Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
SUITABILITY OF THE CITRUS BROWN MITE, *EUTETRANYCHUS ORIENTALIS* AS PREY FOR NINE SPECIES OF PHYTOSEIID MITES (ACARI: TETRANYCHIDAE, PHYTOSEIIDAE)

by Faten MOMEN* and Maher EL-BOROLOSSY*

SUMMARY: Nine phytoseiid species were tested to evaluate their potential as predators of *Eutetranychus orientalis* (Klein). *Typhlodromus athiasae* Porath & Swirski, *Amblyseius barkeri* (Hughes) and *A. olivi* Nasr and Abou-Awad had a shorter developmental period than *T. transvaalensis* (Nesbitt). *T. athiasae* and *A. barkeri* showed the highest oviposition rates. *A. olivi* showed a low rate of oviposition although *T. transvaalensis* has not able to lay any eggs. Immatures survival of *T. talbii* Athias-Henriot, *T. balanites* El-Badry, *Amblyseius badryi* Yousef and El-Borolossy, *A. cabonus* (Schicha) and *A. lindquisti* Schuster and Pritchard were very low on *E. orientalis* and all failed to develop to adulthood.

INTRODUCTION

Members of the genus *Eutetranychus* (Banks) feed primarily on trees and shrubs and some species are considered major economic pests. *E. orientalis* (Klein) is primarily a pest of citrus, other hosts include cotton, squash and grapevines. Predatory mites of the family Phytoseidae are important biological control agents of tetranychid and eriophyid mites in a number of Egyptian cropping systems (EL-BANHAWY, 1974, ABOU-AWAD, 1983, ABOU-AWAD & EL-BANHAWY, 1986, ABOU-AWAD et al., 1989 and MOMEN & EL-SAWAY, 1993). Some phytoseids are generalized predators, i.e. they consume a wide range of food such as mites, scale crawlers (SWIRSKI et al., 1967), pollen, honeydew and mildew (CHANT & FLESCHNER, 1960). A few of the phytoseids are “specialized” predators feeding only on tetranychid mites (CHANT, 1961, FLAHERTY, 1967 and MORI & CHANT, 1966). CHESSON (1978) reviews the various attempts to quantify selective predation,
which is defined as the situation in which relative frequencies of prey types in a predator's diet differ from the relative frequencies with which they are encountered in the environment. The present study was designed to determine the ability of some species of phytoseiid mites to develop and reproduce when offered *E. orientalis* as prey in the laboratory.

MATERIALS AND METHODS

The suitability of the citrus brown mite, *E. orientalis*, as a food source was tested for 9 species of Phytoseidae. *Amblyseius barkeri* (Hughes), the common phytoseiid found on cucumber, *Typhlodromus athiasae* Parath & Swirski, *T. talbii* Athias-Henriot and *T. transvaalensis* were collected from heavily infested mango leaves. *T. balanites* was obtained from the plant *Pluchea dioscoridis* (L.), *A. olivi* Nasr & Abou-Awad was found on leaves of olive trees; *A. badryi* and *A. lindquisti* Schuster & Pritchard were collected from debris under banana trees, while *A. cabonus* (Schicha) was found in soil associated with roots of *Pelargonium graveolens* Ait.

Adult females of *T. athiasae* and *A. barkeri* were taken from stock colonies maintained on larvae and nymphs of *Tetranychus urticae* Koch as prey in the laboratory of the N.R.C., Cairo. The laboratory colonies of *A. olivi*, *T. balanites*, *A. badryi*, *T. transvaalensis* and *A. lindquisti* were fed *Eriophyes dioscoridis* Soliman and Abou-Awad. Females of *T. talbii* and *A. cabonus* were fed on *Tydeus californicus* (Banks) in the laboratory.

Gravid female predators were taken at random from the colonies and transferred to rearing substrates. Females were left 24 hours and their oviposited eggs were used for different biological tests. Leaf discs of raspberry leaves, 3 cm in diameter, were used as rearing arenas. The discs were placed in Petri dishes, upper surface downwards, on water-saturated cotton. Eggs of each predator were transferred singly to the rearing discs, and the newly hatched larvae were supplied with sufficient known numbers of nymphs of *E. orientalis*, obtained from infested citrus leaves. Replacement of the prey was done out daily and records of development, food consumption and reproduction were recorded twice a day.

All the experiments reported herein were carried out under laboratory condition of 27 ± 2°C and 70-75% R.H.

RESULTS AND DISCUSSION

Individuals of *A. barkeri*, *T. athiasae*, *A. olivi* and *T. transvaalensis* successfully developed from larva to adult when fed on the tetranychid mite *E. orientalis*. In contrast, development was not completed in *A. badryi*, *A. cabonus*, *A. lindquisti*, *T. balanites* and *T. talbii* (Table 1). The total development period was longer in *T. transvaalensis* compared to *A. barkeri*, *T. athiasae* and *A. olivi* (significant at 1% level). *A. barkeri* and *T. athiasae* had the highest percentage of individuals reaching maturity on *E. orientalis* (Table 1).

<table>
<thead>
<tr>
<th>Predator species</th>
<th>Egg</th>
<th>Larva</th>
<th>Protonymph</th>
<th>Deutonymph</th>
<th>Total</th>
<th>% reaching maturity</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. barkeri</td>
<td>2.0 ± 0.0</td>
<td>1.0 ± 0.0 a</td>
<td>1.85 ± 0.1 a</td>
<td>1.46 ± 0.14 a</td>
<td>6.31 ± 0.17 a</td>
<td>100</td>
</tr>
<tr>
<td>T. athiasae</td>
<td>2.00 ± 0.00</td>
<td>1.00 ± 0.00 a</td>
<td>1.79 ± 0.11 a</td>
<td>2.29 ± 0.13 b</td>
<td>7.07 ± 0.13 b</td>
<td>100</td>
</tr>
<tr>
<td>A. olivi</td>
<td>1.90 ± 0.14</td>
<td>1.0 ± 0.0 a</td>
<td>1.92 ± 0.14 a</td>
<td>2.08 ± 0.14 b</td>
<td>6.92 ± 0.29 ab</td>
<td>84</td>
</tr>
<tr>
<td>T. transvaalensis</td>
<td>2.0 ± 0.0</td>
<td>1.62 ± 0.0 b</td>
<td>3.08 ± 0.08 b</td>
<td>3.77 ± 0.17 c</td>
<td>10.46 ± 0.29 c</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 1: Development of nine species of Phytoseidae on *Eutetranychus orientalis* (nymph) as a food source at 27°C (N = 13 individuals). Mean developmental time in days ± S.E. Different letters in a vertical column denote significant difference (F-test P<0.01).
Both A. olivi and A. barkeri have been reported to feed in the larval stage (ABOU-AWAD & EL-BANHAWY, 1986; MOMEN, 1995). The larvae of T. athiasae and T. transvaalensis were feeding instars, consuming an average of 0.57 and 0.27 tetranychid mite per day (Table 2). Individuals of T. talbii, A. badryi, A. cabonus, T. balanites and A. lindquisti moult to the protonymphal stage without feeding. Some individuals of certain phytoseiid mite species may moult to the protonymphal stage without feeding (BURNETT, 1971; AMANO & CHANT, 1977; SABELIS, 1981).

The consumption rate increased through the developmental stages respectively. Adult female of T. athiasae consumed higher number of nymphs of E. orientalis than did A. barkeri, A. olivi and T. transvaalensis (significant at 1% level) (Table 2). The relatively low consumption rates recorded in this study when A. barkeri and A. olivi were provided with E. orientalis as prey suggest that effectiveness at low prey densities may be the key to the apparent success of the two predators as a controlling agent of E. orientalis.

The preoviposition period was almost the same with the three phytoseiids (Table 3). Oviposition period likewise was shorter in T. athiasae and A. olivi than in A. barkeri. T. transvaalensis had a long adult period without reproductive activity and this implies that T. transvaalensis females may require nutrients other than E. orientalis to develop their eggs. T. athiasae had an adult longevity shorter than other phytoseiids (Table 3).

The highest rate of oviposition was recorded in A. barkeri and T. athiasae (Table 4). In the present study, A. olivi showed a low rate of oviposition suggesting that the host plant may have negatively affected the performance of the predator.

The total number of eggs laid per female by A. barkeri and T. athiasae seems to be in the high or medium range, respectively, when compared with those obtained for other phytoseiid species and E. orientalis as prey (SWIRSKI & DORZIA, 1968, 1969; METWALLY et al., 1984; ABOU-AWAD et al., 1989; EL-BAGOURY et al., 1989; SHIH et al., 1993).

A high reproduction rate also was recorded with E. orientalis as prey for A. largoensis Muma, and A. gossipi El-Badry (KAMBUROV, 1971; YOUSEF & EL-HALAWANY, 1982). Only a few species considered...
in the highest fecundity range, such as A. bibens Blommers or the genus Phytoseius Evans, produce more than 50 eggs per female (MacMurtry et al., 1970; Blommers, 1976).

In the present study, E. orientalis did not provide suitable food for development to be completed or for egg laying in T. talbii, T. balanites, A. badri, A. cabonus and A. lindquisti. El-Bagoury & Momen (1989) obtained an oviposition rate of 0.9 eggs/female of T. balanites per day on the eriophyid mite, E. dioscoridis. T. talbii has been reported by Aly (1994) to develop and reproduce when fed on the tydeid mite, E. olivi Zaher & Abou-Awad, scale insect crawlers, and tydeid mites. The potential of these foods should be investigated further. The present study suggests that the predators A. badry, A. lindquisti, A. cabonus, T. balanites and T. talbii are not closely associated with tetranychid mites. The reason for the unsuitability of E. orientalis for the phytoseid predators tested is not known, but it might be attributed to the morpho-physiological characteristics (e.g. resistance of prey cuticle or ultrastructure) or it could be that E. orientalis is physiologically unsuitable as prey for the predators studied. Considerable work remains to be done to fully evaluate the effectiveness and control potential of the phytoseid predators tested.

REFERENCES

Metcally (A. M.), Abou-El-Naga (M. M.), Taha (H. A.) & Hoda (F. M.), 1984. — Studies on feeding, repro-

