Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the «Investissements d’avenir» programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Phytophagous and predatory mites on olive trees in Tunisia. Catalogue, description of one new species and key for identification (Acari, Eriophyidae, Tetranychidae, Tenuipalpidae and Phytoseiidae)

Amel CHATTI1, Serge KREITER2, Kaouthar LEBDI-GRISSA3 and Mohieddine KSANTINI1

(Received 01 July 2016; accepted 26 July 2016; published online 19 December 2016; edited by Marie-Stéphane TIXIER)

1 Institut de l’Olivier Bp.1087-3000 Sfax, Tunisie. amel_chattikols@yahoo.fr, ksantini_m@yahoo.fr
2 Montpellier SupAgro, UMR CBGP (CIRAD/INRA/IRD/SupAgro), 755 Avenue du Campus Agropolis, CS 30016, 34988 Montferrier-sur-Lez cedex, France. serge.kreiter@supagro.fr
3 Institut National Agronomique de Tunisie, 43 Avenue Charles Nicolle, 1082 Tunis, Université de 7 Novembre à Carthage, Tunisia. lebdigrissa.kaouthar@inat.agrinet.tn

ABSTRACT — Despite the importance of olive trees in Tunisia, very little is known about mite populations. A survey of phytophagous and predatory mites species in 21 orchards distributed over several sites was conducted from 2007 to 2013. During this study, 14 species of predatory mites along with 5 species of phytophagous mites were collected and identified. Almost all species are newly identified from olive trees, five of them are new to the Tunisian fauna and one species is new to Science. This paper provides a catalogue of these species and elements on their biogeographical distribution and biology. Identification keys are also provided. The Phytoseiidae species described in this study may provide new opportunities for the integrated pest management of Eriophyidae and Tenuipalpidae mites on olive trees.

KEYWORDS — Collection; Phytoseiidae; Eriophyidae; Tenuipalpidae; olive trees

ZOOBANK — 5E47021B-D72B-4527-B771-BB43E9A32D28

INTRODUCTION

The eriophyid mites were first recorded in Tunisia in 1993. Since this date, they became serious pests and they cause serious economic damage in olive tree orchards deteriorating oil quality. Presently, chemical control with broad-spectrum miticides is used for mite control. However, these treatments have serious consequences on health, environment and also trade as residues in olives are not acceptable for international exports. Therefore the objective is to look for more efficient, bi-control agents against the mite pests on olives in Tunisia.

Phytoseiid mites are predators of phytophagous mites and small insects. Some species also feed on nematodes, fungal spores, pollens and exudates from plants, but rarely on plant tissues (McMurtry et al. 2013). Several members of this family are very important in the biological control of spider mites and thrips in greenhouse crop production (Van Lenteren 2012; McMurtry et al. 2013). Twenty species are currently mass reared commercially in the world for augmentative biological control (Wright 2004; Gerson and Weintraub 2007).

The family Phytoseiidae has a worldwide distri-
TABLE 1: Areas code and localities surveyed

<table>
<thead>
<tr>
<th>Area code</th>
<th>Area</th>
<th>localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sfax</td>
<td>Ouled Msallem, Jbenyana, Hegeb, Taous, Ltayfa</td>
</tr>
<tr>
<td>2</td>
<td>Ile de Karkennah</td>
<td>Sidi yousef, Aouled Yaneg, Ramla, Mellita, Aataya</td>
</tr>
<tr>
<td>3</td>
<td>Gafsa</td>
<td>Oazis Gafsa, Guetar, Bou Omran, Bou Saad</td>
</tr>
<tr>
<td>4</td>
<td>Cap Bon</td>
<td>Beni Kalled, Grambalia</td>
</tr>
<tr>
<td>5</td>
<td>Sidi Bouzid</td>
<td>Regueb, Sidi Bouzid</td>
</tr>
</tbody>
</table>

bution, with about 2,452 species belonging to more than 90 genera (Demire et al. 2016).

In Tunisia, research on Phytoseiidae began more than twenty years ago, in 1994 (Kreiter et al. 2002a, 2004, 2006, 2010), especially in citrus orchards, and investigations were extended after 2000 to various crops (Grissa 2003). The aim of this research is to report the diversity of mites associated with olive trees in Tunisia, but also to provide identification keys to facilitate the species identification in the area of production.

MATERIALS AND METHODS

Samples were collected every month from October 2007 to October 2013. They were composed of 50 branches per locality; a hand-held GPS device was used to accurately record the collection sites (Bastide et al. 1989). The prospected localities are listed in Table 1.

Samples were put in polyethylene bags and then in a cooler box. They were transported to the laboratory where leaves were examined under a stereomicroscope (Leica M10). Mites were removed from the leaves with a fine brush, mounted on slides in Hoyèr’s medium and slides dried in an oven at 45°C for one week for subsequent identification, using a phase contrast microscope (Krantz and Walter 2009). Voucher specimens are deposited in the mite reference collection of the entomology laboratory of Institut de l’olivier (Sfax, Tunisia).

RESULTS

The mite species collected on olive trees between 2007 and 2013, belong to four families, Eriophyidae, Tenuipalpidae and Tetranychidae for phytophagous mites, and Phytoseiidae for predatory mites (Table 2).

During this study, two species of Eriophyidae belonging to two genera, two species of Tenuipalpidae belonging to one genus, one species of Tetranychidae and 14 species of Phytoseiidae belonging to seven genera were identified. All species are listed hereunder with respective taxonomical information, as well as with geographical coordinates of the collection localities and dates of collection. Identification keys for each family of mites on Tunisian olive trees are also provided.

CATALOGUE OF PHYTOPHAGOUS MITES ASSOCIATED WITH TUNISIAN OLIVE TREES

Family: Eriophyidae

Mite species of the family Eriophyidae (Acari: Thrombidiiforma) are the most injurious mites of olive trees. Two species, *Oxycenus maxwelli* Keifer 1939 and *Aceria oleae* Nalepa 1900 were collected and identified from Tunisia. They are serious pests, especially in nurseries and olive production crops (Çetin et al. 2010). Several species of eriophyid mites can transmit viruses or phytoplasmas (Palival 1980) but no microorganism transmission has been proved on olive trees. The microscopic size and cryptic behavior of eriophyid mites make monitoring and management very difficult (Navia et al. 2010).
TABLE 2: Phytophagous mites and phytoseiid predators associated with olive trees. New species for the Tunisian mite fauna are indicated with an asterisk (*). 1,2,3,4 and 5 area code

<table>
<thead>
<tr>
<th>Family and species</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eriophyidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxycenus maxwelli</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Aceria oleae</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Tenuipalpidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevipalpus olivicola*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevipalpus oleae*</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetranychidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bryobia sp.*</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoseiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euseius scutalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euseius finlandicus *</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euseius stipulatus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Euseius gallicus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoseius finitimus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iphiseius degenerans</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoseiulus californicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kampimidromus aberrans</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlodromus (Anthoseius) athenas</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Typhlodromus (Anthoseius) mathieui *</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlodromus (Anthoseius) kasachstanicus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlodromus (Typhlodromus) phialatus</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typhlodromus (Typhlodromus) exhilaratus</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Phytoseiulus persimilis</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Oxycenus maxwelli (Keifer 1939)

Oxypleurites maxwelli Keifer, 1939: 152.

Common name — olive leaf and flower mite.

Distribution — Oxycenus maxwelli is recorded from Algeria, Armenia, Australia, Brazil, California, Egypt, Greece, Italy, Portugal and Spain (Vaccante 2016).

Material examined — **Sfax**: Aouled Msallem (34°58’21.97”N, 10°47’20.72”E), April 2008, 56 ♀♀ and 23 ♂♂ and immatures; Hageb (34°42’16.50”N, 10°39’18.97”E), April 2008, 23 ♀♀ and 17 ♂♂; Taous (34°56’02.88”N, 10°36’52.77”E), April 2008, 45 ♀♀ and 12 ♂♂; Ltyafa (34°44’58.23”N, 10°11’39.67”E) April 2008, 26 ♀♀ and 18 ♂♂; Jbenyana (35°03’14.28”N, 10°55’46.63”E), April 2011, 52 ♀♀ 15 ♂♂ and 5 immatures. **Karkennah**: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), June 2009, 16 ♀♀; Aouled Yaneg (34°40’22.19”N, 11°08’15.07”E), June 2009, 18 ♀♀ and 9 ♂♂; Ramla (34°43’17.06”N, 11°12’34.35”E), June 2009, 21 ♀♀ and 14 immatures; Mellita (34°39’24.43”N, 11°1’59.42”E), June 2009, 26 ♀♀ and 13 ♂♂; Ataya (34°44’26.25”N, 11°18’8.47”E), May 2011, 29 ♀♀ and 2 ♂♂. **Gafsa**: Oasis Gafsa (34°24’55.53”N, 8° 44’ 42.69”E), April 2008, 62 ♀♀ and 12 ♂♂; Guetar (34°20’16.39”N, 8°54’55.85”E), April 2008, 31 ♀♀ and 23 ♂♂; Bou Omran (34°21’38.47”N, 9°8’16.61”E), April 2008, 23 ♀♀ and 5 ♂♂; Bou Saad (34°21’57.24”N, 9°9’48.46”E), April 2008, 28 ♀♀. **Cap Bon**: Grambalia (36°36’46.35”N, 10°31’30.59”E), 58 ♀♀ and 24 ♂♂, February 2010, 22 ♀♀; Beni Kalled **235**
Notes — the only known host of *O. maxwelli* is *Olea europaea* L. This species commonly feeds on the upper surfaces of olive leaves but infests the undersurfaces when populations are high (Keifer 1939). It also feeds on developing buds and shoots causing malformations and shortening internodes between young leaves (‘witch’s broom’ effect). The infestation is most severe in young trees under high temperature and humidity. Heavy infestations of *O. maxwelli* can cause the premature fall of olive flowers, spotting and distortion of leaves (Russo 1972).

Common name — olive bud mite.

Distribution — *Aceria oleae* is recorded from Algeria, Egypt, Greece, Libya, Morocco, Spain, Iran, Italy, Portugal, U.S.A and South Africa (Vacante 2016).

Note — This species is a pest of olive trees in the Mediterranean area and is especially injurious to young trees (Elhadi and Birger 1999) and in nurseries. It causes leaf and fruit deformation, and seriously reduces the amount and quality of olives and oils. In Tunisia, the pest is very common in all olive-growing localities and it reaches very high population densities. It is often found associated with *O. maxwelli*.

Key of eriophyid species associated to* Olea europea* L. in Tunisia (after Castagnoli and Pegazzano, 1986)

1. Rostrum usually small, not abruptly bent down near bases; oral stylet short; dorsal setae various present or absent, body vermiform or fusiform, only two pairs of legs, microscopic (100 to 200 µm).………………………………………………………………………**Eriophyidae** Nalepa 2

2. Ridges on female coverflap occurring in one rank; female genitalia in lateral view, lying more on level with venter, genitalia not appressed to coxae and coxae not usually spread apart …………………… 3

3. Body vermiform, abdominal rings similar along full length of abdomen …………………… *Aceria* Keifer … 4

— Body usually more fusiform ……………………………………… 5

4. Prodorsal shield with medians and admedians only visible on posterior half, submedians vague, laterally granulate …………………… *Aceria oleae* (Nalepa)

5. Posterior opithosoma with a dorsal depression; scapular setae directed posteriorly…………………………… *Oxycinus* Keifer … 6
6. Female genitalia with 16 longitudinal ridges...............*Oxycinus maxwelli* (Keifer)

Family: Tenuipalpidae

False spider mites are smaller than Tetranychidae dorsoventrally flat and slow moving. Only two species have been reported on olive trees in Tunisian orchards, belonging to the same genus (*Brevipalpus*) (Pegazzano and Castagnoli 1972). Symptoms appear generally as small white spots on the leaves and in case of heavy infestations can result in desiccation and leaf drop (Pegazzano and Castagnoli 1972).

Genus: Brevipalpus Donnadieu 1875

Brevipalpus Donnadieu, 1875: 116.

Brevipalpus olivicola Pegazzano and Castagnoli, 1972: 139.

Hystripalpus olivicola Castagnoli and Pegazzano, 1979: 284.

Brevipalpus olivicola Hatzinikolis, 1981: 188.

Distribution — *Brevipalpus olivicola* is recorded from Greece, Italy and Portugal (Hatzinikolis 1987).

Material examined — **Gafsa**: Bou Omran (34°21’38.47”N, 9°8’16.61”E), July 2008, 9 ♀♀ and 3 immatures; Bou Saad (34°21’57.24”N, 9°9’48.46”E), July 2008, 4 ♀♀ and 4 immatures and May 2009, 2 ♀♀ and 5 immatures.

Note — this phytophagous mite is not considered as an important pest in Tunisia because of its limited area of distribution in this country. It attacks stems, leaves, inflorescences and fruits of olive trees.

Identification key of species of Brevipalpus genys associated to Olea europea in Tunisia (after Hatzinikolis, 1986)

1. Dorsal opisthosoma with six pairs setae in lateral position (h₁, h₂, f₃, e₃, d₃, c₃).........................2

2. Tarsus II with a single sensory rod3

3. Rostrum extending beyond distal end of femur I.................................4

— Rostrum not extending beyond distal end of femur I..............................5

4. Rostrum reaching middle of genu I. Propodosoma with reticulation medio-laterally. Smooth mediadorsally; body setae broadly lanceolate. Nymphs 1,4,6, dorsolateral setae long; 2,3,5, very short..................*Brevipalpus olivicola*

5. Propodosoma with reticulation but smooth medio-dorsally; body setae lanceolate tapering. Nymphs with 4, 6, dorsolateral setae long; 1,2,3,5 very short..................*Brevipalpus oleae*

Family Tetranychidae Donnadieu 1875

Sub-family Bryobiinae Berlese 1913

Tribe Bryobiini Reck 1952

Genus Bryobia Koch 1836

Hystripalpus oleae Castagnoli and Pegazzano, 1979: 282.

Distribution — *Brevipalpus oleae* is recorded from Greece, Italy, Morocco and Portugal (Castagnoli and Pegazzano 1986).
Bryobia mites puncture the plant tissues with their long, stylet-like chelicerae. They are often found on leaves, but they can also be found on branches and twigs (Ros 2009). Only one species has been reported on olive trees: *Bryobia attica* from Greece (Hatzinikolis and Emmanouel 1990).

Bryobia sp.

Note — *Bryobia* sp. is probably a new species near *Bryobia attica* Hatzinikolis & Emmanouel 1990 in having the same body shape, prodorsal lobes and spatulate dorsal setae but it can be distinguished from the latter by the leg chaetotaxy, empodium I about fourth he length of the true claws and with two pairs of tenent hairs. The peritremes are wider than that of *B. attica*. Tarsi III and IV associated setae serrate and approximate with solenidion forming duplex, the tactile member much longer and proximal.

The species is dark red in life. No damage to olive plant was observed and its economic impact seems negligible.

Material examined — Four females collected on the variety olive oil Chemlali from Sfax: Ltayfa (34°44’58.23”N, 10°11’39.67”E) June 2011.

CATALOGUE OF THE TUNISIAN PHYTOSEIIDAE SPECIES ASSOCIATED WITH OLIVE TREES

Fourteen species belonging to seven genera were identified.

Subfamily Amblyseiinae

Tribe Euseiini Chant & McMurtry

Subtribe Euseiina Chant & McMurtry

Genus *Euseius* Wainstein

Euseius scutalis (Athias-Henriot 1958)

Distribution — Algeria, Canary Islands, Cape Verde, Ghana, Egypt, Greece, India, Iran, Israel, Italy, Jordan, Lebanon, Morocco, Pakistan, South Africa, Spain and Turkey (Demite et al. 2016).

Material examined — **Karkennah**: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), April 2010, 36 ♀♀; Ataya (34°44’26.25”N, 11°18’8.47”E), June 2011, 12 ♀♀ and 2 ♂♂. **Cap Bon**: Grambalia (36°36’46.35”N, 10°31’30.59”E), April 2010, 25 ♀♀ and 1 ♂; Beni Kalled (36°36’44.77”N, 10°31’30.72”E), April 2010, 42 ♀♀ and 2 ♂♂, and June 2011, 31 ♀♀ and 3 ♂♂. **Note**: This species is very common in Maghreb and South of Spain (Kreiter and al. 2004). It is wide spread in the Tunisian orchards. This species can be reared on pollen and was recorded as a predator of *Panonychus citri* (McGregor) in citrus orchards (McMurtry 1977; Kasap and Ekerog 2004); it is also reported as a biological control agent of *Bemisia tabaci* (Nomikou et al. 2003). *Euseius scutalis* was observed in high numbers on olive trees in late spring.

Euseius stipulatus (Athias-Henriot 1960)

Distribution — Algeria, Canary Islands (Spain), France, Greece, Italy, Montenegro, Morocco, Portugal, Tunisia, Turkey, and former Yugoslavia (Demite et al. 2016).

Material examined — **Sfax**: Taous (34°56’02.88”N, 10°36’52.77”E), May 2010, 18 ♀♀ and 2 ♂♂; **Karkennah**: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), April 2011, 14 ♀♀ and 1 ♂; **Cap
Bon: Grambalia (36°36’46.35”N, 10°31’30.59”E), May 2010, 8 ♀♀, and June 2011, 16 ♀♀ and 2 ♂♂; Beni Kalled (36°36’44.77”N, 10°31’30.72”E), April 2010, 10 ♀♀, and June 2011, 15 ♀♀ and 2 ♂♂; Sidi Bouzid: Regueb (34°50’26.08”N, 9°47’49.20”E), August 2009, 12 ♀♀.

Note — *Euseius stipulatus* was classified by McMurtry and Croft (1997) as a specialized pollen feeder. This species feeds also on pest mites such as *P. citri* (Ferragut et al. 1988, 1992), *Tetranychus urticae* Koch (Moyano et al. 2009) and eriophyid mites (Ferragut et al. 1987).

Euseius gallicus Kreiter and Tixier 2010

Distribution — France, Belgium, Germany, the Netherlands and Turkey (Demite et al. 2016).

Material examined — Karkennah: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), March 2011, 4 ♀♀ and 1 ♂; Aouled Yaneg (34°40’22.19”N, 11°08’15.07”E), April 2010, 5 ♀♀ and 2 ♂♂.

Note — As most species of the genus *Euseius*, this species also develops on pollen. It was collected on a wide range of plants, generally on deciduous plants (Tixier et al. 2013).

Iphiseius Berlese

Iphiseius degenerans (Berlese 1887)

Seiulus degenerans Berlese, 1887: 9.

Iphiseius degenerans (Berlese) Berlese, 1921: 95.

Iphiseius degenerans Moraes et al., 2004: 92; Chant and McMurtry, 2007: 123.

Distribution — Algeria, Benin, Brazil, Burundi, Canary Islands, Cape Verde, China (Hong-Kong), Congo, Egypt, Georgia, Greece, Israel, Italy, Kenya, Lebanon, Madeira Islands, Madagascar, Malawi, Morocco, Nigeria, Portugal, Rwanda, South-Africa, Tanzania, Turkey, Yemen, Zaire and Zimbabwe (Demite et al. 2016).

Material examined — Sfax: Cap Bon: Beni Kalled (36°36’44.77”N, 10°31’30.72”E), April 2010, 7 ♀♀ and 2 ♂♂, and June 2011, 3 ♀♀.

Note — this species has a wide distribution in Africa and around the Mediterranean Sea on a great variety of plants (McMurtry 1977; Papaioannou et al. 1994; Swirski and Amitai 1997; Grissa-Lebdi 2003; Sahraoui et al. 2012). It is used for the biological control of the western flower thrips, *Frankliniella occidentalis* (Pergande) (Vantornhout et al. 2005) and spider mites in greenhouses (Vantornhout et al. 2004).

Tribe Kampimodromini Kolodochka

Subtribe Kampimodromina Chant and McMurtry

Kampimodromus aberrans (Oudemans 1930)

Typhlodromus aberrans Oudemans, 1930: 48.
Typhlodromus (Typhlodromus) aberrans Beglyarov, 1957: 373.
Kampimodromus (Kampimodromus) aberrans Karg, 1983: 305.
Kampimodromus aberrans Moraes et al., 2004: 93.

Distribution — Algeria, Armenia, Austria, Azerbaijan, Bulgaria, Byelorussia, Canada, Caucasus Region, Czech Republic, England, France, Georgia, Germany, Greece, Hungary, Iran, Israel, Italy, Moldova, Montenegro, Netherlands, Norway, Poland, Portugal, Russia, Spain, Switzerland, Turkey, Ukraine, and USA (Demite et al. 2016).

Material examined — Sfax: Karkennah: Sidi Yousef (34°39'30.27"N, 10°59'42.70"E), May 2008, 5 ♀♀ and 1 ♂ and April 2010, 3 ♀♀; Cap Bon: Grambalia (36°36'46.35"N, 10°31'30.59"E), April 2010, 8 ♀♀ and 2 ♂♂ on Koroneiki and Arbequina varieties; Beni Kalled (36°36'44.77"N, 10°31'30.72"E), April 2010, 3 ♀♀, and May 2011, 4 ♀♀ on Chetoui variety.

Note — Kampimodromus aberrans is a very common species in Europe and in North-Africa. It was recorded from uncultivated plants and crops as apple and vineyards (Duso 1992; Ragusa and Tsolakis 1996; Schausberger 1997; Kreiter et al. 2000, 2002a; Tixier et al. 2002, 2003).

Neoseiulus californicus (McGregor 1954)

Typhlodromus californicus McGregor, 1954: 89.
Neoseiulus californicus Moraes et al., 1986: 73; Moraes et al., 2004: 109.

Distribution — Algeria, Argentina, Brazil, Chile, Colombia, Cuba, France, Guatemala, Italy, Japan, Mexico, Peru, Spain, Taiwan, Uruguay, USA, and Venezuela (Demite et al. 2016).

Material examined — Cap Bon: Beni Kalled (36°36'44.77"N, 10°31'30.72"E), April 2010, 8 ♀♀ and 2 ♂♂, and August 2011, 10 ♀♀. Sidi Bouzid: Regueb (34°50'26.08"N, 9°47'49.20"E) May 2010, 3 ♀♀.

Note — Neoseiulus californicus is used commercially around the world to control the two spotted spider mite and several other economically important mite species on several crop species (Castagnoli and Simoni 2003).

Tribe Phytoseiulini Chant & McMurtry

Phytoseiulus Evans

Amblyseius (Mesoseiulus) Van der Merwe, 1968: 172.

Phytoseiulus persimilis Athias-Henriot 1957

Typhlodromus persimilis Hirschmann, 1962: 75.

Distribution — Algeria, Australia, Canary Islands, Chile, China, Costa Rica, Finland, France, Greece, Guatemala, Hungary, Israel, Italy, Jordan, Lebanon, Lybia, Morocco, New Caledonia, Peru, Reunion Island, South Africa, South Korea, Spain, Tunisia, Turkey, Venezuela, and USA (Demite et al. 2016).
Material examined — **Sfax**: Karkennah: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), March 2010, 3 ♀♀ and 1 ♂; May 2011, 5 ♀♀; **Sidi Bouzid**, Regueb (34°50’26.08”N, 9°47’49.20”E), May 2009, 4 ♀♀.

Note — This species has been reported on a wide range of plants, essentially on herbaceous plants. It is reared and sold by several bio-factories in the world (Tixier et al. 2013). It is a very efficient natural enemy of *T. urticae* especially in greenhouses (Van Lenteren and Woets 1988).

Subfamily Phytoseiinae

Phytoseiinae Berlese, 1913: 3.

Chantiini Pritchard and Baker, 1962: 211.

Phytoseius finitimus Ribaga 1904

Phytoseius (Dubininellus) *finitimus* Wainstein, 1959: 1365.

Pennaseius finitimus Schuster and Pritchard, 1963: 279.

Phytoseius finitimus Chant, 1959: 108; Moraes et al., 2004: 252; Chant and McMurtry, 2007: 129.

Material examined — **Karkennah**: Sidi Yousef (34°39’30.27”N, 10°59’42.70”E), April 2011, 8 ♀♀; Aouled Yaneg (34°40’22.19”N, 11°08’15.07”E), March 2010, 5 ♀♀; **Sidi Bouzid**: Regueb (34°50’26.08”N, 9°47’49.20”E), May 2009, 4 ♀♀ and 1 ♂.

Distribution — Algeria, Egypt, France, Greece, Iran, Israel, Italy, Montenegro, Portugal, Spain, Turkey, and USA (Demite et al. 2016).

Note — Some confusion between *Phytoseius finitimus* and *P. plumifer* existed in literature (Duso and Fontana 2002). This species is reported in Mediterranean basin and has been observed in vineyards (Minarro and Kreiter 2012). *Phytoseius finitimus* is a natural enemy of *Panonychus ulmi* (Koch) (Duso and Moretto 1994), and eriophyid mites: *Aceria ficus* (Rasmy and El-Banhawy 1974), it can also feed on pollen (Rasmy and El-Banhawy 1975).

Subfamily Typhlodrominae

Tribe Typhlodromini Wainstein

Typhlodromus Scheuten, Evans, 1953: 449.

Typhlodromus Scheuten

Kampimodromus Nesbitt, 1951: 52.

Typhlodromus rhenanus group Chant, 1959: 62.

Typhlodromus barkeri group Chant, 1959: 60.

Anthoseius De Leon, 1959: 258.

Orientiseius Muma and Denmark, 1968: 238.

Typhlodromus (Anthoseius) athenas Swirski and Ragusa 1976

Amblydromella athenas Moraes et al., 1986: 154.
Amblydromella (Aphanoseia) athenas Denmark and Welbourn, 2002: 308.
Typhlodromus (Anthoseius) athenas Moraes et al., 2004: 310; Chant and McMurtry, 2007: 152.

Distribution — Greece, Israel, Italy, Morocco, Portugal, Spain (Demite et al. 2016).

Material examined — Sfax: Aouled Msallem (34°58′21.97″N, 10°47′20.72″E), April 2008, 4 ♀ and 1 ♂ and May 2010, 8 ♀♀ and 2 ♂♂; Hageb (34°42′16.50″N, 10°39′18.97″E), April 2008, 4 ♀♀; Taous (34°56′02.88″N, 10°55′46.63″E), May 2008, 6 ♀♀, and May 2010 adults; Ltayfa 34°44′58.23″N, 10°11′39.67″E), April 2008, 11 ♀♀ and 1 ♂; Jbenyana (35°03′14.28″N, 10°55′46.63″E), May 2009, 5 ♀♀ and 2 ♂♂; Karkennah: Sidi Yousef (34°39′30.27″N, 10°54′20.70″E), March 2011, 7 ♀♀; Aouled Yaneg (34°40′22.19″N, 11°08′15.07″E), April 2011, 17 ♀♀♀ and 1 ♂; Ramla (34°43′17.06″N, 11°12′34.35″E), June 2011, 8 ♀♀♀; Mellita (34°39′24.43″N, 11°1′59.42″E), June 2011, 3 ♀♀; Ataya (34°44′26.25″N, 11°18′8.47″E), June 2011, 4 ♀♀. Gafsa: Oasis Gafsa (34°24′55.53″N, 8°44′42.69″E), March 2004, 6 ♀♀♀ and 2 ♂♂; Octobre: April 2004, 3 ♀♀♀ and 1 ♂; Guetar (34°20′16.39″N, 8°54′55.85″E), April 2008, 9 ♀♀♀ and 1 ♂; Bou Omran (34°21′38.47″N, 9°8′16.61″E), April 2008, 8 ♀♀♀ and 2 ♂♂; Bou Saad (34°21′57.24″N, 9°9′48.46″E), April 2008, 5 ♀♀♀. Cap Bon: Grambalia (36°36′46.35″N, 10°31′30.59″E), April 2009, March 2010 and October 2011, 4 ♀♀♀ on Arbequina and Koroneiki varieties in a very high density olive orchard. The four females were collected from foliage of olive tree infested with eriophyid mites.

Diagnose — This species has five solenostomes, all dorsal setae smooth except Z5, peritreme extending between j1 and j3, two setae inserted on the sternal shield, one on a metasternal shield and one on the membrane, four setae on the ventrial shield with no preanal solenostome, 3 macrosetae slightly knobbed, a spermatheca pocular, 3 teeth on the fixed digit and 2 teeth on the movable digit of the chelicara. This is a unique combination of characters which clearly distinguish this species from all other species within the genus Typhlodromus subgenus Anthoseius. This new species is more close to T. (A.) aestivalis Athias-Henriot, 1960 but this latter species has setae with different length, setae St4 on a small metasternal shield (not for the new species), three knobbed macrosetae but with StIII and SGelIV more than 40 µm and the shape of the spermathecal is very different. It resembles also to T. (A.) clairathiaseae Wainstein & Arutunjan, 1967 but setae have different length, setae St4 on a small metasternal shield (not for the new species), this species has only knobbed macrosetae on the basitarsus IV and the shape of the spermatheca is very different. The new species is also closed to T. (A.) mEspalomensis Ferragut & Peña-Estévez, 2003 but setae lengths are very different, setae St4 on a small

Typhlodromus (Anthoseius) kazachstanicus Wainstein 1958

Distribution — Armenia, Georgia, Iran, Kazakhstan, Kyrgyzstan, Russia, Tajikistan, and Uzbekistan (Demite et al. 2016).

Material examined — Gafsa: Oasis Gafsa (34°24′55.53″N, 8°44′42.69″E), April 2008, 5 ♀♀♀; Guetar (34°20′16.39″N, 8°54′55.85″E), April 2008, 4 ♀♀♀ and 1 ♂ on Chemchali variety.

Note — The biology of this species remains unknown. It seems common on various trees (Demite et al. 2016).

Typhlodromus (Anthoseius) mathieui Kreiter and Chatti n. sp.

Zoobank: 445F995C-A657-4114-9E7B-AF7755087D69

Material examined — Sfax: Cap Bon: Grambalia (36°36′46.35″N, 10°31′30.59″E), April 2009, March 2010 and October 2011, 4 ♀♀♀ on Arbequina and Koroneiki varieties in a very high density olive orchard. The four females were collected from foliage of olive tree infested with eriophyid mites.

Diagnose — This species has five solenostomes, all dorsal setae smooth except Z5, peritreme extending between j1 and j3, two setae inserted on the sternal shield, one on a metasternal shield and one on the membrane, four setae on the ventrial shield with no preanal solenostome, 3 macrosetae slightly knobbed, a spermatheca pocular, 3 teeth on the fixed digit and 2 teeth on the movable digit of the chelicara. This is a unique combination of characters which clearly distinguish this species from all other species within the genus Typhlodromus subgenus Anthoseius. This new species is more close to T. (A.) aestivalis Athias-Henriot, 1960 but this latter species has setae with different length, setae St4 on a small metasternal shield (not for the new species), three knobbed macrosetae but with StIII and SGelIV more than 40 µm and the shape of the spermathecal is very different. It resembles also to T. (A.) clairathiaseae Wainstein & Arutunjan, 1967 but setae have different length, setae St4 on a small metasternal shield (not for the new species), this species has only knobbed macrosetae on the basitarsus IV and the shape of the spermatheca is very different. The new species is also closed to T. (A.) mEspalomensis Ferragut & Peña-Estévez, 2003 but setae lengths are very different, setae St4 on a small
FIGURE 1: Dorsal shield and peritreme of the female of *Typhlodromus (Anthoseius) mathieui* n. sp.
FIGURE 2: Ventral shields of the female of Typhlodromus (Anthocieus) mathieui n. sp.
Figure 3: Calyx of the spermatheca (a), Chelicera (b) and Macrosetae on leg IV (c) of the female of *Typhlodromus (Anthoseius) mathieui* n. sp.
metasternal shield (not for the new species), ventri-
trianal shield and spermatheca with different shape
and only two pairs of macrosetae knobbed on the
three pairs present in this species. Finally, it resembles
also to T. (A.) macrum Ke & Xin, 1983 and to T.
(A.) rapidus Wainstein & Arutunjan, 1968 but these
two species have pores on the ventrianal shield,
only one macroseta on leg IV and a spermatheca
with a totally different shape.

Description of the adult female (n= 4) (Figs. 1-
3)

Dorsum (Fig. 1) — Dorsal shield 377 (352 – 402)
long and 179 (178 – 180) wide, slightly reticulated
anteriorly, with five solenostomes (gd2, gd4, gd6,
gd8 and gd9), 11 pairs of poroids, 18 pairs of dorsal
setae and two pairs of sub-lateral setae: j1 27 (26 –
28), j3 29 (28 – 30), j4 15, j5 16 (15 – 17), j6 18
(16 – 20), j7 24 (23 – 25), j5 9 (8 – 10), z2 19
(18 – 21), z3 24 (23 – 25), z4 23 (22 – 24), z5 16
(15 – 18), Z4 45 (43 – 47), Z5 60 (50 – 70), s4 27
(26 – 28), s6 29 (28 – 30), S2 35 (33 – 37), S4 34
(33 – 37), SS 22 (20 – 25), r3 26 (25 – 28), R1 25.
All setae smooth except Z5 which is slightly serrated.

Peritreme (Fig. 1) — Extending between j1 and
j3.

Venter (Fig. 2) — All shields slightly reticulated.
Sternal shield with two pairs of setae and
two pairs of pores; one pair of sternal setae on a
membrane; posterior margin convex. Distances between
st1-st3 70, st2-st2 60, st5-st5 53 (52 – 54). Two
pairs of metapodal shields 28 long and 8 wide for
the larger and 17 long and 3 wide for the slender
shield. Ventri-anal shield with four pairs of pre-
anal setae (jV1, jV2, jV3 and jV2), and no pre-anal
solenostome but small pores very close in the center.
Membrane surrounding ventri-anal shield with
four pairs of setae (ZV1, ZV3, jV4 and jV5), and five
pairs of round to oblong poroids; ventri-anal shield
116 (113 – 120) long, 103 wide at level of anterior
corners (ZV2), and 90 wide at level of anus. jV5 52
(50 – 53) long.

Chelicera (Fig. 3 a) — Fixed digit 33 long with 3
teeth; and movable digit 30 long with 2 teeth. Pilus
dentilis visible on all chelicerae of the four females.

Spermatheca (Fig. 3 b) — Spermatheca pocular
(Denmark et al. 1999), with an elongate cervix 22
long and 15 wide, a small neck at the basis of the
cervix and an atrium at the end of this small neck.
Visible ducti minor and major.

Legs (Fig. 3 c) — Legs IV with three macrosetae
slightly knobbed on the basitarsus, tibia and genu.
SGeIV 27 (26 – 28), STiIV 27 (26 – 28), STIV 39
(58 – 60). Genu II and III with 7 setae each. Chaetotactic
formula of genu II: 0-2/1, 2/0-2; genu III: 1-1/0, 2/1-2.
Length of leg I: 320 (315 – 325), II: 267 (263 – 270),

Type material — the holotype female and two
paratype females deposited in Montpellier Sup-
paAgro – INRA Acarology collection, Montpellier,
France; one paratype female deposited in the mite
reference collection of the entomology laboratory of
Institut de l’Olivier (Sfax, Tunisia).

Etymology — The name “mathieui” refers to the
son of Serge Kreiter, Mathieu Kreiter.

Remarks — The combination of characters of
this new species clearly distinguishes it from the
other species in the genus Typhlodromus, subgenus
Anthoseius. However, it relates very well with a
species that Athias-Henriot (1960a) described based
on a single male from Algeria collected from Ra-
nunculus sp. As males lack in our samples, we ob-
viously could not confirm if the species presently
described resembles the latter and we therefore de-
cided to describe it as a new species. A search for
males on olive trees will continue in the hope to
find males and more females to ensure the iden-
tity of the presently described species and perhaps
consequently the status of the species described by
Athias-Henriot based on only one male.

Typhlodromus (Typhlodromus) exhilaratus

Ragusa

Typhlodromus exhilaratus exhilaratus Chant and

Typhlodromus exhilaratus americanus Chant and

Typhlodromus (Typhlodromus) exhilaratus Mores et al.,
Distribution — France, Greece, Israel, Italy, Morocco, Tunisia, USA (Demite et al. 2016).

Material examined — Sfax: Hageb (34°42'16.50"N, 10°39'18.97"E), 30.04.2008, 16 ♀♀ and 1 ♂; Jbenyana (35°03'14.28"N, 10°55'46.63"E), April 2011, 13 ♀♀, 1 ♂ and immatures; Gafsa: Oasis Gafsa (34°24'55.53"N, 8°44'42.69"E), March 2008, 8 ♀♀; Guetar (34°20'16.39"N, 8°54'55.85"E), April 2008, 6 ♀♀ on Chemchali; Cap Bon: Beni Kalled (36°36'44.77"N, 10°31’30.72"E), April 2009, 17 ♀♀ and 2 ♂♂, and March 2010, 8 ♀♀ and 2 ♂♂; Sidi Bouzid: Regueb (34°50'26.08"N, 9°47'49.20"E) March 2008, 13 ♀♀ and 1 ♂♂, and April 2010, 15 ♀♀ on Chemlali variety.

Note — This species was mainly reported from Mediterranean countries, essentially on shrubs. Typhlodromus (T.) exhilaratus was considered as a synonym of T. tiliae Oudemans by Denmark (1992). This species has shown its ability to feed Panonychus citri.

Typhlodromus (Typhlodromus) phialatus

Athias-Henriot

Distribution — Algeria, Canary Islands, England, France, Hungary, Israel, Italy, Montenegro, Morocco, Norway, Portugal, Spain, Greece (Demite et al. 2016). Material examined — Cap Bon: Grambala (36°36'46.35"N, 10°31’30.59"E), April 2009, 11 ♀♀ and 1 ♂♂, and April 2010, 5 ♀♀; Beni Kalled (36°36'44.77"N, 10°31’30.72"E), March 2010, 8 ♀♀.

Note — This species was mainly observed on shrubs and trees. It is known to feed *Panonychus citri* and to consume pollen (Ferragut et al. 1992). It is considered an efficient predator of *Panonychus citri* (Ferragut et al. 1992).

Key to the species of Phytoseiid mites on olive trees (Olea europea L.) in Tunisia

Forty species belonging to 17 genera are known from Tunisia. Among them, 14 species were identified on olive trees. In order to facilitate the identification of the Phytoseiidae species reported from Tunisia on olive trees, a dichotomous key comprising these 14 species of Phytoseiidae is provided below.

1. Podonotal region of the dorsal shield (anterior to setae R1) of the female with 5 or 6 pairs of “lateral” setae j3, z2, z4 and s4 always present and z3 and/or s6 present ..2

 1’. Podonotal region of the dorsal shield (anterior to setae R1) of the female with 4 pairs of “lateral” setae j3, z2, z4 and s4 present, z3 and s6 absent ...Amblyseiinae: 3

2. (1) Posterior “lateral” setae Z1, S2, S4 and S5 absent. Setae r3 usually inserted on the dorsal shield.............Phytoseiinae: Phytoseius finitimus 2’. (1) At least one of setae Z1, S2, S4 and S5 present. Setae r3 usually inserted on the intercortical soft cuticle (rarely on the shield)Typhlodominae: 12

3. (1’) Sternal shield with median posterior projection, some forward “migration” of preanal setae ZV2 and/or JV24

 3’. (1’) Sternal shield without posterior projection, without forward “migration” of preanal setae ZV2 and/or JV28

4. (3) Heavily sclerotized and with separate anal and sub-rectangular ventral shield. Iphiseius degenerans 4’. (3) Lighly sclerotised and ventrial shield entireEuseius: 5

5. Peritreme short, extending to z4. Spermatheca with short calyx, globular atrium........................Euseius finlandicus 5’. Peritreme long, extending at least to setae z2. Spermatheca with long calyx.....................6

6. (5’) Cervix of spermatheca thin, long and sinuous (43 µm). Macrosetae of the basitarsus of the leg IV long (77 µm) Peritreme short, extending to level of z4 or between z2 and z4Euseius scutalis 6’. (5’) Cervix of the spermatheca tubular and not sinuous (20-25 µm). Macrosetae of the basitarsus of the leg IV shorter (50-60 µm). Peritreme long,
7. (6') Cervix of the spermatheca not vase-shape (side walls of the calyx parallel), atrium globular. Dorsum slightly reticulated. **Euseius stipulatus**

7'. (6') Cervix of spermatheca vase-shaped (side walls of the calyx not parallel). Dorsum more strongly reticulated. **Euseius gallicus**

8. (3') Setae S4 absent 9
8'. (3') Setae S4 present 10

9. (8) Setae J2, S2 absent, female ventrianal shield reduced, setae j6 very long; 2-3 times longer than distance between their bases, female ventrianal shield with 1 pair of preanal setae. The living mites are orange or red in colour. **Phytoseiulus persimilis**

9'. (8) Setae J2, S2 present, female ventrianal shield elongated with three preanal setae, short distance between the bases of setae Z1 reaching S2. Setae j6 not long. **Kampidromus aberrans**

10. (8') Ratio setae s4: Z1 < 3.0:1.0; s4, Z4, and Z5 not greatly longer than other setae. Female ventrianal shield not reduced and/or markedly wider at anus level, without a marked waist. J2 always present. Movable and fixed cheliceral digits with a larger number of teeth not confined to apical region. Macrosetae are absent on Genu II and III. **Neoseiulus californicus**

11. Ventrianal shield with large prominent crescentic preanal pores close to the central part. Setae Z4 longer than S4, J2 longer than S5. **Neoseiulus californicus**

12. (2') Setae S5 present. **Typhlodromus (Anthoseius)** 13
12'. (2') Setae S5 absent. **Typhlodromus (Typhlodromus)** 14

13. (12) Spermatheca with a globulous atrium, sometimes with a thick neck between it and cervix. Ventrianal shield elongate and not pentagonal. **Typhlodromus (Anthoseius) kazachstanicus**

13'. (12) Basitarsus IV with a macroseta having bulbous tip. Spermatheca without a neck between atrium and cervix and a long cylindrical major duct. **Typhlodromus (Anthoseius) athenas**

13”. Leg IV with 3 bulbous macroseta on basitarsus, tibia and genu. Spermatheca peculiar with a small neck at the basis of the cervix and an atrium at the end of this small neck. **Typhlodromus (Anthoseius) mathieui**

14. (12) Basitarsus IV with a macroseta having bulbous tip. Calix of the spermatheca squared basally, with a short neck. **Typhlodromus (Typhlodromus) exhilaratus**

14. (12') Basitarsus IV with a macroseta having bulbous tip. Calix of the spermatheca rounded basally, without neck. **Typhlodromus (Typhlodromus) phialatus**

DISCUSSION

In Tunisia, several pest mites have been detected on olive trees. The most common species collected throughout the olive producing regions are *Oxycenus maxwelli* and *Aceria oleae*. These species are economically important pests and appear very frequently and in high densities. However, heavy infestations can cause the premature fall of olive flowers, spotting and distortion of leaves and buds can lead to serious disorders in growth and even block the development of plants, and seriously reduce the amount and quality of olives and oils (increasing acidity and deterioration of physicochemical quality of the oil). These observations confirmed those of Çetin et al. (2010).

Brevipalpus olivicola, *Brevipalpus oleae* and *Bryobia* sp. are found in very small populations and seems not very important pests in Tunisia.

According to Kreiter et al. (2010), only five species were known for the phytoseiid fauna of olive trees in Tunisia. Results of surveys carried out in Tunisian olive groves during six years (2007 to 2013) resulted in nine additional ones. The 14 reported species from olive trees in Tunisia belong
to the subfamily Amblyseiinae (8 species), Tylodrominae (5 species) and Phytoseiinae (1 species).

Concerning predatory mites of the family Phytoseiidae, they are the main natural enemies associated with eriophyd and tenuipalpid mites in olive trees. However, this survey showed that Typhlodromus (Anthoseius) athenas was the dominant species among the fourteen species collected in olive trees. The following step will be to evaluate these predators, especially the dominant species, as potential bio-control agents against the eriophyd mites, with the aim to reduce the use of pesticides.

CONCLUSION

The cultivation of olives in Tunisia is an expanding economic activity; however, there is scarce information on mites, especially on phytophagous and phytoseiid mites present in orchards.

In this study, 19 species belonging to four families were collected. Almost all species are new to olive trees and five new species for Tunisian acarofauna. The new identified species for the fauna of Tunisia are: Tenuipalpidae: Brevipalpus olivicola, Brevipalpus oleae; Tetranychidae: Bryobia sp.; Phytoseiidae: Subfamily Amblyseiinae: Euseius finlandicus; Subfamily Typhlodrominae Typhlodromus (Anthoseius) mathieui new species to science.

ACKNOWLEDGEMENTS

We are grateful to Mohamed Ghorbel for his help and support in field samplings and to Martial Douin for his support in the laboratory practices in the CBGP (Center of Biology for Populations Management). We thank also Marie-Stéphane Tixier for valuable suggestions on an earlier version of this manuscript.

REFERENCES

Berlese A. 1913 — Systema Acarorum genera in familiis suis disposita — Acaroteca Italica 1/2: 3-19.

Castagnoli M., Pegazzano F. 1979 — Rassegna degli acari Tenuipalpidi dell’Olivo con descrizione di Hystripalpus rotai sp. nov. — Redia 62: 281-297.

Çetin H., Arslan D., Ozcan A. 2010 — Influence of Eriophyid mites (Acidus olearius Castagnoli and Aceria oleae...
(Nalepa) (Acarina: Eriophyidae) on some physical and chemical characteristics of Ayyalk variety olive fruit — Journal of the Science of Food and Agriculture. 91: 498-504.

De Leon D. 1959 — Seven new Typhlodromus from Mexico with collection notes on three other species (Acarina: Phytoseiidae) — Fla Entomol. 52: 113-121.

Phytoseiidae) and implications for biological control strategies — Syst. Appl. Acarol. 18: 297-320. doi:10.11158/saa.18.4.1

Mi-arro M. & Kreiter S. 2012 — Fitoseidos en los viñedos de la denominacion Vino de Calidad de Cangas (Asturias) — Boletin de Sanidad Vegetal, Plagas, 38:73-82.

Pegazzano F., Castagnoli M. 1972 — Brevipalpus olivicola sp. n. (Acarina, Tenuipalpidae). Description and notes on its biology — Redia 53: 139-149.

of Tunisian Citrus orchards — Acarologia 52: 433-452. doi:10.1051/acarologia/20122072

