Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
A NEW SPECIES OF THE GENUS MINGUEZETES FROM RICE STUBBLE OF PADDY FIELD AFTER GRAIN HARVEST IN JAPAN (ACARI: ORIBATIDA)

by M. NOZAKI1 and Y. NAKAMURA1

(Accepted September 2003)

SUMMARY: A new species of the genus Minguezetes was collected from rice stubble at paddy field after grain harvest of Ehime Prefecture in southern Japan.

RÉSUMÉ: Une nouvelle espèce du genre Minguezetes est décrite des chaumes de riz.

The genus Minguezetes was erected by Subías et al. (1990) designating Minguezetes conjunctus Subías, Kahwash et Ruiz, 1990, as the type. Until now, 5 species including the type species are known as the members of the present genus from the world. Among them, two species, Minguezetes hexagonus (Berlese, 1908) and Minguezetes manzanoensis (Hammer, 1958) were transferred from the genus Puncoribates by Pavlitshenko (1994). The remaining two species except for the type species, Minguezetes insignis (Berlese, 1910) and Minguezetes longiporosus (Balogh, 1963) were also transferred from the genus Puncoribates by Bayartogtokh et al. (2000).

The species of Minguezetes recorded from other countries other than Japan have been collected from the variety of places, for example lake shore (Haarlov, 1957), horse dung in a moist meadow grown with clover and a wet meadow (Hammer, 1958), and detritus (Berlese, 1910). In Japan, M. manzanoensis or M. insignis was recorded from soil of grassland (personal communication from Fujikawa), paddy field (Kuriki, 1989; Fujita, 1995) or crop field (Fujikawa, 1972; Fujita, 1995; Fujita, 2000) or fermentation and humus horizons (Fujikawa, 1970). The present new species was collected from rice stubble of paddy field after grain harvest.

Minguezetes inecola spec. nov.
[Japanese name: Ine-maruyahazudani]

Material: Holotype (NSMT-Ac 11696): from the stubble of rice crop by means of handsorting and modified Tullgren apparatus, 14-XII-2002, Y. Nakamura leg.; 2 paratypes (NSMT-Ac 11697 & 11698): from the stubble of rice crop at the same field, 21-XII-2002, M. Nozaki leg. The field is situated in the campus of Department of Agriculture, Ehime University,

1. Laboratory of Crop Science, Department of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime Pref., 790-8566, JAPAN.

Fig. 1: *Minguezetes ineola* spec. nov. A. — Dorsal view (because the lamellar region is not visible, it is shown finely figs. 2 A & B); B. — Ventral view; C. — Areae porosae and dorsal setae *te* and *ti*; D. — Variation of dorsosejugal projections. (this Fig. does not contain a projection of Fig. 1A)
Fig. 2: *Minguezetes incola* spec. nov. A. — Prodorsum flattened. *ro* (rostral seta), *le* (lamellar seta), *in* (interlamellar seta), *ss* (sensillus); B. — Prodorsal and ventral setae. *ex* (exobothridial seta), *ad* (adanal seta), *g* (genital seta) and *1b* (epimeral seta); C. — Left sensillus and bothridial region; D. — Dorsal aspect of lamellar and interlamellar region.
in Ehime Prefecture. The rice stubble and the soil were drying up, and the rice was harvested before two months of the sampling time.

Measurements (n=6) and **colour**: Body length, 429(446)471 µm; width, 343(361)379 µm. Reddish-brown.

Prodorsum: Rostral anterior edge rounded without incisions, dorsal part medially concave. Rostral setae (ro) grabrous, setiform, inserted laterally just at the level of the distal ends of tutoria. Tutoria with a sharp apex, without tooth. Lamellae extending forwards from the level of bothridia, thinner than translamella. Lamellae setae (le) inserted at the anterior end of the lamellar ridges. Translamella ribbon-shaped without cusps. Interlamellar setae (in) inserted each on a small apophysis; apophysis connected each other by a chitinous line. Both lamellar setae and interlamellar setae minutely barbed. Setae (in, ss) elongate, setose, without a distinct head. Exobothridial setae (ex) inserted at the anterior end of the lamellar ridges. Translamella ribbon-shaped without cusps. Interlamellar setae (in) inserted each on a small apophysis; apophysis connected each other by a chitinous line. Both lamellar setae and interlamellar setae minutely barbed. Setae le about 3.0 × and setae in about 2.0 × as long as their mutual distance, respectively. Sensilli (ss) elongate, setose, without a distinct head. Exobothridial setae (ex) straight, minute, glabrous, inserted postero-lateral to bothridia. Relative lengths and distances of prodorsal setae: in>ss>le>ro>ex; (ro-ro)>(in-in)>(le-le).

Notogaster: Circular in dorsal view. Pteromorphae movable, connected each other by the chitinous projection. The projection excised in a U-shaped form from the anterior border of the hysterosoma. The depth of the incurvation variable, depth/width: 0.57(1.17)1.62. Lamella, interlamella, part of translamella, lamellar and interlamellar setae are concealed below the projection. Areae porosae Aa the largest among 4 pairs of areae porosae, relative dimensions: Aa:Aa:Aa:Aa=2.4:1.0:1.0:1.2; Aa situated between setae ti and te. Setae ti and te minute, glabrous; setae te terminating in a fine point; setae te blunt at the tip. Lyrifissure ia aligned obliquely near exterior margins of notogaster. Lyrifissure im aligned obliquely laterally to A1.

Ventral region: Ano-genital region with 2 pairs of anal, 3 pairs of anal, 6 pairs of genital and 1 pair of aggenital setae. Adanal setae (ad) setiform and glabrous. Setae ad inserted at the level of the middle portion between setae an and an. Adanal lyrifissures iad situated parallel to the lateral margin of anal plates. Genital plates bearing microsculpture of striae. Epimeral setation: (3-1(0)-3-3(2)); setae variable in number.

Legs: Legs heterotridactylous; claws without dent. Leg chaetotaxy including famulus, but excluding solenidia: I (1-5-3-4-16); II (1-5-3-4-16); III (1-3-1-3-15); IV (1-2-2-3-12). Solenidiotaxy: I (1-2-2); II (1-1-2); III (1-1-0); IV (0-1-0). On tarsus II, all tibiae, genu I, genu III, femur II and femur III bearing a projection; on tarsus II, a large pointed projection situated slightly anterior to solenidia ω1 and ω2; solenidion ω1 as long as ω2. On tibia I, solenidion ω1 about 12.0 × as long as ω2. Femur IV with a large leg-fin.

Remarks: The new species is distinguished from *Minguezetes conjunctus* by size of body, shape of hysterosoma, pteromorphonal projection and areae porosae Aa, direction of lyrifissures im and relative length of lamellar and interlamellar setae, from *M. hexagonus* by length of translamella, shape of areae porosae and the presence of dorsal blade on tarsi II, from *M. insignis* by shape of setae ro, relative length of mutual distances of setae ro and in and direction of lyrifissure im, from *M. longiporosus* by relative length of lamellar and interlamellar setae, the presence of microsculpture of striae on genital plates, from *M. manzanoensis* by relative length of lamellar and interlamellar setae, direction of lyrifissure im, and situation of dorsal blade on tarsi II (original descriptions, Bayartogtokh et al. (2000), Fujikawa (1972; 1981), Haarlov (1957), Hammer (1967), Mahunka & Mahunka-Papp (1995), Pavlitshenko (1994), Rajski (1968), Sellnick (1928)). According to Fujikawa (private information), the specimen identified as *M. manzanoensis* by Fujikawa (1972) has a dorsal projection not between the solenidia but at the side of ω2 on tarsi II. The record of *M. manzanoensis* from Hokkaido (Fujikawa, 1970) should be removed from the list (Fujikawa et al., 1993) and other Japanese specimen identified as *M. manzanoensis* need to be restudied.

Key to the species of the genus Minguezetes

1. Ovoid hysterosoma; Dorsosejugal projection V-shaped.

... *Minguezetes conjunctus* Subías, Kahwash et Ruiz, 1990, Spain.
Fig. 3: Leg I of *Minguezetes inecola* spec. nov. A. — Tarsus; B. — Tibia; C. — Genu; D. — Femur and a part of trochanter.
Fig. 4: Leg II of *Minguezetes incola* spec. nov. A. — Tarsus; B. — Tibia; C. — Genu; D. — Femur and a part of trochanter.
Fig. 5: *Minguezetes incola* spec. nov. A-E. — Leg III; F-I. — Leg IV; A & F. — Tarsi; B & G. — Tibiae; C & H. — Genu; D. — Femur; E. — Trochanter; I. — Femur and a part of trochanter.
— Circular hysterosoma; Dorsosejugal projection U-shaped .. 2
2. Interlamellar setae much longer than lamellar setae; in > 2 × le M. longiporosus (Balogh, 1963), Angola.
— Interlamellar setae slightly longer than lamellar setae; in < 1.5 × le .. 3
3. Tarsi II without dorsal blade M. hexagonus (Berlese, 1908), Denmark, Italy, Poland, Ukraine.
— Tarsi II with dorsal blade 4
4. Dorsal blade on tarsi II situated between solenidia M. manzanoensis (Hammer, 1958), Argentine, New Zealand, Ukraine.
— Dorsal blade on tarsi II situated anterior to solenidia ... 5
5. Rostral setae barbed Minguezetes insignis (Berlese, 1910), Italy, Japan.
— Rostral setae smooth Minguezetes inecola spec. nov.

ACKNOWLEDGEMENTS

The authors wish to express our sincere thanks to Emeritus Prof. Dr. J. Aoki of Yokohama National University for his encouragement and comments on the manuscript, to Prof. Dr. M. Shiraishi, the dean of the Agricultural Faculty of Ehime University and Mc. Ali Mafi of Laboratory of Environmental Entomology of the Agricultural Faculty of Ehime University for their help in using the scanning electron microscope, to Prof. Dr. N. Ohbayashi and Assist. Prof. Dr. M. Sakai of Laboratory of Environmental Entomology of the Agricultural Faculty of Ehime University, for their helpful advice on taxonomical subjects, and to Assist. Prof. Dr. H. Sugimoto and all
members of Laboratory of Crop Science and other colleagues of the Agricultural Faculty of Ehime University, for their continual encouragements. They also thank Dr. T. Fujikawa of Shigenobu-cho in Ehime Prefecture for lending them her literature.

REFERENCES

