from the other subfamilies.
As mentioned in Bartsch (2015), Halacarinae is a

bulky heterogeneous subfamily consisting of vari-
ous rambling genera that do not share synapomor-
phies. The present results clearly showed molecular
evidence for the polyphyletic nature of Halacarinae.
Bartsch (2015) suggested an appropriate solution to
address the incongruence between the current clas-
sification and phylogenetic grouping by including
only the type genus Halacarus in the subfamily Ha-
lacarinae. While the results here presented partly
support Bartsch’s proposition, how to classify the
rest of the current halacarine genera in the taxo-
nomic system of halacarid mites remains unclear.

A second incongruence between current and
molecular based classifications highlighted in this
study refers to the Rhombognathinae genera, as re-
vealed by the 18S, 28S and 18S + 28S trees (Figures 1
and 2). The genera Rhombognathides and Metarhom-
bognathus were clearly differentiated from Rhombog-
nathus and close to Halacarinae and Halixodinae
taxa in the 18S tree. In addition, a large differ-
entiation between Rhombognathus and Metarhombog-
nathus was also observed in the 28S and 18S + 28S
trees. Moreover, Metarhombognathus was closer to
Copidognathinae in the 28S tree and was also closer
to the Halixodinae–Halacarinae cluster in the 18S +
28S tree, with a low bootstrap in both trees. The

638



Acarologia 57(3): 633–641 (2017)

current results indicate that the phylogenetic posi-
tion of Metarhombognathus remains unstable. Ac-
cording to Bartsch (2003), Rhombognathus is distinc-
tive from the other three genera of Rhombognathi-
nae (Isobactrus, Rhombognathides and Metarhombog-
nathus) based on the developmental characteristics.
This finding is line with the current results show-
ing the large differentiations of Rhombognathus in
the subfamily Rhombognathinae.

Based on the here presented phylogenetic trees,
the unstable position of Rhombognathinae was con-
firmed and Rhombognathinae, particularly Rhom-
bognathus, was closer to the copidognathine mites
(Figures 1 and 2). According to Bartsch (1993), Copi-
dognathinae is morphologically discernible from
Rhombognathinae based on the leg characteristics,
the gnathosoma together with the developmental
stages which differ between the two taxa. Carpites
are absent in the legs of Copidognathinae and
present in those of Rhombognathinae. In addition,
the gnathosoma is more globular in Rhombognathi-
nae than in Copidognathinae. Likewise, Copidog-
nathinae has a single nymphal stage (protonymph)
throughout the development from larva to adult,
whereas Rhombognathinae principally has three
nymphal stages (protonymph, deutonymph and
tritonymph). Although the morphological criteria
are important for the current classification of ha-
lacarid mites (Bartsch 1993, 2006, 2008, 2010), it
would be needed to reevaluate how much these
three characters contribute to the phylogenetic re-
lationships and evolutionary processes in halacarid
mites, particularly for the Rhombognathinae. The
conflict between the morphology-based taxonomic
status and the molecular phylogenetic status here
revealed, suggests that the halacarid taxonomy
needs to be entirely reconstructed by using both
molecular and morphological information for a re-
vision of the family Halacaridae.
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