Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2018): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
PLANT INHABITING PHYTOSEIID PREDATORS OF MIDWESTERN BRAZIL, WITH EMPHASIS ON THOSE ASSOCIATED WITH THE TOMATO RED SPIDER MITE, TETRANYCHUS EVANSI (ACARI: PHYTOSEIIDAE, TETRANYCHIDAE)

Imeuda P. Furtado¹, Gilberto José de Moraes², Serge Kreiter³, Carlos H.W. Flechtmann², Marie-Stéphanne Tixier³ and Markus Knapp⁴

(Received 25 February 2014; accepted 26 July 2014; published online 19 December 2014)

¹ Departamento de Ciências Biológicas, URCA, 63.100-000 Crato, CE, Brazil. ipfurtado@yahoo.com.br
² CNPq researcher; Depto. Entomologia e Acarologia, ESALQ-USP, 13.418-900 Piracicaba, SP, Brazil. moraesg@usp.br, chwflech@usp.br
³ Montpellier SupAgro, UMR CBGP INRA/IRD/CIRAD/Montpellier SupAgro, Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez cedex, France. kreiter@supagro.inra.fr, tixier@supagro.inra.fr
⁴ ICIPE, P. O. Box 30772-00100 Nairobi, Kenya; current address Koppert Biological Systems, R&D Entomology, P. O. Box 155, 2650 AD Berkel en Rodenrijs, The Netherlands. mknapp@koppert.nl

ABSTRACT — The fauna of phytoseiid mites in the state of Mato Grosso do Sul, in midwestern Brazil, is poorly known. The tomato red spider mite, Tetranychus evansi Baker and Pritchard, is an important pest of Solanaceae in several countries, but it is usually found in low densities in Brazil. It has been hypothesized that this is due to the effect of natural enemies. The objective of this study was to identify phytoseiid mites from Mato Grosso do Sul associated with T. evansi, to identify promising biological control agents for T. evansi in Africa. A survey was conducted in October – November 2002, sampling more than 70 plant species of 30 families, including 16 solanaceous species. The results of this survey provide some additional information to the scant knowledge on the phytoseiids from Mato Grosso do Sul. In total, 471 phytoseiids were collected, belonging to 12 Amblyseiinae and two Phytoseiinae species. The most frequent and abundant species was Euseius citrifolius Denmark and Muma, followed by Euseius concordis (Chant). Also, 3,493 tetranychids were found. Tetranychus evansi was found in Aquidauna on Solanum americanum (Miller), associated with E. citrifolius and Typhlodromalus aripo De Leon; in Corumbá, on S. americanum associated with E. concordis and Neoseiulus idaeus Denmark and Muma; and in Dourados, on Solanum lycopersicum (L.), associated with E. citrifolius, Proprioseiopsis mexicanus (Garman) and Proprioseiopsis ovatus (Garman). However, none of the phytoseiids found are considered to be a promising biological control agent of T. evansi, based on both their inconsistent association with the pest and on available information about each species.

KEYWORDS — Biological control; predators; ecology

INTRODUCTION

Very little is known about the phytoseiid mites from the state of Mato Grosso do Sul, in the extensive region of midwestern Brazil. The only publication available report the occurrence of only four phytoseiid species from that state (Rezende and Lofego, 2011).

The tomato red spider mite, Tetranychus evansi Baker and Pritchard (Tetranychidae), was reported
by Silva (1954) for the first time in Brazil, on tomato plants, *Solanum lycopersicum* (L.), under the name of *Tetranychus marianae* McGregor (Moraes et al., 1987). The generally low levels at which this mite is found in Brazil led researchers to hypothesize that effective natural enemies of this species could be found in that country, as summarized by Navajas et al. (2012). Thus, a great effort was dedicated between 2000 and 2008 to evaluate this hypothesis, aiming to locate and collect promising species of natural enemies to send to Africa, where *T. evansi* causes severe damage to Solanaceae, especially to tomato (Sibanda et al., 2000; Sarr et al., 2002).

After the identification of the South American regions climatically more similar to those in which *T. evansi* had been found in Africa (Fiaboe et al., 2006), various surveys were conducted in representative areas of those regions in search of natural enemies, in Brazil, Argentina and Peru [see Navajas et al. (2012) for details]. The natural enemies associated with *T. evansi* in Brazil were reported by Furtado et al. (2005, 2006) and Rosa et al. (2005), Fiaboe et al. (2007) and Vasconcelos et al. (2008). However, these reports do not include information about the predatory mites found in the survey conducted in midwestern Brazil. The objective of this publication is to provide that information.

MATERIALS AND METHODS

An expedition was conducted between October and November 2003 in the following locations of Mato Grosso do Sul: Anhanduí, Aquidauna, Bodoquena, Bonito, Campo Grande, Corumbá, Dourados, Jardim, Maracaju, Miranda, Nova Alvorada do Sul. These locations are within the priority regions for search of natural enemies to send to Africa (Fiaboe et al., 2006).

Neighbor sampling sites were about 50-70 km apart, along the main highways and corresponding to areas of degraded vegetation, favorable to the natural occurrence of solanaceous plants. Each sample consisted of a volume of approximately 1 dm3 (cubic decimeter) of leaves of each selected plant species taken randomly. Each sample was placed in a paper bag in turn placed in a polystyrene box for transportation to the laboratory, where the leaves were examined under a stereomicroscope to determine the presence of *T. evansi* and phytoseiids.

Plants of other families found in the vicinities of the sampled Solanaceae were also examined, to determine possible alternative habitats of predators eventually found in association with *T. evansi*. These leaves were examined in the field, immediately after collection, by using a hand lens, and the mites found were transferred to tubes with 70% ethanol. Plant species not identified in the field were photographed and collected for later identification.

In the laboratory, all mites found were mounted on microscope slides with Hoyer’s medium for identification under phase contrast microscopy (Zeiss, DMLB). The generic phytoseiid classification of Chant and McMurtry (2007) is used in this paper. Terminology for setal notation follows that of Lindquist and Evans (1965) as adapted by Rowell et al. (1978) for the Phytoseiidae.

RESULTS

More than 70 plant species of 30 families were sampled, 16 of which were solanaceous species. A total of 471 phytoseiids was collected, from 97 samples. These belong to 14 species, as follows:

Amblyseiinae

Amblydromalus limonicus (Garman and McGregor)

Specimens examined: Bonito (21°10’ S, 56°26’ W; 223 m), on *Inga uruguensis* (6♀); Jardim (21°28’ S, 56°08’ W; 254), on *Solanum palinacanthum* (1 immature).

Amblyseius chiapensis De Leon

Specimens examined: Bonito (21°10’ S, 56°26’ W; 223 m), on *I. uruguensis* (1♀); Jardim (21°28’ S, 56°40’ W; 303 m), on *Solanum palinacanthum* (1 immature).

Euseius alatus De Leon

Specimens examined: Campo Grande (20°27’ S, 54°34’ W; 584 m), on *Paullinia* sp. (1♀) and unidentified plant (1♀).
Euseius citrifolius Denmark and Muma

Specimens examined: Anhanduí (20°59' S, 54°30' W; 415 m), on Bixa orellana (2♂ and 2 immature), Passiflora sp. (1♀), Psidium guajava (4♂ and 1 immature); Aquidauana (20°28' S, 55°48' W; 139 m), on Codiaeum variegatum (2♀), I. uruguaensis (8♀ and 1♂), Solanum americanum (3♀ and 1♂); (20°28' S, 55°45' W; 175 m), on Rhamnidium elaeocarpus (7♂ and 1♂) and S. americanum (1♀, 1♂ and 1 immature); Bodoquena (20°29' S, 56°39' W; 182 m) on Physalis sp. (1♂); Bonito (21°16' S, 56°15' W; 244 m) on Tcrema line terminalis (5♀ and 1♂); (21°60' S, 56°26' W; 282 m) on Cordyline terminalis (2♀), S. americanum (2♀); (20°36' S, 56°40' W, 303 m) on P. guajava (1♀); Campo Grande (20°25' S, 55°09' W 242 m) on unidentified plant (2♂, 2♂ and 1 immature); (20°27' S, 54°34' W, 584 m) on Ficus gomelleira (3♀), Guarea guidonea (2♀ and 5♂), Guazuma tomentosa (5♀, 4♂ and 1 immature), Morus sp. (8♀ and 1♂), Paulinia sp. (2♂), P. guajava (14♀ and 2♂), Fabeacae (1♀ and 1 immature); Corumbá (19°15' S, 57°38' W, 102 m) on Cecropia pachystachya (4♀), Celtis sp. (2♀), Solanum paniculatum (3♀); (20°28' S, 56°08' W, 430 m) on Syngonium podophyllum (2♀ and 5 immature), Solanum tabacifolium (8♀); (22°14' S, 54°46' W, 397 m) on Solanum lyricopericum (2♀ and 5 immature), Solanum tabacifolium (8♀); (22°13' S, 54°46' W, 409 m) on M. indica (1♀); (22°11' S, 54°49' W, 430 m) on S. americanum (3♀, 1♂ and 7 immature); (22°12' S, 54°56' W; 440 m) on M. indica (2♀, 1♂ and 1 immature), S. podophyllum (2♀); (21°28' S, 54°08' W, 254 m) on Onchium sp. (1♀), Petunia sp. (1♀, 1♂ and 3 immature), Petunia alliacea (4♀, 4♂ and 1 immature), S. palinacanthum (1 immature); Maracaju (21°38' S, 55°36' W; 513 m) on A. hispida (2♀, 2♂ and 1 immature); Miranda (20°17' S, 56°17' W; 240 m) on unidentified plant (2♀).

Associated tetranychids: T. evansi in Corumbá (19°00' S, 57°39' W; 121 m) on S. americanum (2.209 specimens).

Euseius sibielus (De Leon)

Specimens examined: Aquidauana (20°30' S, 55°40' W; 191 m) on Hymenaeas stigonocarpa (3♀ and 1 immature), Luehea sp. (4♀ and 1 immature), Bignoniaceae (4♀ and 2 immature); Bonito (21°16' S, 56°15' W; 244 m) on T. micrantha (10♀ and 2 immature); (20°36' S, 56°40' W; 303 m) on Cissus sp. (1♀), P. guajava (5♀); Campo Grande (20°27' S, 54°34' W; 584m) on T. micrantha, (1♀), Ornmosia sp. (6♀ and 1 immature); Corumbá (19°15' S, 57°38' W; 102 m) on Unidentified plant (1♀), S. paniculatum (5♀); (19°00' S, 57°39' W; 121 m) on Celtis pubescens (3♀ and 1 immature).

Iphiseiodes zuluagai Denmark and Muma

Specimens examined: Campo Grande (20°27' S, 54°34' W; 584 m) on P. tuberculatum (1♀).

Neoseiulus idaeus Denmark and Muma

Specimens examined: Corumbá (19°00' S, 57°39' W; 121 m) on S. americanum (1♀).
Proprioseiopsis mexicanus (Garman)

Specimens examined: Dourados (22°14' S, 54°46' W; 397 m) on S. lycopersicum (1♀), (22°13' S, 54°36' W; 409 m) on S. paniculatum (1♀).

Proprioseiopsis ovatus (Garman)

Specimens examined: Dourados (22°14' S, 54°46' W; 397 m) on S. lycopersicum (1♀), (22°13' S, 54°36' W; 409 m) on S. paniculatum (1♀).

Transeius bellotti (Moraes and Mesa)

Bodoquena (22°29' S, 56°39' W; 182 m) on Combretum sp. (1♀), Guazuma ulmifolia (3♂), unidentified plant (2♀); Bonito (20°36' S, 56°40' W; 303 m) on Lantana trifolia (1♀).

Typhlodromalus aripo De Leon

Specimens examined: Aquidauana (20°28' S, 55°48' W; 139 m) on S. esculentum (1♀, 1♂ and 2 immature), S. americanum (1♀); Bonito (21°17' S, 56°27' W; 204 m) on Sida sp. (1♀); (21°10' S, 56°26' W; 223 m) on Fabaceae (5♀, 2♂ and 1 immature).

Phytoseiinae Berlese

Phytoseius guianensis De Leon

Specimens examined: Aquidauana (20°28 S, 55°45 W; 175 m) on S. palinacanthum (1♀ and 1♂), S. paniculatum (3♀); (20°30 S, 55°40 W; 191 m) on S. paniculatum (3♀); Bonito (21°10' S, 56°26' W; 223 m) on G. tomentosa (1♀), S. palinacanthum (1♀); (21°16' S, 56°15' W; 244 m) on Pavonia sidifolia (6♀and 1♂), S. granulosoleprosum (1♀), S. palinacanthum (2♀, 2♂ and 1 immature), S. paniculatum (2♀), T. micrantha (10♀and 2♂), Vernonia scabra (6♀and 1 immature); (21°00' S, 56°15' W, 282 m) on S. palinacanthum (2♀), S. paniculatum (1♀); (20°36' S, 56°40' W; 303 m) on L. trifolia (2♀); Campo Grande (20°27' S, 54°34' W; 191m) on S. palinacanthum (1♀and 1♂); Dourados (22°11' S, 54°49' W; 430 m) on S. tabacifolium (2♀and 1♂); Nova Alvorada do Sul (21°50' S, 54°32' W; 275 m) on S. paniculatum (2♀).

Phytoseius nahuatlensis De Leon

Specimens examined: Campo Grande (20°25' S, 55°09' W; 242 m) on Bauhinia sp. (1♀); (20°27' S, 54°34' W; 584 m) on Ormosia sp. (1♀); Miranda (20°17' S, 56°17' W; 240 m) on Curatella americana (4♀), P. guajava (2♂); Nova Alvorada do Sul (21°50' S, 54°32' W, 275 m) on Solanum lycocarpum (1♀).

A summary of the abundance and diversity of localities and plant species on which each species was found is given in Table 1. The most abundant species were also those found in largest numbers of localities and largest number of plant species. The most diverse genera were *Euseius*, with four species, as well as *Proprioseiopsis* and *Phytoseius* with two species each. The most frequent and abundant phytoseiid was *E. citrifolius*, followed by *E. concordis*, *E. sibelius* and *P. guianensis*, ranging in numbers between 61 and 181 mites. All other predacious species were represented by 14 or fewer specimens. *Phytoseius guianensis* was also among the most frequent and abundant in the southern and southeastern Brazil (Furtado et al., 2006, Fiaboe et al., 2007), as well as in the northeastern (Furtado et al., 2005, Rosa et al., 2005, Fiaboe et al., 2007) part of the country in similar surveys.

A total of 3,493 tetranychid mites was observed in association with those phytoseiids, most of them (3,335 specimens) were *T. evansi*, found in the surroundings of Aquidauana on *S. americanum* together with *E. citrifolius* and *T. aripo*, in Corumbá, on *S. americanum* together with *E. concordis* and *N. idaeus*, and in Dourados, on *S. lycopersicum* together with *E. citrifolius*, *P. mexicanus* (Garman) and *P. ovatus*.

Solanum palinacanthum was the most frequently solanaceous plant found; *T. evansi* was not found on this plant, but four phytoseiid species were found, namely *A. limonicus*, *E. citrifolius*, *E. concordis* and *P. guianensis*.

DISCUSSION

The great predominance of Amblyseiinae was also observed in previous surveys for natural enemies of *T. evansi* conducted in other parts of Brazil (Furtado et al., 2005, 2006; Rosa et al., 2005, Fiaboe et al.,...
TABLE 1: Phytoseiid mites collected from plants in surveys conducted in 27 sites in Mato Grosso do Sul, midwestern Brazil in October and November 2003.

<table>
<thead>
<tr>
<th>Phytoseiid species</th>
<th>Number of Specimens</th>
<th>Number of Localities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblyseiinae Muma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amblydromalus limonicus (Garman & McGregor)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Amblyseius chiapensis De Leon</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Euseius alatus De Leon</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Euseius citrifolius Denmark & Muma</td>
<td>181</td>
<td>19</td>
</tr>
<tr>
<td>Euseius concordis (Chant)</td>
<td>104</td>
<td>11</td>
</tr>
<tr>
<td>Euseius sibelius (De Leon)</td>
<td>61</td>
<td>6</td>
</tr>
<tr>
<td>Iphiseiodes zuluagai Denmark & Muma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Neoseiulus idaeus Denmark & Muma</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Proprioseiopsis mexicanus (Garman)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Proprioseiopsis ovatus (Garman)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Transeius bellottii (Moraes & Mesa)</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Typhlodromalus aripo De Leon</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Phytoseiinae Berlese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phytoseius guianensis De Leon</td>
<td>77</td>
<td>9</td>
</tr>
<tr>
<td>Phytoseius nahautlensis De Leon</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

2007) and Argentina (Furtado et al., 2007b; Guanilo et al., 2010). The most frequent and abundant phytoseiid species in the present study, *E. citrifolius*, was also the most frequent and abundant on different plant species in faunistic studies conducted in the Cerrado ecosystem of the western part of the state of São Paulo (Feres and Moraes, 1998; Feres and Nunes, 2001; Feres et al., 2003; Bellini et al., 2005; Daud and Feres, 2005), a few hundred km away from the region where the present work was conducted. But with a similar natural vegetation and climatic conditions. In laboratory studies on the biology *E. citrifolius* with different food types, this predator performed best when fed with pollen of different plant species (Moraes and McMurtry 1981, Furtado and Moraes 1998).

Euseius concordis, the second phytoseiid most commonly found in this study, was the most frequent and abundant phytoseiid in similar studies conducted in northern (Guanilo et al., 2010) and the second most frequent and abundant in north-western Argentina (Furtado et al., 2007b). In north-west Argentina, *E. concordis* was found in association with *T. evansi*, but it was probably feeding on other organisms on the same plants. Moraes and Lima (1983) reported a low rate of reproduction when it was fed with *T. evansi* but considered it to be a promising predator of the tomato russet mite *Aculops lycopersici* Trybom. *Euseius* species are considered generalist predators with high preference for pollen as food (McMurtry and Croft, 1997; McMurtry et al., 2013).

Phytoseius guianensis was the most frequent and abundant phytoseiid found in northeastern (Furtado et al., 2005, Fiaboe et al., 2007), southern and southeastern (Furtado et al., 2006, Fiaboe et al., 2007) Brazil. It was the second most frequent and abundant species in a similar search conducted by Rosa et al. (2005) in the state of Pernambuco, northeastern Brazil. However, *P. guianensis* was not found in association with *T. evansi* in southern, southeastern and northeastern Brazil. Thus, it does not seem to
contribute significantly to the biological control of *T. evansi*.

The results of the survey conducted in this study provide additional information on the phytoseiids from the state of Mato Grosso do Sul, in midwestern Brazil. Until now, only four species of this mite group had been reported from that state (Rezende and Lofego, 2011), namely *E. citrifolius*, *P. ovatus*, *Neoparaphytoseius sooretamus* (El-Banhawy) and *Neoseiulus tunus* (DeLeon), the first two also found in the present study. Thus, 17 phytoseiid species are now known from Mato Grosso do Sul. However, none of the phytoseiid species found in this study showed up as promising for the biological control of *T. evansi*, based on their inconsistent association with the pest and on what is known about their biology. The levels of occurrence of *T. evansi* on tomato or other solanaceous crops have not been evaluated in this state, but the levels on the naturally occurring solanaceous plants were generally low; all specimens of *T. evansi* were collected from only two solanaceous species, *S. americanum* and *S. lycopersicum*.

Many phytoseiid species were found on solanaceous plants in the extensive surveys conducted in South America. However, only one species of those, *Phytoseiulus longipes* Evans, has been shown (Furtado et al., 2007a; Silva et al., 2010) promising for the biological control of *T. evansi*. The population in natural association with *T. evansi* was found in Brazil, next to the border with Argentina and Uruguay. Works conducted so far indicate that it is potentially useful for use against that pest in other parts of the globe.

ACKNOWLEDGEMENTS

We thank V. C. Souza (ESALQ/USP, Brazil) and Cécile Rault (Montpellier SupAgro) for the help in the identification of the plants. We also thank L.V. Silva for the logistical support during the survey. This study was supported by a grant of the German Federal Ministry for Economic Cooperation and Development (BMZ) to ICIPE.

REFERENCES

Furtado I. P., Moraes G. J., Kreiter S., Tixier M. S., Knapp M. 2007a — Potential of a Brazilian population of

Copyright

Furtado I.P. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.