Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
A CONTRIBUTION TO THE ECTOPARASITE FAUNA OF BATS IN THAILAND
I. FUR MITES OF THE FAMILY MYOBIIIDAE (ACARINA; TROMBIDIFORMES)

BY

KIMITO UCHIKAWA * and TSUNEAKI KOBAYASHI **

ABSTRACT

Binuncus (Binuncus) jamesoni (Hiregaudd et Bal, 1956), Binuncus (Probinuncus) cynopterus Fain, 1975, Metabinuncus birmanicus Fain, 1976, Neomyobia plurihospitalis Uchikawa, 1978, Hipposiderobia okinawaensis Uchikawa, 1976, Hipposiderobia sp. 1 (male) and sp. 2 (tritonymph), Ugdandobia (Ugandobia) dissimilis spec. nov., Pteracarus pusillus thailandensis spec. nov., Pteracarus sp. (female), and Acanthophthirius (Myotyobia) scotophilus spec. nov. were recorded as parasites of bats in Thailand. The males of B. (B.) jamesoni and M. birmanicus were described, and the male plesiotypes of these 2 species were designated. Morphological accounts of nymphal stages of B. (P.) cynopterus, M. birmanicus, N. plurihospitalis and Hipposiderobia sp. were presented.

ZUSAMMENFASSUNG

A survey 1 of mammalian fauna in Thailand was carried out during the period from August 21 to October 31 in 1974, under a cooperation with Applied Scientific Research Corporation of Thailand. Thirty-nine bats comprising about 20 species were collected by the junior author or were furnished with to him by Mr. SONGSAKDI in the survey. These specimens that had been preserved in alcohol without pertition by species yielded various acarine and insect parasites. The following

* Department of Parasitology, Faculty of Medicine, Shinshu University, Matsumoto 390, Japan.
** Biological Laboratory, Yoshida College, Kyoto University, Kyoto 606, Japan.
1. Planned by the Biological Laboratory of Yoshida College, Kyoto University, and supported financially by The Center for Southeast Asian Studies of Kyoto University.

are records of myobiid mites. Misleading host records due to postmorten transfers of mites on strange hosts within specimen containers for bats might be included.

FIG. 1. — *Binuncus (Binuncus) jamesoni* (Hiregaudar et Bal), female. A) dorsum; B) venter.

Binuncus (Binuncus) jamesoni (Hiregaudar et Bal, 1956)
(Figs. 1-2)

FEMALE (Fig. 1). Measurements are based on 2 specimens. Body (= idiosoma + gnathosoma) 620-680 μ long by 280-308 μ wide. Setae vi fine, 23-25 μ long; ve, sc i and sc e strong, striated and tapering, 133-138 μ, 90-93 μ and 158-168 μ long, respectively; d₁ preceding level of l₁; d₄ short and simple; d₁, d₂, d₃, d₅, l₁ and l₄ striated and tapering, 78-100 μ, 70-75 μ, 70-73 μ, 78-90 μ, 155-165 μ and 73-78 μ long, respectively; d₄ 27-30 μ and l₄ 35-42 μ. Setae ae situated apart; genital setae g₄-⁶ present, g₅ on posterior margin. Ventral setae i₄ and ex IV prominent, slightly swollen and striated; 2 and 3 pairs of coxal setae on coxal areas I and II, respectively. Gnathosoma 38-45 μ × 25 μ ventrally. Some leg setae fine and long as illustrated in Fig. 1A and B.

MALE (Fig. 2). Only a single specimen is available. Body 470 μ long by 220 μ wide. Setae vi and sc i minute, 13-15 μ long; ve strong, striated and tapering, 110 μ long; sc e 105 μ; d₁ and d₂ subequal in length, 58-65 μ long; d₄ and d₅ 88 μ and 48 μ long; l₁ 120 μ long. Penis straight and short, 105 μ long. Genital opening almost at level of d₁; 3 pairs of minute setae apart from penis slide; several pairs of minute setae on penis slide. Ventral setae and leg setae as in female. Gnathosoma 33 μ × 22 μ ventrally.
Material examined. 1 ♀ ex Rousettus leschneaulti, data uncertain; 1 ♂ 1 ♀ ex Eonycteris spelaea, data uncertain.

Hireguard and Bal (1956) described this species based on the female specimens, but the descriptions of the genital area, ventral setation and leg setae were not sufficient. As the male specimen was obtained for the first time, the present specimen is designated as the plesiotype, and is deposited in the collection of the National Science Museum, Tokyo (NSMT-Ac 9041). This species and *Binuncus (B.) rouseti* Fain closely resemble each other.

Binuncus (Probinuncus) cynopterus Fain, 1975
(Fig. 3)

Material examined. 3 ♀♀ and 2 deutonymphs ex *Megaerops ecaudatus*, Surin, Thailand, date uncertain.

Females measured 580-590 μ long by 205-210 μ wide, and were slightly smaller than the holotype female of this species that was taken from *Cynopterus brachyoitis* from Mindanao Catalbato, Philippine (Fain, 1975). The structures and setation on any part of the mite accord, however, completely with the description by Fain (1975).

Fain (1975) characterised the subgenus *Probinuncus* as being furnished with terminal claws and a massive tibio-tarsus complex on the leg I, and mentioned that this subgenus was closer to...
the genus *Binuncus*, though it constituted a link between the genera *Neomyobia* Radford and *Binuncus* Radford. Nothing is so far known about the morphology of immature stages of *Probinuncus*. The nymphs obtained in the present study have legs I formed asymmetrically as shown in Fig. 3. This is not characteristic of the genus *Neomyobia*.

![Fig. 3. — *Binuncus (Probinuncus) cynopterus*, Fain, deutonymph. A) dorsum; B) ventral view of legs I.](image)

Metabinuncus birmanicus Fain, 1976
(Figs. 4, 5)

Male (Fig. 4). Means followed by ranges in parentheses are based on 9 specimens. Body 402.5 (360-420) μ long by 216.3 (195-232) μ wide. Setae vi 13.0 (10-15) μ long; ve 106.8 (90-133) μ; sc i 48.1 (40-58) μ; sc e 156.8 (140-165) μ; d 4 24.0 (18-26) μ; d 6 66.5 (53-80) μ; d 4 15.9 (13-18) μ; l 1 173.0 (150-190) μ. Penis bent, 142.0 (133-150) μ long; genital opening situated anterior to setae sc i; about 7 pairs of minute genital setae present. Only a pair of ventral setae, i 3, prominent 105.8 (95-115) μ long.

Fain (1976) described this species based on the female specimens, and pointed out that the mite resembled *Metabinuncus novaeguineae* (Fain, 1972). The male of *Metabinuncus birmanicus* Fain also very closely resembles that of *M. novaeguineae*. The situation of the genital opening, the number of genital setae (ca. 7 pairs vs. 5 pairs) and the form of the penis (bent or straight) are differential characteristics of the two males.
Fig. 4. — *Metabinuncus birmanicus* Fain, deutonymph. A) dorsum; B) venter.

Fig. 5. — *Metabinuncus birmanicus* Fain. A) deutonymph; B) protonymph.
FAIN (1976) elevated *Metabinincus* that had been included in the genus *Binuncus* as a subgenus to a full genus. As the legs I of *M. birmanicus* are formed symmetrically in the deuto- and protonymphs (Fig. 5), this generic separation is thought to be reasonable.

A male specimen is designated as the plesiotype, and is deposited in the collection of the National Science Museum, Tokyo (NSMT-Ac 9042).

Neomyobia plurihospitalis Uchikawa, 1978

(Fig. 6)

Material examined. 2 ♀♀ and a deutonymph ex *Rhinolophus yunaensis*, Muang Ngnai, Thailand, 1 September 1975.

![Fig. 6. *Neomyobia plurihospitalis* Uchikawa, deutonymph. A) dorsum; B) venter.](image)

Although only 2 female specimens were examined, measurements and structures of the Thai specimens well accorded with the description of *Neomyobia plurihospitalis* Uchikawa.

The deutonymph of *N. plurihospitalis* Uchikawa is not yet described, though the structure and setal arrangement are fully anticipated basing on the descriptions of the trito- and protonymphs in UCHIKAWA (1978). The nymph just as expected and as illustrated in Fig. 6 was obtained in the present study. The setae ve are well developed and bases of setae *d*₁ and *l*₁ are virtually on a transverse line. The situation of the latter 2 setae is a good criterion for the differentiation of *Neomyobia plurihospitalis* Uchikawa from *N. solvenica* Dusbábek, though the females of the both species closely resemble each other.
Measurements are as follows: Body 272 \(\mu \) long by 100 \(\mu \) wide; setae ve 50 \(\mu \) long by 15 \(\mu \) wide; sc e 35 \(\mu \) long; sc i 66 \(\mu \); \(d_1 \) 43 \(\mu \); \(d_2 \) 28 \(\mu \); \(l_1 \) 45 \(\mu \); \(l_2 \) 15 \(\mu \); distance between \(d_1 \) and \(d_2 \) 43 \(\mu \); \(d_2 \) and \(l_2 \) 28 \(\mu \) apart.

Hipposiderobia okinawaensis Uchikawa, 1976

(Fig. 7)

![Fig. 7. — *Hipposiderobia okinawaensis* Uchikawa, female. A) dorsum; B) venter.](image)

The original description of *Hipposiderobia okinawaensis* Uchikawa, 1976 was based on a single male and 2 females. Measurements for the present 4 females are as follows: Body 390.5 (370-410) \(\mu \) long by 250.0 (230-275) \(\mu \) wide. Setae ve, sc e, \(d_1 \), \(d_2 \), \(d_4 \), \(l_1 \) and \(l_2 \) 73.5 (68-78) \(\mu \), 114.0 (113-120) \(\mu \), 33.3 (29-38) \(\mu \), 25.8 (23-31) \(\mu \), 21.5 (15-28) \(\mu \), 85.8 (80-90) \(\mu \) and 16.5 (15-18) \(\mu \) long, respectively. The size of the body is slightly larger than that of the allotype and a paratype, and setae ve, sc e and \(l_1 \) are approximately 1.5 times as long as those of the type specimens. Since intraspecific variation of *H. okinawaensis* has not fully been studied, the present authors inclines to identify the Thai mites as *H. okinawaensis* despite of the above differences in measurements as well as the difference in the host bats.

H. okinawaensis is unique in having a pair of terminal claws ventrally on legs I, which were not referred to in the original description (UCHIKAWA, 1976). The drawings of the female are presented in Fig. 7A and B for better understanding of this species.
Hipposiderobia sp. 1 (♂)

(Fig. 8)

Material examined. Only a single male specimen found free in alcohol at bottom of a bat container.

This male resembles that of *H. okinawaensis*, but is distinctive in having 6 pairs of minute setae anterior to the genital opening, minute setae d_1 and d_2, and one each of conspicuous dorsal setae on the femur I and tibia I. The terminal claws on leg I are not discernible on the specimen.

Measurements are as follows: Body 210 μ long by 125 μ wide. Setae ve, sc, l_1 and d_2 48 μ, 68 μ, 64 μ and 8 μ long, respectively. Penis sinuate distally, 70 μ long. All measurements are smaller than those for the holotype of *H. okinawaensis*. This mite is probably new to science.

The dorsum and venter of the mite are as presented in Fig. 8A and B.

Hipposiderobia sp. 2 (tritonymph)

(Fig. 9)

A tritonymph of anonymous *Hipposiderobia* was taken from *Rhinolophus yunaensis* from Mang Ngai, Thailand, date uncertain. Some female structures are clearly discernible through the integument. Since the setae vi of embedded female are barbed and striated, this mite differs from *H. okinawaensis* and its relatives.

Morphology of immature stages of the genus *Hipposiderobia* Dusbábek is quite unknown. The present specimen reveals that the legs I of the tritonymph are formed asymmetrically, and that inflated and striated setae ve, sc, l_1 and fine l_5 are unlike those on the adult. The conspicuous structures, inclusive of some setae, are as illustrated in Fig. 9. Fine setae other than those in figure might be present. Exact structure of the gnathosoma is not examined.
From the structure of the legs I and setae of the tritonymph, both of which are characteristic of the family Myobiidae, the genus *Hipposiderobius* Dusbábek is thought to be allied to the genus *Ioanella* Dusbábek and Lukoskus occurring on a phyllostomid bat.

Ugandobia (Ugandobia) dissimilis spec. nov.
(Figs. 10, 11, 12)

FEMALE (Fig. 10). Holotype measured 465 \(\mu \) long, inclusive of gnathosoma, and 152 \(\mu \) wide. Setae \(vi \) simple and minute, 12 \(\mu \) long; \(ve \) swollen basally and striated, 58 \(\mu \) long; \(sc \ e \) same in nature as \(ve \) 48, \(\mu \) and 80 \(\mu \) long, respectively, situated on a transverse line; opisthosomal setae striated and some ones barbed; \(d_1 \) situated anterior to \(l_1 \), 45 \(\mu \) long; \(d_2 \) 29 \(\mu \); \(d_3 \) and \(d_4 \) 20 \(\mu \); \(d_5 \) 15 \(\mu \); \(l_1 \) 38 \(\mu \); \(l_2 \) 11 \(\mu \) and \(l_4 \) 15 \(\mu \). Genital hooks absent; genital setae as illustrated in Fig 10 A and B. Ventral setae \(ic_{1-4} \) fine and long; \(cx I_{1-2} \), \(cx II_{1-3} \) and \(cx IV_1 \) present. Leg I consisting of 4 segments; the third and fourth segments segmented incompletely; no striated setae present; a shell-like, striated formation ventrally on distal segment. Paired claws on tarsus II subequal; claw formula of legs II-IV, 2-1-1; some dorsal and ventral setae fine and long as illustrated in Fig. 10A and B. Gnathosoma 25 \(\mu \) \(\times \) 10 \(\mu \) ventrally.

MALE (Fig. 11). Allotype and a paratype measured 310-295 \(\mu \) long by 110-112 \(\mu \) wide. Setae \(vi \) minute, about 10 \(\mu \) long; \(sc \ i \) much smaller than \(vi \); \(ve \) striated, 70-72 \(\mu \) long; \(sc \ e \) striated, 80-81 \(\mu \) long; \(d_1 \) situated on anterior third level between \(sc \ e \) and \(l_1 \), striated, barbed and 28-23 \(\mu \) long; \(d_2 \) almost on level of \(l_4 \), same in nature as \(d_1 \), 33-33 \(\mu \) long; \(d_4 \) and \(d_5 \) 18-15 \(\mu \) long; \(l_1 \) 90-85 \(\mu \) long, \(l_4 \) 20-20 \(\mu \) long. Setation and setal nature on venter of idiosoma and legs essentially as in female. Genital opening close to \(d_1 \); about 8 genital setae on sclerite; penis originating from slightly posterior to \(d_4 \), long, strongly bent at distal part.
Fig. 10. — *Ugandobia* (*Ugandobia*) *dissimilis* spec. nov., female. A) dorsum; B) venter.

Fig. 11. — *Ugandobia* (*Ugandobia*) *dissimilis* spec. nov., male. A) dorsum; B) venter.
Fig. 12. — *Ugandobia (Ugandobia) dissimilis* spec. nov., deutonymph (DN), protonymph (PN) and larva (L). Upper-dorsal view, lower-ventral view.
Deutonymph (Fig. 12 DN). Measurements as presented as means followed by ranges in parentheses are based on 5 specimens. Body 269.2 (260-275) \(\mu \) long, inclusive of leg I, by 86.0 (80-90) \(\mu \) wide. Conspicuous setae ve and sc e 41.8 (40-43) \(\mu \) and 63.6 (60-65) \(\mu \) long, respectively; vi and sc i lacking; all opisthosomal setae corresponding to those of female present, of which \(d_1 \) and \(l_1 \) are well developed. Legs I asymmetrical, with a peglike, striated seta on femur I. Coxal chaetotaxy as follows: 2 (one modified) -2-1-1.

Protonymph (Fig. 12PN). Measurements as in deutonymph are based on 5 specimens. Body 268.0 (245-290) \(\mu \) long, inclusive of leg I, by 82.8 (80-85) \(\mu \) wide. Setae ve and sc i 37.8 (35-40) \(\mu \) and 61.2 (60-63) \(\mu \) long. Setation on dorsum and venter almost as in deutonymph, but lacking setae \(l_4 \). Coxal chaetotaxy as follows: 2 (one modified) -1-1-0.

Larva (Fig. 12L). Only a single specimen is available. Body 260 \(\mu \) long, inclusive of leg I, by 70 \(\mu \) wide. Only setae sc e present on propodosoma, 55 \(\mu \) long; opisthosomal setae consisting of 6 pairs, inclusive of considerably developed \(l_4 \) and \(l_5 \) of 35 \(\mu \) long and ending in notched tips. Legs I symmetrical, without peg-like setae on femur. Only a single pair of intercoxal setae present.

Material examined. Holotype female, allotype male, a paratype male, 8 deutonymphs, 5 protonymphs and a larva ex *Thaphozous melanopogon*, Yale, Thailand, date uncertain. The holotype and allotype are deposited in the collection of the National Science Museum, Tokyo (NSMT-Ac 9039, 9040), and a paratype male and immature stages in the collection of K. Uchikawa.

This new species resembles *Ugandobia (Ugandobia) barnleyi* (Radford) that was once recorded from Indian *Thaphozous longimanus* (Hiregaudar et Bal, 1956). The relative length of setae sc i and sc e, nature of the dorsal opisthosomal setae of the female, and nature of ventral setae \(ic_1 \) are different between the new species and U. (U.) barnleyi (Radford). The setation on the propodosoma in the immature stages distinctly differs from that in the genus *Explectobia* Dusbábek and Lukoschus, which was recently elevated from a subgenus of *Ugandobia* (Fain, 1976). Although this remarkable setation lacking vi and sc i seems a generic characteristic, further studies on immature stages of other species are necessary for confirming a common setation in the genus.

Pteracarus pusillus thailandensis sspec. nov.

(Figs. 13, 14, 15)

Female (Fig. 13). Holotype and a single paratype were measured. Body 338 \(\mu \) long by 175-252 \(\mu \) wide. Setae ve 73-78 \(\mu \); vi 9-10 \(\mu \); sc e 105 \(\mu \); sc i 8-9 \(\mu \); \(d_4 \) 10-11 \(\mu \); \(d_5 \) 5-6 \(\mu \); \(l_1 \) 83-103 \(\mu \); \(l_3 \) 13-13 \(\mu \); \(l_4 \) 11-13 \(\mu \); \(l_5 \) 273-343 \(\mu \); cx \(\Pi_3 \) 13-15 \(\mu \); cx \(\Pi_5 \) 18-20 \(\mu \); cx \(IV_1 \) 15-20 \(\mu \). Setae \(ic_1 \), \(ic_2 \), cx \(\Pi_1 \) and \(ic_3 \) fine and long as in Fig. 13. Ventral spines on tibia III and IV 8-10 \(\mu \) and 10 \(\mu \), respectively.

Male (Fig. 14). Allotype and a single paratype were measured. Body 290-300 \(\mu \) long by 150-155 \(\mu \) wide. Setae ve 76-78 \(\mu \); vi 5 \(\mu \); sc e 90-91 \(\mu \); sc i 5 \(\mu \); \(d_1 \) 4 \(\mu \); \(d_5 \) vestigial; \(l_1 \) 75-83 \(\mu \); \(l_4 \) 6-8 \(\mu \); \(l_4 \) 295-338 \(\mu \); cx \(\Pi_3 \) 15 \(\mu \); cx \(\Pi_5 \) 20-21 \(\mu \); cx \(IV_1 \) 16-18 \(\mu \); ventral setae as in female. Ventral spines on tibiae III and IV 9-10 \(\mu \) and 10-13 \(\mu \), respectively. Genital opening situated slightly posterior to level of sc e, surrounded by probably 4 pairs of minute setae. Penis originating from slightly anterior level of setae \(l_4 \), and sinuate distally in the allotype, but it originating from level slightly posterior to midway between \(l_4 \) and \(l_5 \), and looped in the paratype.

Acrologia, t. XX, fasc. 3, 1978.
Fig. 13. — *Pteracarus pusillus thailandensis* ssp. nov., female. A) dorsum; B) venter.

Fig. 14. — *Pteracarus pusillus thailandensis* ssp. nov., male. A) dorsum; B) venter.
Male tritonymph (Fig. 15). A single specimen was measured. Body 290 μ long by 185 μ wide. Setae ve 40 μ; sc e 43 μ; sc i 33 μ and l3 vestigial. Setae cx l2-3 modified into spines, iC1-3 and cx II1-2 fine and long, and ic4 fine and shorter than preceding setae. Two each of ventral setae on femur I and genu I modified into spines; ventral spines on tibiae III and IV subequal, about 10 μ long.

Material examined. Holotype female, allotype male, a pair of male and female paratypes and a male tritonymph ex Scolophilus kuhlii, Yala, Thailand, date uncertain. The holotype and allotype are deposited in the collection of the National Science Museum, Tokyo (NSMT-Ac 9037, 9038), and the paratypes in the collection of K. Uchikawa.

The new subspecies is separable from the nominate form, the distribution of which has so far been restricted to Africa, by the following characteristics. The ventral setae, ic1-3 and cx II1-2, are fine and very long in the female, male and tritonymph. The ventral spines on the tibiae III and IV slightly shorter than those of the nominate form in the adults and tritonymph. Modified setae ventrally on coxa I, femur I and genu I of the tritonymph are spiniform and distinguishable from those of the nominate subspecies presented in fig. 18 in Dusbábek (1973).

Pteracarus sp. (♀)
(Fig. 16)

A single female taken from Tylonycteris sp. from Yale, Thailand, date uncertain, is unique in having rather short setae ve and in lacking d3 and d5 as illustrated in Fig. 16. Measurements are as follows: Body 295 μ long by 215 μ wide. Setae ve 53 μ; vi 10 μ; sc e 100 μ; sc i 10 μ; d4 6 μ; l1 97 μ; l3 15 μ; cx II3 11 μ; ic4 13 μ; cx IV 10 μ. Ventral spine on tibiae III and IV rather small.
It is reminded that DUSBÁBEK (1973) presented an anonymous male, Pteracarus sp. E, from Tylonycteris robustula taken near Kuala Lumpur, Malaysia, which possessed short ve and rather small spines ventrally on tibiae III and IV. The present female is possible partner of Pteracarus sp. E, but further studies are necessary.

Acanthophthirius (MyotimyoMa) scotophili spec. nov.
(Figs. 17, 18)

FEMALE (Fig. 17). Measurements are based on 3 specimens. Body 732-770 μ long by 292-320 μ wide. Setae vi, ve, sc i and sc e 93 μ, 160 μ, 135-140 μ and 213-220 μ long, respectively; d₁-d₅ 105-115 μ, 103-113 μ, 95-100 μ, 15-20 μ and 15-20 μ long, respectively; ℓ₁, ℓ₂ and ℓ₄ 230-243 μ, 103-105 μ and 23-25 μ long, respectively. A pair of conspicuous circlelets anteriad from vi. Unstriated area surrounding genito-anal region. Genital setae g₅-7 prominent; g₇ stout and corne-shaped; g₅ longer than g₆; g₃-4 on membranous valves. Genital hooks present. Anal setae ai and ae spiniform; ae longer than ai. Ventral setae ic₄ and ic₅ long; ic₄ spiniform, and less than twice as long as cx IV. Genital setae g₁ and g₄ present. Distribution of sclerites as in Fig. 17B. Gnathosoma small, 45-47 μ × 40 μ ventrally.

MALE (Fig. 18). Measurements are based on 4 specimens. Body 605-640 μ long by 240-253 μ wide. Setae vi minute, 8-10 μ long. Setae ve, sc i, sc e, d₁, d₅ and ℓ₁ 133-143 μ, 98-108 μ, 163-178 μ, 68-75 μ, 95-128 μ and 175-195 μ long, respectively. Setae ℓ₄, ℓ₅ and ℓ₄ minute. Penis slide sack-like distally, bearing 5 pairs of rather strong setae and a pore. Penis long and weakly sinuate. Ventral setation essentially as in female, but ic₃ spaced apart. Gnathosoma 38 μ × 30 μ ventrally.

Material examined. 4 ♂♂, 4 ♀♀ and a larva ex Scotophilus kuhlii, Yala, Thailand, date uncertain. The holotype female and allotype male are deposited in the collection of the National Science Museum, Tokyo (NSMT-Ac 9035, 9036).
Acanthophthirius (Myotimyobia) scotophili spec. nov. closely resembles Acanthophthirius (Myotimyobia) inciger (Lawrence, 1951), a parasite of Scotophilus nigrita from South Africa. Detailed morphology was not presented in the original description of A. (M.) inciger (Lawrence), but the penis and genital plate are formed differently in the males of the above 2 species.

Fig. 17. — *Acanthophthirius* (Myotimyobia) scotophili, spec. nov., female. A) dorsum, B) venter.

Fig. 18. — *Acanthophthirius* (Myotimyobia) scotophili, spec. nov., male. A) dorsum, B) venter.
The present new species is also allied to *Acanthophthirius fortuitous* (Radford, 1952), which was described basing on the female taken from *Scolophilus wroughtoni* from India. Only a single pair of genital setae, g_7, are cone-like in the female of *A. (M.) scotophili* spec. nov., while the genital pore of *A. (M.) fortuitous* (Radford) is described to be flanked by three pairs of stout, cone-like spines. As remarkable differences are usually detectable between males of the subgenus *Myotimyobia*, partner females of which closely resemble each other, the above minor but distinctive difference in the genital setae of the female is thought to be sufficient to separate species.

Acknowledgments

Gratitude is expressed to Dr. Sawart Ratanaworabhan, Chief of the Agricultural Zoology Section, Department of Agriculture, and to Dr. Prasart, Applied Scientific Research Corporation of Thailand, for their pertinent suggestions and kind co-operations throughout the faunal survey in Thailand. Thanks are also due to Mr. Songsakdi, Mr. Preecha, Mr. Prajong, Mr. Sermsakdi and Miss Cora for their excellent cooperation and assistance in field works.

References

Paru en Juillet 1979.