Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
SCANNING ELECTRON MICROSCOPY VOUCHERS AND GENOMIC DATA FROM AN INDIVIDUAL SPECIMEN: MAXIMIZING THE UTILITY OF DELICATE AND RARE SPECIMENS

Ashley P. G. Dowling¹, Gary R. Bauchan², Ron Ochoa³ and Jenny J. Beard⁴

(Received 17 August 2010; accepted 12 October 2010; published online 22 December 2010)

¹ Assistant Professor, Department of Entomology, University of Arkansas, 319 Agriculture Bldg, Fayetteville, Arkansas, 72701, USA. adowling@uark.edu
² Research Geneticist, USDA-ARS, Electron & Confocal Microscopy Unit, Beltsville, Maryland, 20705, USA. gary.bauchan@ars.usda.gov
³ Ron Ochoa, Research Entomologist, USDA-ARS Systematic Entomology, 10300 Baltimore Avenue, Bldg 005 BARC-West, Beltsville, Maryland, 20705, USA. ron.ochoa@ars.usda.gov
⁴ Postdoctoral Researcher, Department of Entomology, 4112A Plant Sciences Building, University of Maryland, College Park, Maryland, 20742, USA; and Queensland Museum, P.O. Box 3300, South Brisbane, Queensland, 4101, Australia. jjbeard@umd.edu

ABSTRACT — Specimen vouchering is a critical aspect of systematics, especially in genetic studies where the identity of a DNA sample needs to be assured. It can be difficult to obtain a high quality voucher after DNA extraction when dealing with tiny and delicate invertebrates that often do not survive the extraction procedure intact. Likewise, once a whole specimen has been extracted from, it is no longer useful for scanning electron microscopic examination. This paper discusses the use of a single specimen for both low temperature scanning electron microscopy and DNA extraction. This process allows full documentation of all external characteristics of an organism and ample whole genomic DNA extraction for DNA sequencing.

KEYWORDS — low temperature scanning electron microscopy; LTSEM; vouchering; DNA; mites; arthropods

INTRODUCTION

One of the most critical aspects of systematic studies and also the topic of many publications is proper vouchering of specimens (Funk et al., 2005; Huber, 1998; Knutson, 1984). As systematics has shifted towards a focus on genomic data, the importance for vouchering DNA extracted specimens has increased exponentially. This has initiated a series of studies examining non-destructive methods of DNA extraction in arthropods and other invertebrates (Gilbert et al., 2007; Hunter et al., 2008; Phillips and Simon, 1995; Rowley et al., 2007). It is clear from these studies there is no excuse for lack of useful vouchers when extracting DNA from insects and other hard-bodied organisms.

However, different challenges are commonly encountered when working with small (ranging from 100-400 µm in length), soft-bodied organisms like many mites. Oftentimes, based upon personal observations even gentle agitation and soaking of soft-bodied specimens in a digestion buffer leads to loss of some or all setae, effectively making the voucher unidentifiable beyond genus. Additionally, placing a 150 µm mite into a tube of buffer and then
retrieving it unharmed is not an easy task. These mites are essentially invisible to the naked eye, especially when peering through a plastic tube. Successful recovery of the mite requires observation under a microscope and presents numerous opportunities for mechanical destruction of the specimen. Lastly, many mites possess waxy diagnostic structures over their bodies that are destroyed during digestion.

Mite taxonomy relies on observing mite specimens and associated morphological characteristics under high magnification. Traditionally, mite systematists slide-mount specimens for study under light, DIC, and phase microscopy although, in the early 1970’s, acarologists began taking advantage of the magnification and depth of field available through scanning electron microscopy (SEM). Many of these studies demonstrated the utility of SEM for observation of new characters and highlighted the distortion caused by flattening mites on slides (Baker, 1995; Oldfield et al., 1972; Otto, 1999; Schliesske, 1988; Thomsen, 1976). Unfortunately, as with slide-mounting, preparation of specimens for traditional SEM incorporates numerous artifacts associated with desiccation and coating, especially in very soft bodied organisms (Beckett and Read, 1986).

Low temperature scanning electron microscopy (LTSEM) avoids problems associated with desiccation by freezing live organisms in liquid nitrogen and maintaining ultracold temperatures within the SEM unit. This not only preserves body turgidity, but often retains the position of seta and other structures in life-like positions, and captures behaviors such as feeding and reproduction (Achor et al., 2001; Wergin et al., 2000).

As mite systematists have turned to genetic data, they have typically recovered specimens during or after DNA extraction and mounted the remaining cuticle as a voucher (Dabert et al., 2008; Dowling and OConnor, 2010; Jeyaprakash and Hoy, 2010; Klimov and OConnor, 2008; Royet et al., 2009). This procedure often works well, although as mentioned above, this can lead to complete loss of setae and other damage to delicate specimens. Although we have not attempted to extract DNA and recover a high quality voucher from a broad diversity of mites, in our experience, this loss of seta and overall deformation of body shape and size is common in the Bdelloidea and Tetranychoidea we commonly work with. On the other hand, Mesostigmata like Laelapidae, which the authors also work on, typically only lose a few setae and little deformity of the body occurs. This highlights the necessity of a specific methodology for dealing with soft-bodied, delicate specimens. Additionally, while most voucher specimens in the above mentioned studies are identifiable, a few are too damaged or degraded to obtain reliable species identifications. This can be extremely problematic when closely related species are found in the same collection and there is no way to be sure which one ended up in the extraction vial without a voucher. However, the real conundrum comes when an acarologist has only one specimen of a very rare species. Does one make a slide to confirm identification and take morphological measurements, thus sacrificing the DNA within the mite? Or does one extract DNA, knowing this mite may not be recollected in the near future and take the chance that a high quality voucher specimen remains, allowing for species identification and measurements? Or lastly, does one cut off a couple of legs, hope characters on the other legs are not damaged, and hope that successful extraction ensues from the legs (a process easier said than done with extremely small mites)? The present paper suggests a simple, yet currently unpublished solution to this microarthropod DNA/voucher specimen dilemma.

MATERIALS AND METHODS

Live specimens of three species were processed for LTSEM examination at the USDA Electron & Confocal Microscopy Unit in Beltsville, MD. These included new species of *Erythraeus* (Parasitengona: Erythraeidae) and *Trichosmaris* (Parasitengona: Smarididae) and specimens of *Raoiella indica* (Prostigmata: Tenuipalpidae). Specimens were assigned a unique identifying number and were transferred to flat specimen holders on top of a supercooled (-196°C) brass bar whose lower half was submerged in liquid nitrogen in a Styrofoam box.
Fig. 1: Example LTSEM images for vouchering specimens. a) *Erythraeus* sp. whole body (40X); b) *Trichosmaris* sp. posterior dorsal trichobothria (900X); c) *Raoiella indica*, tarsus (3000X); d) *Trichosmaris* sp. ventral seta (6000X).
Mites were able to walk a few steps before being frozen solid in a life-like position, at which point the holders were transferred to a liquid nitrogen dewar or directly into the LTSEM unit for sputter coating with platinum and imaging. Since no adhesive is used to secure the mite to the holder, after imaging the dorsal surfaces, the mite can be quickly thawed, removed from the holder, flipped onto its back, refrozen and imaged ventrally. Wergin et al. (2000) describes in detail the steps and temperatures involved during LTSEM preparation and imaging. The following modifications to Wergin et al. (2000) were made: a S-4700 field emission scanning electron microscope (Hitachi High Technologies America, Inc., Pleasanton, CA) equipped with a Polaron Polar Prep 2000 (Energy Bean Sciences, East Grandby, CT) cryotransfer system was used. Specimens were thoroughly imaged to include all characteristics of mite external morphology (for examples, see Fig. 1) allowing for species identification and discovery of potentially new character systems. After imaging, sputter coated mites were transferred from specimen holders to 100% EtOH. Whole genomic DNA was extracted from post-LTSEM mites using Qiagen DNeasy Blood and Tissue Kit following protocols therein with an overnight incubation period. Resulting whole genomic DNA for each specimen was given the same unique number assigned to the specimen before LTSEM imaging, catalogued in the lab database, and placed in the -80°C freezer for long-term storage. Remaining cuticles of the three specimens were removed from the vials post DNA extraction and soaked in KOH for 1 min at 40°C. Mite cuticles were removed from the KOH and mounted in Hoyer’s medium.

DNA quantification after extraction was performed using a NanoDrop™ 2000 (Thermo Scientific) with a storage buffer blank. Quantifications were done for the post LTSEM extractions as well as an extraction from an ethanol preserved specimen of *Raoiella indica*.

Cytochrome oxidase I (COI) was amplified in 25µL volume reactions for each LTSEM specimen as well as a negative control using LCOI and HCOI primers (Folmer et al., 1994). PCR reactions were prepared and run according to Dowling et al. (2008).

Three microliters of each PCR product was visualized on a 1.5% agarose test gel. All positive samples were prepared for gel extraction and subsequent sequencing according to Dowling and OConnor (2010).

Sequencing of amplified samples was performed by MacrogenUSA (http://www.macrogenusa.com/). Resulting sequences were analyzed using DNASTAR® Lasergene Seqman software, and forward and reverse sequences were reconciled. BLAST searches against the NCBI databases were made to ensure sequences were in fact from the appropriate mite groups. Sequences were submitted to GenBank under the following accession numbers: HQ423154 (*Erythraeus* sp.), HQ423155 (*Trichosmaris* sp.), EU682442 (*Raoiella indica*).

RESULTS AND DISCUSSION

All three specimens positively amplified, displaying bright clean bands on the electrophoresis gel of approximately 400bp in length (Fig. 2).

Figure 2: Image of agarose gel showing bright bands representing positive amplification of COI. A – *Erythraeus* sp; B – *Trichosmaris* sp; C – *Raoiella indica*; - negative control.

Blast searches for the sequences from the two Parasitengona confirmed identity to that group and the sequence from *Raoiella indica* was identical to previously sequenced *R. indica* samples. There appeared to be no negative effects from the platinum coating on the mite cuticle post-LTSEM, nor any negative effect from the imaging process. The fact that live mites were frozen, stored in liquid nitrogen
and maintained at ultracold temperatures throughout the LTSEM imaging process means that internal tissues (even genetic material of endosymbionts harbour by the mites) should be perfectly preserved (Corthals and DeSalle, 2005). For one of the specimens tested, *Raoiella indica*, we had extractions available from ethanol preserved specimens for direct comparison in terms of DNA quantity post-extraction. The ethanol preserved single specimen had a quantity of 2.5ng/µL whereas the post-LTSEM extraction registered at 4.3ng/µL. Although this shows almost twice as much DNA in the post-LTSEM extraction, because only one set of comparisons were made, no statistical significance can be applied to the results.

However, it has been shown that freezing temperatures are more important to DNA preservation than the preservative used to store specimens (Post *et al.*, 1993; Reiss *et al.*, 1995; Vink *et al.*, 2005). Even specimens stored in 100% EtOH show degradation of low copy nuclear DNA within six weeks if not stored at cryogenic temperatures (Corthals and DeSalle, 2005; Vink *et al.*, 2005).

Based upon the results above, we recommend the combination of LTSEM and DNA extraction be used for dealing with very rare specimens. This approach will provide ample DNA for sequencing and thorough coverage of external morphology for identification and character coding, all from a single specimen. We recognize that LTSEM units are not widely available to all acarologists, however when available LTSEM is to be preferred.

If there is damage to the specimen, the thorough LTSEM coverage should show all necessary characteristics for systematic work. Additionally, this combination is ideal when multiple closely related species are collected in the same sample and cannot be confidently identified under a stereoscope. Our approach would guarantee the association of the individual specimen with the DNA extracted from it.

Figure 3: Images (40X) of slide mounted *Raoiella indica* specimen (dorsal view on left, ventral view on right) after LTSEM imaging, DNA extraction, and KOH soak.
The remaining cuticle can also be recovered after DNA extraction as we have found that the platinum coating makes the mite a little more durable and more likely to survive the DNA extraction process. Additionally, we have found that soaking the platinum coated mite in KOH after DNA extraction removes most of the platinum coating and produces a decent voucher specimen (Fig. 3). However, we believe the soak in heated KOH removes the platinum coating due to the presence of a waxy layer covering the entire body of the chosen specimens rather than actually affecting the platinum. The thought is that this wax layer runs off of the cuticle, taking the platinum coating with it. We do not believe that all mites possess this waxy layer and therefore the KOH soak may not always remove the platinum coating. These hypotheses need to be confirmed by LTSEM work on other mite groups.

ACKNOWLEDGMENTS

J.J. Beard was partly funded by the Australian Biological Resources Study (ABRS), an initiative of the Australian Government, and by an agreement between USDA-APHIS-PPQ Centre for Plant Health Science and Technology and the University of Maryland. We would like to thank Chris Pooley at the Electron & Confocal Microscopy Unit (ECMU) at the USDA-ARS in Beltsville, Maryland, USA for his work on the plates; Debbie Creel at the Systematic Entomology Laboratory (SEL) USDA-ARS for her continued technical support and reference gathering. We would also like to thank two anonymous reviewers for their helpful comments.

REFERENCES

Jeyaprakash A., Hoy A. 2010 — A DNA extraction procedure that allows mite specimens to be slide mounted: phytoseiid species evaluated as a model — Exp. Appl. Acarol., 52: 131-140.

Oldfield G.N., Newell I.M., Reed D.K. 1972 — Insemination of protogynes of Aculus cornutus from sper-

COPYRIGHT

Dowling et al., Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.