Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2017): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Amblyseius bellatulus Tseng (Acari: Phytoseiidae): neotype designation with first description of a male

Jhih-Rong Liao¹, Chyi-Chen Ho² and Chiun-Cheng Ko¹*

(Received 29 May 2016; accepted 05 August 2016; published online 05 January 2017; edited by Marie-Stéphane Tixier)

¹ Department of Entomology, National Taiwan University, Taipei City, 10617 Taiwan. d04632007@ntu.edu.tw, kocc2501@ntu.edu.tw
*(Corresponding author)
² Taiwan Acari Research Laboratory, Taichung City, 41345 Taiwan. mtho2005@yahoo.com.tw

ABSTRACT — Yi-Hsiung Tseng provided fundamental information of phytoseiid fauna in Taiwan. However, according to an exclusive interview, all specimens included in Tseng’s collections were lost after his retirement; therefore, more than 20 holotypes are now lost. To ensure stability in nomenclature, designation of neotypes is thus necessary. In this study, we re-described a known species, Amblyseius bellatulus Tseng 1983, by collecting phytoseiid mites from the original type locality and the entirety of Taiwan. Because the morphology of the collected specimens is highly similar to that of specimens used for describing the species, we designated a neotype and redescribed female specimens, as well as male specimens, which have not been described before.

KEYWORDS — Phytoseiids; Taiwan; Amblyseius bellatulus; neotype

ZOOBANK — 05A3D8B4-BA50-421D-A2B1-DBAD5E4C7F2D

INTRODUCTION

Phytoseiid mites have received considerable attention because of their biocontrol potential. Some species can feed on phytophagous mites and small pests (McMurtry et al., 2013). So far, more than 2,700 species included in 91 genera and 3 subfamilies have been recorded worldwide (Chant and McMurtry, 2007; Demite et al., 2015). Fifty-three species are recorded from Taiwan (Ehara, 1970; Lo, 1970; Tseng, 1972; 1973; 1975; 1976; Chang and Tseng, 1978; Tseng, 1983; Ho and Lo, 1989; Ho et al., 2003). Yi-Hsiung Tseng provided the most complete survey of phytoseiid mites in this country from the 1970s to the early 1980s; he recorded 47 species including 20 newly described endemic ones. Collections of Tseng, including type specimens, were deposited at the Tainan Branch of the Bureau of Commodity Inspection and Quarantine (BCIQ) (Tseng, 1983). However, the Tainan Branch of BCIQ no longer possesses Tseng’s collections and type specimens. The plant and animal quarantine work was transferred from Bureau of Commodity Inspection and Quarantine to the newly established Bureau of Animal and Plant Health Inspection and Quarantine (BAPHIQ) since 1998 and BCIQ was renamed Bureau of Standards, Metrology and Inspection (BSMI). Y. H. Tseng retired from BSMI in 2008. The profile column of BAPHIQ Quarterly, a journal issued by BAPHIQ, had interviewed Yi-Hsiung Tseng in 2009 due to his great contribution to plant quar-
antine and talked about the mite collection of him. Tseng mentioned that he had discarded the whole mite collection of him after his retirement (BAPHIQ, 2009). The present work aims to retrieve specimens collected by Tseng to reconstitute his collection. It is thus the first step of further taxonomical studies.

Some species of *Amblyseius* are considered as generalist predators, they can feed on wide range preys, and can sometimes feed on pollens (McMurtry et al., 2013). In Taiwan, Ho and Chen (2001) reported that *A. bellatulus* and *A. maai* Tseng (=*A. tamatawensis* Bloomers) fed on melon thrips from cucumbers in the field. Field observation in Taiwan also reveals other that *Amblyseius* species (e.g., *A. eharai* Amitai & Swirski, *A. herbicolus* (Chant)) feed on spider mites and whiteflies. We consider *Amblyseius* species play an important role in controlling phytophagous mites and small insects. Correct identification and type references are thus essential.

Naming a neotype to ascertain its identity and noting the conditions required by the International Code of Zoological Nomenclature (ICZN) for such designation are necessary. Some examples already exist in the Taxonomy history of the family Phytoseiidae. Duso and Fontana (2001) reported for instance well-known controversy regarding the identity of *Phytoseius plumifer* (Canestrini & Fanzago) resulting from the loss of type materials. After the original description, many Acarologists subsequently provided controversial descriptions for this species on the basis of their specimens. Duso and Fontana (2001) investigated the type locality and designated a neotype for this species to solve the problem. By contrast, Thor (1930) described *Lasioseius* (*Lasioseius*) *magnanalis* Thor from Svalbard but did not designate any type materials. Chant (1959) moved the species "*magnanalis*" into family Phytoseiidae but he considered this species dubious because of the vague original description. Kolodochka and Gwiazdowicz (2014) discussed the fate of Thor’s specimens as all specimens were lost after he died. They designated a neotype *Neoseiulus magnanalis* (Thor) to clarify its identity.

To collect the specimens described by Y. H. Tseng, we conducted a survey in entire Taiwan and surrounding islands. Concurrently, we also tried to collect phytoseid mites in type localities and type habitat plants. However, we faced some difficulties because of typing errors in the names of the localities of collection, the old vague phonetic English transcription of the localities, and the use of general descriptive terms for plants (e.g., weeds, grasses). In addition, landscape greatly changed in the past 30 years. Nonetheless, we have found specimens that are nearly consistent with description of *A. bellatulus* by Tseng (1983). Tseng (1983) provided a critical description and illustration of *A. bellatulus*, but there is some lacking information regarding the characters and measurements that are currently used in phytoseiid species descriptions. We thus re-described *Amblyseius bellatulus* adding characteristics that were not described in Tseng (1983) and we designated the specimens collected as neotype. These specimens were compared to the elements provided in Tseng (1983). In addition, a description of the male (unknown until now) is provided.

Materials and methods

The specimens examined in this study were collected from various plants. Specimens were mounted in Hoyer’s medium; also poor condition specimens were soaked with water, bleached by high concentration (50%) H₂O₂ until the cuticle color change back to normal condition, rinsed in ethanol (75%) (Yeh et al., 2008), and remounted in Hoyer’s medium. Specimens examined under an optical microscope (Olympus BX51), and measured using stage-calibrated ocular micrometers and ImageJ 1.47 (Schneider et al., 2012). All measurements provided are in micrometers, neotype measurements are shown in bold type followed by their mean and range (in parentheses). The general terminology used for morphological descriptions in this study follows that of Chant and McMurtry (2007), while for the dorsal and ventral chaetotaxy we followed Rowell et al. (1978) and Chant and Yoshida-Shaul (1991, 1992); for adenotaxy and poroidotaxy terminology we followed Beard (2001).
Acarologia 57(2): 323–335 (2017)

TAXONOMY

Family Phytoseiidae Berlese
Subfamily Amblyseiinae Muma
Tribe Amblyseiini Muma
Subtribe Amblyseiina Muma
Genus Amblyseius Berlese

Amblyseius bellatulus Tseng, 1983 (Figures 1-4)

Amblyseius (Amblyseius) bellatulus Tseng, 1983: 38.

Neotype Designation

Amblyseius bellatulus was described by Y. H. Tseng in 1983 from Mingchien (now Mingjian Township), Nantou Hsien on Morus alba (Tseng, 1983: 38). As mentioned in the introduction the mite collection of Y. H. Tseng does not longer exist (BAPHIQ, 2009), according to Article 75.3.4 of the International Code of Zoological Nomenclature (International Commission on Zoological Nomenclature, 1999), we here designate adult females we collected as neotype of A. bellatulus to clarify its taxonomic status and provide a complete description. Additionally, as male specimens were not known, we provide male description for the first time.

Description: Female (n = 10). Dorsal shield lightly sclerotized, smooth, with lateral reticulation, 382 384 (353 – 449) long, 202 212 (192 – 250) wide at level of s4, 228 228 (212 – 276) wide at level of S4; with seven pairs of solenostomes (gd1, gd2, gd4, gd5, gd6, gd8, gd9), ten pairs of poroids (id1, id1a, id2, id4, is1, id11, id13, idl4, idm5, idm6); length of dorsal setae: j1 23 28 (23 – 32), j3 34 40 (34 – 46), j4 5 7 (5 – 13), j5 4 5 (4 – 7), j6 6 7 (4 – 8), j2 4 7 (4 – 9), j3 5 6 (4 – 9), z2 11 10 (8 – 11), z4 11 11 (8 – 13), z5 6 6 (4 – 8), Z1 8 8 (7 – 10), Z4 52 52 (47 – 57), Z5 119 136 (117 – 158), s4 46 49 (43 – 61), s5 10 11 (9 – 13), S4 5 8 (5 – 11), S5 6 7 (6 – 9), r3 21 19 (17 – 21), R1 13 10 (8 – 13). All setae smooth, except Z4 and Z5 slightly serrate.

Venter (Figure 1B) — Sternal shield smooth, posterior margin almost straight, wider than long, 66 69 (62 – 73) long, 87 94 (84 – 114) wide at st3 level, with three pairs of setae s1 25 27 (24 – 29), s2 24 24 (21 – 26), s3 23 23 (17 – 26) and two pairs of poroids (pst1, pst2). Metasternal platelets tear-shaped, with a pair metasternal setae, s4 22 19 (14 – 22), and one pair of poroids (pst3). Genital shield smooth, s5 23 22 (16 – 26), 77 78 (73 – 96) wide. Distances between setae s1-st1 59 58 (53 – 73), s2-st2 63 63 (59 – 75), s3-st3 78 74 (67 – 80), s1-st3 63 64 (61 – 74), s5-st5 59 64 (58 – 73). Venttrional shield smooth, almost pentagonal, with slightly waist at JV2 level; 121 131 (121 – 151) long, 100 98 (90 – 117) wide at level of ZV2 and 86 90 (84 – 103) wide at level of anus; with three pairs of pre-anal setae, solenostome gV3 crescentic, JV1 13 15 (11 – 18), JV2 10 13 (10 – 18), ZV2 9 11 (9 – 14). Setae JV4 11 10 (7 – 11), JV5 45 51 (45 – 61), ZV1 15 16 (12 – 19), ZV3 9 10 (9 – 11) on interscutal membrane. All ventral setae smooth. Two metapodal plates 18 20 (18 – 23) long, 4 6 (4 – 7) wide, 12 15 (12 – 17) long, 2 2 (1 – 3) wide.

Peritreme (Figure 1A-B) — Peritreme extending beyond to j1, peritrematic shield smooth, lightly sclerotized, with one pair of solenostome (gd3).

Spermaticheca (Figure 1D) — Calyx of spermath-
FIGURE 1: *Amblyseius bellatulus* Female: A – Dorsal shield; B – Ventral idiosoma; C – Chelicera; D – Spermatheca.
eca funnel-shaped and atrium well distinct with neck, embolus not visible, with a thin major duct.

Chelicera (Figure 1C) — Movable digit 31 (30 – 36) long, with three teeth; fixed digit 27 (26 – 34), with 10 teeth, pilus dentilis.

Legs (Figure 2) — Coxal formula 2, 2, 2, 1. Chaetotaxy (femur to basitarsi): leg I, 2-3-1/2-2, 2-2/1-2/1-2, 1-1/1-1; leg II, 2-3/2-2/0-1, 2-2/0-2/0-1, 1-1/1-2/1-1, 1-1/1-1; leg III, 1-2/1-1/0-1, 1-2/1-2/0-1, 1-1/1-1; leg IV, 1-2/1-1/0-1, 1-2/1-2/0-1, 1-1/1-2/0-1, 1-1/1-1. Macrosetae: Sge II (pd2) 27 (26 – 33), Sge III (ad2) 30 (27 – 37), Sge IV (ad2) 50 (40 – 59), Sti IV (ad) 46 (40 – 51), St IV (pd) 73 (66 – 84).

Male (n = 2). Dorsum (Figure 3A) — Idiosomal setal pattern: 10A:9B/JV-3, 4:ZV-1, 3. Dorsal shield lightly sclerotized, smooth, with lateral reticulation, 108 (103 – 114) long, 137 (129 – 144) wide at level of anus, fused with peritrematic shield cingulum; with three pairs of pre-anal setae, solenostome gv3 crescentic, JV1 9 (9 – 9), JV2 10 (10 – 10), ZV2 8 (8 – 8); JV5 20 (17 – 22) on intercusal membrane. All ventral setae smooth.

Peritreme (Figure 3A-B) — Peritreme extending to seta j1 level; peritrematic shield lightly sclerotized, with one pair of solenostome (gd3).

Chelicera (Figure 3C-D) — Movable digit 21 (21 – 22) long, with one tooth; fixed digit 22 (20 – 24), with 8 teeth, pilus dentilis. Spermatodactyl U-shaped, shaft 34 (30 – 37) long, heel rounded, foot 18 (17 – 19) long, with rounded toe and lateral thorn-like projection.

Additional material examined — Hualien County, one female from rice leaf sheath, 2.xi.1977, K. C. Lo (TARL); Wanfeng Village, Wufeng District, Taichung City, one female from Polygonum perfoliatum, 3.ii.1978, C. C. Ho (TARI); Wanfeng Village, Wufeng District, Taichung City, one female from Bothriochloa ischaemum, 15.ii.1978, C. C. Ho (TARI); Wufeng Village, Wufeng District, Taichung City, one female from Ageratum conyzoides, 22.xi.1985, C. C. Ho (TARI); Wanfeng Village, Wufeng District, Taichung City, one female from Polygonum perfoliatum, 3.ii.1978, C. C. Ho (TARI); Wanfeng Village, Wufeng District, Taichung City, one female from Bothriochloa ischaemum, 15.ii.1978, C. C. Ho (TARI); Wanfeng Village, Wufeng District, Taichung City, one female from Ageratum conyzoides, 22.xi.1985, C. C. Ho (TARI); NPIA, two females from Aegopodium podagraria, 17.xii.1985, C. C. Ho (TARI); Wanfeng Village, Wufeng District, Taichung City, one female from Zea mays, 17.xii.2001, C. C. Ho (NTU).
FIGURE 2: *Amblyseius bellatulus* Female: Legs (A – leg I dorso-anterior view; B – leg II dorso-anterior view; C – leg III dorsal view; D – leg IV dorso-anterior view).
FIGURE 3: *Amblyseius bellatulus* Male: A – Dorsal shield; B – Ventral idiosoma; C – Chelicera; D – Ventral view of spermatodactyl.
Figure 4: Amblyseius bellatulus Male: Legs (A – leg I dorso-anterior view; B – leg II dorso-posterior view; C – leg III dorso-posterior view; D – leg IV dorso-posterior view).
Wufeng District, Taichung City, two females from *Alternanthera sessilis*, 17.x.1988, S. M. Yu (NPUST); TARI, Wufeng District, Taichung City, one female from *Eclipta prostrata*, 17.x.1988, S. M. Yu (NMNS); TARI, Wufeng District, Taichung City, nine females from *Polygonum perfoliatum*, 17.x.1988, S. M. Yu (NCHU); TARI, Wufeng District, Taichung City, two females (MZLQ-7644, 7645) from *Arachis hypogaea* females (MZLQ-7644, 7645) from *Arachis hypogaea* (NCHU); TARI, Wufeng District, Taichung City, nine females two males from *Solanum melongena*, 16.vii.1991, C. C. Ho (NTU); TARI, Wufeng District, Taichung City, one female from *Solanum melongena*, 23.vii.1991, C. C. Ho (NTU); TARI, Wufeng District, Taichung City, one female from unknown plant, 6.xi.1993, C. C. Ho (NTU); Lucao Township, Chiayi County, one female from *Lagenaria siceraria* soil, 14.viii.2001, C. C. Ho (NTU); Dayuan District, Taoyuan City, one female from *Allium fistulosum* soil, 25.x.2001, C. C. Ho (NTU).

Remarks — Tseng (1983) described this species by using a single female specimen collected from Mingchien (now Mingjian Township), Nantou Hsien, on *Morus alba*. We collected two female specimens from the type locality on *Ampelopsis brevipedunculata*, but they were in poor condition. Consequently, the neotype specimen was selected from among the entire collection depending on the slide condition. The neotype locality is Wufeng District, Taichung, which is not far from the type locality (Figure 5).

The females of this species are unique among the known *Amblyseius* species from Taiwan because of the following characters: dorsal shield with lateral reticulation, ventrianal shield pentagonal with slightly lateral concaved, calyx of spermatheca funnel-shaped. A comparison of different body measurements among the holotype, neotype, and remaining specimens of *A. bellatulus* is provided in Table 1. Most specimens were similar to the neotype, with little morphological differences. We observed only one specimen with a larger body size and longer idiosomal setae (e.g. dorsal shield 449 long, 250 wide). Tseng (1983) reported the chaetotaxy of genu I-IV: 2-2/1-2/1-2, 1-2/1-2/0-1, 1-2/1-2/0-1, 1-2/1-2/0-1”. We observed the chaetotaxy of leg I-IV and found that the chaetotaxy of genu I-IV differs from the original description: 2-2/1-2/1-2, 2-2/0-2/0-1, 1-2/1-2/0-1, 1-2/1-2/0-1. With regard to adenotaxy and poroidotaxy, Tseng (1983) reported “at least five pairs of pores on the dorsal shield”. On the basis of his illustration, we observed three pairs of solenostomes (gd1, gd2, gd4, gd5, gd6, gd8, gd9), and ten pairs of poroids (id1, id2, id3, id4, id5, id6, id7, id8, id9, id10). In the present study, we observed seven pairs of solenostomes (gd6, gd8, gd9).
FIGURE 5: The distribution map of *Amblyseius bellatulus* from Taiwan.
Table 1: Comparisons on measurements (μm) of *Amblyseius bellatulus* between (1) holotype (in Tseng 1983), (2) presently studied neotype and (3) ten females including neotype

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsal shield length</td>
<td>331</td>
<td>382</td>
<td>384 (353 – 449)</td>
</tr>
<tr>
<td>Dorsal shield width</td>
<td>178</td>
<td>202</td>
<td>212 (192 – 250)</td>
</tr>
<tr>
<td>j1</td>
<td>24</td>
<td>23</td>
<td>28 (23 – 32)</td>
</tr>
<tr>
<td>j3</td>
<td>36</td>
<td>34</td>
<td>40 (34 – 46)</td>
</tr>
<tr>
<td>j4</td>
<td>5</td>
<td>5</td>
<td>7 (5 – 13)</td>
</tr>
<tr>
<td>j5</td>
<td>5</td>
<td>4</td>
<td>5 (4 – 7)</td>
</tr>
<tr>
<td>j6</td>
<td>6</td>
<td>6</td>
<td>7 (4 – 8)</td>
</tr>
<tr>
<td>J2</td>
<td>6</td>
<td>4</td>
<td>7 (4 – 9)</td>
</tr>
<tr>
<td>J5</td>
<td>8</td>
<td>5</td>
<td>6 (4 – 9)</td>
</tr>
<tr>
<td>z2</td>
<td>10</td>
<td>11</td>
<td>10 (8 – 11)</td>
</tr>
<tr>
<td>z4</td>
<td>10</td>
<td>11</td>
<td>11 (8 – 13)</td>
</tr>
<tr>
<td>z5</td>
<td>5</td>
<td>5</td>
<td>6 (4 – 8)</td>
</tr>
<tr>
<td>Z1</td>
<td>6</td>
<td>8</td>
<td>8 (7 – 10)</td>
</tr>
<tr>
<td>Z4</td>
<td>42</td>
<td>52</td>
<td>52 (47 – 57)</td>
</tr>
<tr>
<td>Z5</td>
<td>110</td>
<td>119</td>
<td>136 (117 – 157)</td>
</tr>
<tr>
<td>s4</td>
<td>42</td>
<td>46</td>
<td>49 (43 – 61)</td>
</tr>
<tr>
<td>S2</td>
<td>11</td>
<td>10</td>
<td>11 (9 – 13)</td>
</tr>
<tr>
<td>S4</td>
<td>7</td>
<td>5</td>
<td>8 (5 – 11)</td>
</tr>
<tr>
<td>S5</td>
<td>5</td>
<td>6</td>
<td>7 (6 – 9)</td>
</tr>
<tr>
<td>r3</td>
<td>18</td>
<td>21</td>
<td>19 (17 – 21)</td>
</tr>
<tr>
<td>R1</td>
<td>10</td>
<td>13</td>
<td>10 (8 – 13)</td>
</tr>
<tr>
<td>Ventrianal shield length</td>
<td>106</td>
<td>121</td>
<td>131 (121 – 151)</td>
</tr>
<tr>
<td>Ventrianal shield width</td>
<td>81</td>
<td>100</td>
<td>98 (90 – 117)</td>
</tr>
<tr>
<td>metapodal shield (primary plate)</td>
<td>21</td>
<td>18</td>
<td>20 (18 – 23)</td>
</tr>
<tr>
<td>metapodal shield (accessory plate)</td>
<td>–</td>
<td>12</td>
<td>15 (12 – 17)</td>
</tr>
<tr>
<td>Sge IV</td>
<td>43</td>
<td>50</td>
<td>50 (40 – 59)</td>
</tr>
<tr>
<td>Sti IV</td>
<td>38</td>
<td>45</td>
<td>46 (40 – 51)</td>
</tr>
<tr>
<td>St IV</td>
<td>60</td>
<td>73</td>
<td>73 (66 – 84)</td>
</tr>
</tbody>
</table>

1 Only dorsal setae were compared as Tseng (1983) only measured dorsal setae.

$id1a, id2, id4, is1, idl1, idl3, idl4, idm5, idm6$). The differences between the reported and observed adeno-taxy and poroidotaxy may be due to the quality of microscopes.

By comparing the collection records of this *A. bellatulus*, we observed that this species was mostly collected from central Taiwan; however, one specimen was collected from northern Taiwan and another from eastern Taiwan. Therefore, this species may be more widely distributed than is evident from the collection. We also observed *A. bellatulus* occurred on various plants, although these mites mostly inhabit weeds, they also inhabit some economically valuable plants (e.g., corn plants, egg-
plants, and guava). Ho and Chen (2001) reported that *A. bellatulus* could prey on melon thrips (*Thrips palmi*) in the field. Therefore, we consider *A. bellatulus* need further experiments for confirmation of the biocontrol potential.

ACKNOWLEDGEMENTS

We would like to thank H. T. Shih (TARI, Taiwan) providing equipment and useful advises for illustrations. We thank Y. N. Lee (NTU, Taiwan) for digital illustration, A. K. Dubey (FRI, India), M. J. Yang (NCYU, Taiwan), M. Y. Tsai (TFRI, Taiwan), J. F. Hsieh, M. J. Chiou, Y. Hsiao (NTU, Taiwan), S. F. Lin (NCHU, Taiwan) for their valuable suggestions. We are also thankful to Dr. G. J. de Moraes (ESALQ-USP, Brazil) and Dr. G. A. Evans (USDA, USA) for their encouragement to the first author. Thanks are extended to anonymous reviewers for help in improving the manuscript, to M. Andrews and Y. Sanyang for English editing of the draft. The study is supported by a grant (MOST105-2621-B-002-002-MY3) from the Ministry of Science and Technology, Taiwan.

REFERENCES

doi:10.1071/IT99017

doi:10.1080/01674959108683906

doi:10.1080/01647959208683949

doi:10.11158/saa.18.4.1

doi:10.4039/Entl110859-8

Shorthouse D.P. 2010 — SimpleMappr, an online tool to produce publication-quality point maps [Internet] — [4 May 2016]. Available from http://www.simplemappr.net.

COPYRIGHT

© 2017 Liao J.-R. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.