Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
FAVOGNATHUS HYRCANENSIS N. SP., A NEW SPECIES OF THE GENUS FAVOGNATHUS (ACARI: TROMBIDIFORMES: CRYPTOGNATHIDAE) FROM NORTHERN IRAN

Sheila Shirinbeik MOHJER1, Mohammad BAGHERI2, Mohsen YAZDANIAN3, Alireza SABOORI4 and Saeed Paktinat SAAEI2

(Received 27 November 2013; accepted 23 February 2014; published online 30 June 2014)

1 Department of Agriculture, Payame Noor University, PO BOX 19395-3697 Tehran, I.R. of Iran. shirinbeik.shila@gmail.com
2 Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran. mbagheri20022002@yahoo.com, saeepaktinat@yahoo.com
3 Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. mohsinyazdanian@gaau.ac.ir
4 Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran. saboori@ut.ac.ir

ABSTRACT — Favognathus hyrcanensis n. sp. (Acari: Cryptognathidae) is described and illustrated from adult specimens collected from soil in Golestan county, Iran.

KEYWORDS — Acariformes; Trombidiformes; Cryptognathidae; Favognathus hyrcanensis; new species; Iran

INTRODUCTION

The Cryptognathidae was erected by Oudemans (1902) with Cryptognathus Kramer, 1879 as type genus. Members of this family are recognized by the presence of a protective hood anterior of the propodosoma and extremely extendable gnathosomal base (Doğan, 2008). Although these small animals had been suggested as predatory mites (Baker and Wharton, 1952; Meyer and Ryke, 1960), their delicate mouth parts and their small size make it difficult to imagine the type of prey with which they might be associated. Their chelicerae are elongate, delicate and edentate, so they may be selective feeders on, say, fungal spores. The needle-like chelicerae may also be adopted to select algal cells or else, and this seems the best of several alternatives, to pierce plant cells and drain the contents (Luxton, 1973). Cryptognathidae comprises 57 species in three genera: Favognathus Luxton (35 species), Cryptognathus Kramer (20 species) and Cryptofavognathus Doğan and Dönel, 2010 (2 species) (Fan and Zhang, 2005; Khanjani and Ueckermann, 2008; Doğan 2008; Dönel and Doğan, 2011; Uluçay and Koç, 2013). Up to now 6 species of the genus Favognathus, namely; F. mirazii Khanjani and Ueckermann, 2008 and F. luxtoni Koç and Ayyildiz, 1999, F. pongolensis Meyer and Ueckermann, 1989, F. distortus Kuznetsov, 1974; F. amygdalus Doğan and Ayyildiz, 2004 and F. cordylus Luxton 1993 (Khanjani and Ueckermann 2008; Gheblealivand et al., 2011; Bagheri et al., 2013a, b and Rahmati et al., 2013) have been reported from
Iran. In this paper a new species, *Favognathus hyrcanensis n.sp.* is described and illustrated.

MATERIALS AND METHODS

Soil and rotten leaves samples were collected and mites were extracted by using a Berlese-Tullgren funnel. Collected specimens were cleared in Nesbitt’s fluid and mounted in Hoyer’s medium (Krantz and Walter, 2009), thus examined with a phase-contrast microscope and drawn. The length of the idiosoma was measured from the suture between the gnathosoma and idiosoma to the posterior margin of idiosoma; the width of the idiosoma was measured at the broadest part of the idiosoma and setae were measured from their insertion to their tips. Terminology follows that of Luxton (1973). Dorsal setal phase-contrast microscope and drawn. The length of measurements are in the parentheses: 300 (313 – 345); Length of body (excluding gnathosoma) (the ranges of measurements are in the parentheses): 300 (313 – 345); Length of body (excluding gnathosoma): 260 (283 – 290); width of body: 195 (190 – 210); leg I: 225 (235 – 250), leg II: 175 (180 – 211), leg III: 188 (183 – 200), leg IV: 220 (208 – 233).

Dorsum (Fig. 1A) — Anterior margin of the hood denticulated; hood with 6-7 dimples in each longitudinal row. Dorsal shield completely ornamented with reticulations except region beside setae *h1*, reticular cells with 4-10 peripheral pores and short striae, pores distributed evenly in all reticulation cells; dorsum with 11 pairs of simple setae, one pair of eyes and one pair of postocular bodies laterally between setae *sci* and *sce*; dorsal body with three pairs of slit-like cupules as follows: *ia* between setae *sce* and *c1*, *im* beside setae *e2* and *ip* beside setae *h2*; clusters of reticulated cells associated with setae *c1* and *d1* present, these rosette patterns consist of 6-8 cells, of which one of them arrange as central cell; anal opening dorsoventrally, with three pairs of setae (*psI.3*). Length of dorsal setae and their distances: *vi*: 17 (20 – 35); *ve*: 31 (30 – 34); *sci*: 35 (38 – 39); *c1*: 44 (43 – 45); *sce*: 28 (29 – 43); *d1*: 40 (45 – 50); *e1*: 45 (43 – 50); *e2*: 40 (38 – 52); *f1*: 43 (35 – 44); *h1*: 28 (35 – 41); *h2*: 30 (27 – 43); *vi-vii*: 32 (33 – 39); *vi-ve*: 17 (15 – 17); *ve-ve*: 34 (35 – 41); *ve-sci*: 10 (13 – 20); *sci-sci*: 52 (54 – 65); *c1-c1*: 64 (70 – 74); *sce-sce*: 101 (102 – 110); *c1-sce*: 18 (18 – 22); *d1-d1*: 108 (120 – 130); *d1-e1*: 42 (50 – 54); *e1-e1*: 75 (80 – 90); *e1-e2*: 21 (20 – 23); *e2-e2*: 95 (95 – 114); *e1-f1*: 53 (50 – 60); *f1-f1*: 35 (35 – 45); *f1-h1*: 28 (34 – 35); *h1-h1*: 16 (15 – 19); *h1-h2*: 29 (21 – 30); *h2-h2*: 72 (70 – 78).

Venter (Fig. 1B) — Prosternal apron wedge-shaped with 13-15 foveolae; venter with 4 pairs of ventral setae (*1a, 3a, 4a* and *4c*); genital opening with 2 pairs of genital (*g1.2*) and 2 pairs of aggenital (*ag1-2*) setae; ventral shield with lateral reticulation, fine striae and pores, intercoxal area striae and femora I-IV: 4-3-2-2; genua I-IV: 5(+κ)–4(+κ)–2-3 tarsi I-IV: 15(+ω1+ω2)–12(+ω1+ω2)–9(+ω)–9(+ω).

Description — Female (n=4) - Color red in life. Length of body (including gnathosoma) (the ranges of measurements are in the parentheses): 300 (313 – 345); Length of body (excluding gnathosoma): 260 (283 – 290); width of body: 195 (190 – 210); leg I: 225 (235 – 250), leg II: 175 (180 – 211), leg III: 188 (183 – 200), leg IV: 220 (208 – 233).

Mohajer S.S. et al.
Figure 1: *Favognathus hyrcanensis* n. sp. (Female): A – Dorsal view of idiosoma; B – Ventral view of idiosoma.

ag2 14 (13 – 15), g1 13 (14 – 16), g2 18 (16 – 20); ps1 15 (13 – 16), ps2 13 (12 – 16), ps3 15 (12 – 14).

Gnathosoma (Fig. 1B) — Hypostome narrow (Fig. 1B), with one pair of long setae *m* 28 (30 – 34) and two pairs of adoral setae, or1 8 (7 – 10), or2 12 (10 – 14) (Fig. 1B); chelicerae: 105 (106 – 113); stylophore: 20 (18 – 30) (Fig. 2A); palp (Fig. 2B) 91 (85 – 98) long, palptarsus with four eupathidia, four simple setae and one solenidion; palptibia with three simple setae; palpgenu with two and palpmur with three simple setae. Palp trochanter without seta.

Legs (Figures 3A-D) — Setal formulae of leg segments (solenidia in parentheses and not included): coxae 2-1-2-1; trochanters 1-1-2-1; femora 4-3-2-2; genua 5(+κ)-4(+κ)-2-3; tibiae 5(+φ+φp)-5(+φp)-4(+φp)-3; tarsi 15(+ω1+ω2)-12(+ω1+ω2)-9(+ω)-9(+ω).

Male and immature stages — Unknown.

Etymology — This species is named *F. hyrcanensis* n. sp., because Hyrcana is the ancient name of our city, Gorgan, where we found this species.

Type material — Holotype and three paratype of *Favognathus hyrcanensis* n.sp. were collected.
Table 1: Comparative characters between *Favognathus hyrcanensis* n. sp. and closely related species.

<table>
<thead>
<tr>
<th>Species/Characters</th>
<th>Anterior margine of hood</th>
<th>Tarsi I,II</th>
<th>Tibia III,IV</th>
<th>Genua I,II</th>
<th>Femur I</th>
<th>Trochanter I-IV</th>
<th>Intercoxal area</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. hyrcanensis n. sp.</td>
<td>denticulate</td>
<td>15(+2)-12(+2)</td>
<td>4(+1)-3</td>
<td>5(+1)-4(+1)</td>
<td>4</td>
<td>1,1,2,1</td>
<td>striae</td>
</tr>
<tr>
<td>F. bafranus</td>
<td>smooth</td>
<td>14(+2)-10(+2)</td>
<td>4(+1)-3</td>
<td>5(+1)-5 or 4(+1)</td>
<td>4</td>
<td>1,1,2,1</td>
<td>striae</td>
</tr>
<tr>
<td>F. luxtoni</td>
<td>smooth</td>
<td>14(+2)-12(+2)</td>
<td>4(+1)-3</td>
<td>5(+1)-4</td>
<td>3</td>
<td>1,1,1,0</td>
<td>striae</td>
</tr>
<tr>
<td>F. observabilis</td>
<td>smooth or denticulate</td>
<td>15(+2)-12(+2)</td>
<td>4(+1)-3</td>
<td>5(+1)-4</td>
<td>3</td>
<td>1,1,2,1</td>
<td>smooth</td>
</tr>
<tr>
<td>F. pictus</td>
<td>smooth</td>
<td>14(+2)-12(+2)</td>
<td>4(+1)-2(+1)</td>
<td>4 or 6(+1)-5(+1)</td>
<td>4</td>
<td>1(0),1,2,1</td>
<td>striae</td>
</tr>
</tbody>
</table>

Figure 2: *Favognathus hyrcanensis* n. sp. (Female): a – Chelicerae; b – Palpus.
Figure 3: Favognathus hyrcanensis n. sp. (Female) - Legs.

from soil on 25th May, 2010, Gorgan city, Golestan province, Iran, by Sheila Shirinbeik Mohajer. The holotype and one paratype will be deposited to Jalal Afshar Zoological Museum, Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran and two paratypes were deposited to the Acarological Collection, Department of Plant Protection, Faculty of Plant Protection, University of Gorgan, Iran.

Remarks — This new species is closely related to F. bafranus Doğan 2008; F. luxtoni Koç and Ayyıldız, 1999; F. observabilis Kuznetsov, 1974 and F. pictus Summers and Chaudhri, 1965 in having same dorsal and ventral shields patterns and in the presence of rosettes; however, it can be distinguished by the combination of characters provided in Table 1.

Key to the Iranian species of Favognathus

1. Dorsum without rosette patterns 2
 — Dorsum with rosette patterns 3

2. Sternocoxal region with a pair of angular condyles F. cordylus Luxton
 — Sternocoxal region without angular
condyles…… *F. mirazii* Khanjani and Ueckermann

3. Dorsum partly reticulated 4
— Dorsum completely reticulated 5

4. Setal formula of tarsi 17-14-10-10.................. *F. pongolensis* Meyer and Ueckermann
— Setal formula of tarsi 16-14-10-10.................. *F. amygdalusi* Doğan and Ayyildiz

5. Anterior margine of hood denticulated.................. *F. hyrcanensis* n. sp.
— Anterior margine of hood smooth 6

6. Setal formula of tarsi 16-14-10-10, pores are present in the centre of each cell, intercoxal area striated.................. *F. luxtoni* Koç and Ayyildiz
— Setal formula of tarsi 17-14-10-10, 3-6 pores present in the corner of each cell, intercoxal area smooth *F. distortus* (Kuznetzov)

ACKNOWLEDGEMENTS

This project was supported by the research division of Gorgan University of Agricultural Sciences and Natural Resources which is greatly appreciated.

REFERENCES

Doğan S., Donel G. 2010 — Cryptofavognathus, a new genus of the family Cryptognathidae Oudemans (Acari, Raphignathoidia) with the description of a new species from Turkey — Zootaxa, 2533: 36-42.

Luxton M. 1973 — Mites of the genus *Crypognathus* from Australia, New Zealand and Niue Island — Acarologia, 15: 53-75.

Oudemans A.-C. 1902 — Acari, neue Arten, Klassifikation — Tijdschr Entomol, 45: 50-64.

COPYRIGHT

Mohajer S.S. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.