Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ABSTRACT: The chromosome numbers have been assessed for 5 bisexual tetranychid species infesting bamboo in Japan. A haploid number of $n = 2$ occurs in the species *Aponychus corpusae* and *Yezonychus sapporensis*, a number of $n = 3$ in *Panonychus akitanus* and *Schizotetranychus recki*, and a number of $n = 6$ in *Schizotetranychus celarius*. The taxonomic significance of the karyotype information is discussed.

RÉSUMÉ: Nombre chromosomique de quelques araignées rouges du bambou (Acariens : Tetranychidae).
L'étude porte sur la détermination du nombre de chromosomes de 5 espèces de tétranyques comportant des mâles et des femelles, et vivant sur Bambou au Japon. Le nombre haploïde est $n = 2$ pour *Aponychus corpusae* et *Yezonychus sapporensis*, $n = 3$ pour *Panonychus akitanus* et *Schizotetranychus recki*, et $n = 6$ pour *Schizotetranychus celarius*. La discussion porte sur la valeur taxonomique de ces informations cytogénétiques.

INTRODUCTION

More than 50 tetranychid species have been reported to occur in Japan, infesting a variety of plant species (EHARA and SHINKAJI, 1975). So far, no karyotype studies have been reported dealing with the Japanese spider mite species. This paper presents a study of the mitotic chromosome numbers of five species collected from sasa bamboo.

MATERIAL AND METHODS

Using the aceto-orcein staining method, squash preparations were made of embryonic tissues taken from eggs by the technique outlined by HELLE et al., 1980. All species were collected from *Sasa senanensis* Franch & Sav. in Sapporo, and reared under laboratory conditions in plexiglass cells on the same hostplant, following the rearing method described by HELLE & OVERMEER, 1985. All species examined are known to be bisexual.

RESULTS AND DISCUSSION

In all egg samples, a haploid and a diploid chromosome number was found to occur, as is expected for species with a haplo-diploid sex-determination. The data are presented in table 1. Selected photomicrographs from the squash preparations are given in figs 1-8.

1. Laboratory of Experimental Entomology, University of Amsterdam, Kruislaan 302, 1098 SM Amsterdam, The Netherlands.

Figs 1-8: Photomicrographs of mitotic stages in egg squashes. Magnification 2800 x.

1. — Yezonychus sapporensis = 2 ; 2. — Y. sapporensis 2n = 4 ; 3. — Schizotetranychus recki n = 3 ; 4. — S. recki 2n = 6 ; 5. — Aponychus corpusze n = 2 ; 6. — A. corpusze 2n = 4 ; 7. — Schizotetranychus celarius n = 6 ; 8. — S. celarius 2n = 12.

Table 1. — Chromosome numbers of species collected from sasa bamboo at Sapporo, Japan. The number of eggs examined is presented in parenthesis.

<table>
<thead>
<tr>
<th>Species</th>
<th>2n (N)</th>
<th>n (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aponychus corpusze Rimando</td>
<td>4(6)</td>
<td>2(6)</td>
</tr>
<tr>
<td>Panonychus akitanus Ebara</td>
<td>6(1)</td>
<td>3(1)</td>
</tr>
<tr>
<td>Yezonychus sapporensis Ebara</td>
<td>4(2)</td>
<td>2(2)</td>
</tr>
<tr>
<td>Schizotetranychus recki Ebara</td>
<td>6(7)</td>
<td>3(5)</td>
</tr>
<tr>
<td>Schizotetranychus celarius (Banks)</td>
<td>12(3)</td>
<td>6(3)</td>
</tr>
</tbody>
</table>

Aponychus belongs to the tribe Eurytetranychini. All species karyotyped from this genus were collected from grasses. A. grandidieri (Gut.) is living on reed (Phragmites) in Madagascar, and has 2n = 4 and n = 2 (GUTIERREZ et al., 1970). An undescribed Aponychus was found to occur on the same host at Roodeplaatdam (personal communication, Dr. M. K. P. MEYER, 1980) and appeared to have 2n = 4 and n = 2 chromosomes (BOLLAND & HELLE, unpublished). The numbers of 2n = 4 and n = 2 of A. corpusze from bamboo are in agreement with the numbers found in the other species. It would certainly be interesting to examine the chromosome number of Aponychus firmianae Ma & Yuan, since this species is not found on grasses, but on deciduous trees (SAITO, 1985).

All other karyotyped species belong to the tribe Tetranychini.

Yezonychus has a feature in common with Schizotetranychus: the empodium is split into two claw-like structures. However, this does not necessarily reflect a phylogenetic resemblance. A bifid empodium is possibly an adaptation to locomotion on grass leaves, and in that case the resemblance in empodium is a matter of convergent development. An important difference between Yezonychus and Schizotetranychus is found in the number of dorsal setae on the opisthosoma. The karyotypic information gives no arguments for the supposition that there is a close relationship between both genera: Yezonychus has n = 2, and this number is not found as yet in Schizotetranychus.

The numbers 2n = 6 and n = 3 for Panonychus akitanus are the same as found for the other two species examined for this genus, viz. P. ulmi (Koch) and P. citri (McG.). The similarity in chromosome number is in accordance with the close resemblance existing between species within Panonychus.

The chromosome numbers of the two Schizotetranychus species (S. recki with 2n = 6 and
S. eremophilus McG
S. reticulatus P. & B.
S. sacchari Fliecht. & B.
S. schizopus (Zacher)
S. recki Ehara
S. australis Gut.
S. juveli Gut.
S. celarius (Banks)

TABLE 2. — Survey of chromosome numbers and references in Schizotetranychus.

<table>
<thead>
<tr>
<th>Species</th>
<th>n = 3</th>
<th>n = 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. eremophilus McG</td>
<td>HELLE et al., 1981</td>
<td></td>
</tr>
<tr>
<td>S. reticulatus P. & B.</td>
<td>BOLLAND et al., 1981</td>
<td></td>
</tr>
<tr>
<td>S. sacchari Fliecht. & B.</td>
<td>FLECHTMANN, 1982</td>
<td></td>
</tr>
<tr>
<td>S. schizopus (Zacher)</td>
<td>HELLE & BOLLAND, 1967</td>
<td></td>
</tr>
<tr>
<td>S. recki Ehara</td>
<td>present paper</td>
<td></td>
</tr>
<tr>
<td>S. australis Gut.</td>
<td>HELLE et al., 1970</td>
<td></td>
</tr>
<tr>
<td>S. juveli Gut.</td>
<td>HELLE & GUTIERREZ, 1983</td>
<td></td>
</tr>
<tr>
<td>S. celarius (Banks)</td>
<td>present paper</td>
<td></td>
</tr>
</tbody>
</table>

The chaetotaxy of tibia I and II, and of tarsus I and II, is more reduced in S. recki. The peritremes of both species are different, and those of S. celarius possibly represent the more derived state. Both species also differ with regard to the hibernating stage. S. recki hibernates with diapausing eggs, but in S. celarius it is the adult female which enter into diapause (MORIYAMA and MORI, 1977). Egg diapause may be considered as the more primitive state, and adult diapause as the derived state (cf. GUTIERREZ & HELLE, 1985).

It is to conclude that also with respect to chromosome number, S. celarius represents the derived, and S. recki the primitive state. A chromosome number of n = 3 is commonly found in the Tetranychidae, and occurs in nearly all genera of this tribe (HELLE et al., 1981). A number of n = 6 is rare, and has been found only in Schizotetranychus and Tetranychus.

The division of the genus Schizotetranychus into two groups by karyotype is not clearly supported by morphological differences, neither by other biological characteristics. In both groups species occur from grasses as well as on dicotyledons. More karyotypic information is required for an appropriate discussion on the relationships between the different Schizotetranychus species, and the eventual resemblances with species from other genera, like Eotetranychus.

ACKNOWLEDGEMENTS

The authors feel indebted to Dr. J. GUTIERREZ, ORSTOM, Montpellier, France, for his valuable suggestions for the discussion in this paper. For advice with regard to the chromosome preparations, the authors want to acknowledge Dr. H. T. IMAI from the National Institute of Genetics, Japan, and Mr. H. R. BOLLAND in Amsterdam, the Netherlands.

REFERENCES

GUTIERREZ (J.) and HELLE (W.), 1985. — Evolutionary changes. In : W. HELLE & M. SABELIS (Editors), Spider Mites and Their Control. Vol. IA. Elsevier, Amsterdam, Ch. 1.1.5., pp. 91-107.

HELLE (W.), GUTIERREZ (J.) and BOLLAND (H. R.), 1970. — A study on sex-determination and karyotype evolution in Tetranychidae. — Genetica 41 : 21-32.
HELLE (W.) and OVERMEER (W. P. J.), 1985. — Rear-
ing and handling. In: W. HELLE & M. SABELIS (Edi-
tors), Spider Mites and Their Control. Vol. IA. Else-
vier, Amsterdam, Ch. 1.5.1., pp. 331-335.

MORIYAMA (S.) and MOR! (H.), 1977. — Mites. “Eco-
system analysis of the subalpine coniferous forest of
the Shigayama IBP area, central Japan ’’. (Ed. KITA-
ZAWA (Y.)), 54-61. (JIBP Synthesis vol. 15), Uni-
versity of Tokyo Press, Tokyo.

SATO (Y.), 1985. — Life types of spider mites. In:
W. HELLE & M. SABELIS. (Editors), Spider Mites and
Their Control. Vol. IA. Elsevier, Amsterdam, Ch.
1.4.4., pp.253-264.