Share this article    

              

       

First cytogenetic data on two trombidioid mites (Prostigmata) from Türkiye, with a checklist of known chromosome numbers in mites

Karağaç, Rümeysa 1 ; Eroğlu, Halil Erhan 2 ; Hekimoğlu, Olcay 3 and Sevsay, Sevgi 4

1Department of Biology, Institute of Science, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
2Department of Biology, Faculty of Sciences and Arts, Yozgat Bozok University, Yozgat, Türkiye.
3Department of Biology, Faculty of Science, Division of Ecology, Hacettepe University, Ankara, Türkiye.
4✉ Department of Biology, Faculty of Sciences and Arts, Erzincan Binali Yıldırım University, Erzincan, Türkiye.

2025 - Volume: 65 Issue: 2 pages: 589-601

https://doi.org/10.24349/1srq-1vej

Original research

Keywords

Acari chromosomes Eutrombidium Trombidium Türkiye

Abstract

Cytogenetic studies on mites (and ticks) remain scarce and have received limited attention in the literature. In this study, for the first time, chromosome numbers of two species belonging to Trombidioidea are presented. The diploid chromosome number was determined to be 2n=12 in Trombidium latum C.L. Koch, 1837 (Trombidiidae) and 2n=14 in Eutrombidium trigonum (Hermann, 1804) (Microtrombidiidae). Additionally, a comprehensive list of mite species with known chromosome numbers to date has been compiled. To support species identification, we generated the COI gene sequence of T. latum from Türkiye and compared it with available sequences in GenBank. The integration of cytogenetic and molecular data aims to improve species identification and provide a foundation for future phylogenetic and genetic diversity studies in trombidioid mites.


Introduction

Studies on determining the chromosome numbers of mites began many years ago. Although the first chromosome studies on mites began with Reuter's (1909) work on the oogenesis of Pediculopsis graminum, the most detailed cytological study was Schrader's (1923) research on Tetranychus bimaculatus from the Tetranychidae family (Reuter 1909; Schrader 1923). These studies continued with tarsonemid, gamasid and phytoseiid mites (Cooper 1937, 1939; Hansell et al. 1964; Oliver 1964, 1965, 1972, 1973, 1977; Patau 1934; Sokolov 1934, 1945 1954; Warren 1940; Wysoki 1973; Wysoki and Swirski 1968). Subsequent studies on Tetranychus urticae aimed to gain a deeper understanding of the biology and reproductive characteristics of these harmful mite species to develop biological control strategies (Helle and Bolland 1967). Later, chromosome studies were extended to ticks (Ixodoidea) (Oliver et al. 1973) and other mite groups (Bolland and Ueckermann 1984; Eroğlu and Per 2016; Gümüş et al. 2022; Heethoff et al. 2006; Onrat et al. 2006; Wysoki and Bolland 1983; Zalewska 1979). Specific chromosomal studies on eriophyoid mites emerged later, making them one of the first mite groups to undergo detailed cytogenetic analysis (Norton et al. 1993).

Although detailed chromosome number data are lacking for most species within the Trombidiidae family, some studies have focused on the biological characteristics of the group at the genus level. Members of this family are known to be taxonomically complex, with morphological similarities that complicate classification. Notably, species in this group exhibit a distinct life cycle: they are characterized by a complex life cycle which includes heteromorphic parasitic larvae and predatory post-larval instars (Wohltmann and Wendt 1996). However, in contrast to the available biological and life cycle data, chromosomal studies in Trombidiidae are exceedingly rare. To date, chromosomal data have been reported only for Allothrombium fuliginosum, with a diploid chromosome number of 2n=24 in both males and females (Sokolov 1954).

In general, Trombidium species exhibit high morphological similarity, which makes species-level identification challenging without the preparation of detailed microscope slides. In such morphologically cryptic groups, molecular identification—particularly DNA barcoding using the COI gene—has proven to be an effective complementary tool for distinguishing closely related species (Blaxter 2004; Davrat 2005; Knowlton 2000). Therefore, the integration of both morphological and molecular data is crucial for accurate species delimitation in Trombidiidae. The aim of this study is to provide the first cytogenetic characterization of two trombidioid mite species, Trombidium latum and Eutrombidium trigonum, and to support the identification of T. latum using mitochondrial COI barcoding data. We analyzed the chromosome numbers of T. latum from the Trombidiidae family in both the larval and adult stages, and the post-larval stage of E. trigonum from the Microtrombidiidae family. Additionally, a comprehensive list of mite species with known chromosome numbers to date is provided, serving as a valuable reference for future taxonomic and cytogenetic studies.

Materials and methods

Trombidioid mites sampling and locations

Samples were collected from Erzincan, Türkiye and preserved and prepared according to the methods described by Mąkol (2005) and Mąkol and Sevsay (2011). Specimens of E. trigonum were collected from Ahmediye village, 39°52′54″N, 39°20′31″E, 2048 m, moist soil and moss, 27 April 2021. Specimens of T. latum were collected from Demirpınar Stream Basin, Üzümlü Town. 39°57′12″N, 39°35′21″E, from soil close to the Astragalus, 22 May 2021 and from the Ahmediye village, the sampling site of E. trigonum.

Larvae of T. latum were obtained by rearing a field-collected ovigerous female under controlled laboratory conditions, solely for the purpose of obtaining specimens for cytogenetic analysis. The female was placed in a glass vial containing charcoaled Plaster-of-Paris and covered with a tight, semi-transparent lid to maintain humidity and allow visual inspection. No experimental data were recorded from this procedure beyond larval availability. The morphological identification follows Mąkol (2002) for T. latum, and Gabryś (1999) for E. trigonum.

Cytogenetic method

The cytogenetic preparations were made from the protocol presented by Imai et al. (1988) and modified by Gokhman and Quicke (1995). The samples were pretreated and crushed in hypotonic solution (1% sodium citrate containing 0.005% colchicine) for 30 min., and transferred into a fresh hypotonic solution (0.075 M KCl) for 20 min. Then the samples were fixed in freshly prepared fixative solution (acetic acid: ethanol - 3:1). After the fixation, the material was transferred to a clean slide and air-dried. Then the slides were stained with 8% Giemsa.

Ten metaphase plates with good distribution and prominent chromosomes were evaluated for each species. The plates were imaged using a DP72 digital camera mounted on an Olympus BX53 light microscope. Chromosomal measurements were made using KaryoType software and karyotype formulae were determined. The karyotype formulae consisted of the following expressions: metacentric (m), submetacentric (sm), and acrocentric (a). The ideograms were drawn from the largest chromosome to the smallest chromosome based on the chromosomal lengths. The karyotype asymmetry was calculated according to the S/AI formula (symmetry/asymmetry index) (Eroğlu 2015).

COI sequence analysis

COI marker was used to generate sequences, as this marker has been widely used for species delimitation across various Parasitengona mites (Antonovskaia 2018; Young et al. 2012; 2019, 2021; Mąkol and Felska 2024). We generated COI sequences from four adults and a pool consisting of 20 larvae of T. latum.

DNA extraction was performed using the GeneJet Purification Kit (Thermo Fisher Scientific). A total PCR mixture of 50 μL was prepared with 17.5 μL of H₂O, 2.5 μL of each primer (10 pmol/μL), 25 μL of High Fidelity PCR Master Mix (Thermo Scientific), and 2.5 μL of DNA sample. The PCR conditions followed the protocol described by Hornok et al. (2015) using the LCO1490 and HCO2198 primers (Folmer et al. 1994). Samples were sent to Macrogen for sequencing. Sequences were aligned using the Clustal W program (Larkin et al. 2007) and compared using BLAST provided by the National Center for Biotechnology Information (NCBI) at http://blast.ncbi.nlm.nih.gov/Blast.cgi . The unique haplotype obtained in this study has been uploaded to GenBank (GenBank Accs. Number: PQ896991).

Results

Figure 1. Photomicrograph of mitotic metaphase chromosomes of Trombidium latum, 2n=12. A – first metaphase region; B – second metaphase region; C – third metaphase region (from different slides).

Table 1. Detailed chromosome measurements of Trombidium latum.

Download as CSV


Chromosome pair Long arm length (μm) Short arm length (μm) Total length (μm) Relative length (%) Arm ratio Centromeric index (%) Chromosome type
1 1.17 0.75 1.92 23.10 1.56 39.06 metacentric
2 0.90 0.70 1.60 19.25 1.29 43.75 metacentric
3 0.83 0.52 1.35 16.25 1.60 38.52 metacentric
4 0.76 0.51 1.27 15.28 1.49 40.16 metacentric
5 0.91 0.21 1.12 13.48 4.33 18.75 acrocentric
6 0.82 0.23 1.05 12.64 3.56 21.90 acrocentric

In T. latum, the diploid chromosome number was 2n=12 (Figure 1). The lengths of the small metacentric and acrocentric chromosomes ranged from 1.05 to 1.92 µm. The karyotype formula was 8m + 4a. The haploid chromosome length and mean chromosome length were 8.31 and 1.39 μm, respectively. The relative length and centromeric index ranged from 12.64 to 23.10 and from 18.75 to 43.75, respectively (Table 1). The S/AI value was 1.66. There was no satellite on the chromosomes (Figure 2).

Figure 2. Monoploid idiogram of Trombidium latum.

In E. trigonum, the diploid chromosome number was 2n=14 (Figure 3). The lengths of the small metacentric, submetacentric, and acrocentric chromosomes ranged from 0.68 to 1.40 µm. The karyotype formula was 2m + 6sm + 6a. The haploid chromosome length and mean chromosome length were 6.35 and 0.91 μm, respectively. The relative length and centromeric index ranged from 10.71 to 22.05 and from 18.57 to 42.14, respectively (Table 2). The S/AI value was 2.29. There was no satellite on the chromosomes (Figure 4).

Figure 3. Photomicrograph of mitotic metaphase chromosomes of Eutrombidium trigonum, 2n=14; A – first metaphase region; B – second metaphase region; C – third metaphase region (from different slides).

Table 2. Detailed chromosome measurements of Eutrombidium trigonum.

Download as CSV


Chromosome pair Long arm length (μm) Short arm length (μm) Total length (μm) Relative length (%) Arm ratio Centromeric index (%) Chromosome type
1 0.81 0.59 1.40 22.05 1.37 42.14 Metacentric
2 0.68 0.25 0.93 14.65 2.72 26.88 Submetacentric
3 0.59 0.33 0.92 14.49 1.79 35.87 Submetacentric
4 0.56 0.31 0.87 13.70 1.80 35.63 Submetacentric
5 0.66 0.19 0.85 13.39 3.47 22.35 Acrocentric
6 0.57 0.13 0.70 11.02 4.38 18.57 Acrocentric
7 0.55 0.13 0.68 10.71 4.23 19.12 Acrocentric

Figure 4. Monoploid idiogram of Eutrombidium trigonum.

COI sequence analysis and species identification

The comparison of COI sequences confirmed that the samples collected from Erzincan Province belong to T. latum. BLAST analysis showed 99.3% and 99.1% identity with the sequences PQ193923.1 and PQ193922.1, respectively, both derived from T. latum specimens collected in Poland (Mąkol and Felska 2024). The observed nucleotide differences (three and four base substitutions) therefore interpreted as geographic variation within the species rather than evidence of a distinct taxon.

Discussion

The selection of T. latum and E. trigonum in this study was initially based on their abundance at the sampling sites and their wide distribution in Europe (Mąkol and Wohltmann 2012), which suggests their ecological relevance. Notably, our study provides the first chromosomal data for both species, filling a significant gap in the cytogenetic knowledge of Trombidioidea. For T. latum, known issues of morphometric overlap with other congeners, especially in postlarval stages (Mąkol and Felska 2024), posed challenges for accurate identification. The integration of COI barcoding in our methodology proved essential for validating morphological diagnoses (Mąkol and Felska 2024), thereby strengthening the reliability of our karyological findings. In the case of E. trigonum, the species' distinct morphological characters facilitated identification in early developmental stages (Husband and Wohltmann 2011). By generating the first karyotypes for these taxa, our study offers a baseline for future comparative cytogenetic work and contributes to clarifying evolutionary and systematic relationships within Trombidiidae and Microtrombidiidae.

Table 3. List of chromosome numbers reported in mites (updated after Sokolov 1954).

Download as CSV


Family Genus Species Chromosome number References
Erythraeidae Erythraeus Erythraus sp. 2n=16 Sokolov 1954
Trombiculidae Leptotrombidium L. akamushi 2n=12 Hoshiba et al. 2005
L. scutellare 2n=14
L. deliense 2n=14 Shirai et al. 1984
L. fletcheri 2n=14
L. arenicola 2n=28
Trombidiidae Allothrombium A. fuliginosum 2n=24 Sokolov 1954
Trombidium T. latum 2n=12 NEW
Microtrombidiidae Eutrombidium E. trigonum 2n=14
Arrhenuridae Arrhenurus A. bicuspidator 2n=20 Sokolov 1954
A. papillator 2n=20
A. maculator 2n=10
A. pustulator 2n=26
A. (Megaluracarus) caudatus 2n=18
Eylaidae Eylais E. rimosa 2n=4
E. setosa 2n=4
E. mutila 2n=6
Hydrachnidae Hydrachna H. globosa 2n=12
H. leegei 2n=18
Hydrodromidae Hydrodroma H. despiciens* 2n=6 Sokolov 1954
Hydryphantidae Hydryphantes H. clypeatus 2n=6
H. bayeri 2n=10
Hydryhantes sp. 2n=10
H. ruber 2n=12
Thyas T. dirempta 2n=18
Hygrobatidae Hygrobates H. calliger 2n=14
Lebertiidae Lebertia L. (Pilolebertia) porosa 2n=16
Frontipoda F. musculus 2n=18
Limnesiidae Limnesia L. maculata 2n=18
L. undulata 2n=18
Limnocharidae Limnochares L. aquatica 2n=6
Pionidae Piona P. coccinea v. coccinea 2n=20
P. uncata 2n=20
P. carnea 2n=22
P. nodata 2n=8
Unionicolidae Unionicola U. crassipes 2n=18
Neumania N. vernalis 2n=4
Eriophyidae Aceria A. sheldoni 2n=4 Helle and Wysoki 1983
Aculops A. tetanothrix 2n=4
Aculus A. persicae 2n=4
A. schlechtendali 2n=4
Artacris A. macrorhynchus 2n=4
Phyllocoptruta P. oleivora 2n=4
Phytoptus P. tiliae 2n=4
Eupodidae Linopodes Linopodes sp. 2n=18 Sokolov 1954
Eupodes Eupodes sp. 2n=18
Pyemotidae Phytonemus P. pallidus 2n=4 Bolland and Magowski 1995
P. fragariae 2n=4
Pyemotes P. tritici 2n=6
Tarsonemus T. confusus 2n=4
T. hermes 2n=4
T. nodosus 2n=4
Stigmaeidae Agistemus A. sanctiluciae 2n=4 Bolland and Ueckermann 1984
A. camerounensis 2n=4
Eupalopsellus E. brevipalpus 2n=8
Eustigmaeus E. bryonemus 2n=8 Flechtmann 1984
Tarsonemidae Pediculopsis P. graminum 2n=6 Zalewska 1979
P. ventricosus 2n=6
Polyphagotarsonemus P. latus 2n=4 Flechtmann and Flechtmann 1984
Tenuipalpidae Pentamerismus P. taxi 2n=6 Helle and Wysoki 1983
Aegyptobia Aegyptobia sp. 2n=4
Tetranychidae Eotetranychus E. uncatus 2n=6 Bolland et al. 1982
E. ranomofanae 2n=10 Zalewska 1979
E. carpini 2n=8
E. friedmanni 2n=6
E. sakalavensis 2n=4
Eutetranychus E. africanus 2n=4 Bolland et al. 1982
Mononychellus M. caribbeanae 2n=6 Gutierrez et al. 1991
Oligonychus O. gramineus 2n=8 Bolland et al. 1982
O. leandrianae 2n=8
O. plegas 2n=8
O. thelytokus 2n=6
Panonychus P. ulmi 2n=6 Bolland and Gotoh 1992
P. bambusicola 2n=6
P. thelytokus 2n=6
P. citri 2n=6
P. mori 2n=6
Petrobia P. moutiai 2n=8 Bolland et al. 1982
Schizonobia S. oudemansi 2n=8 Gutierrez and Bolland 1986
Schizotetranychus S. reticulatus 2n=6 Bolland et al. 1982
Schizotetranychus sp. 2n=6 Helle and Wysoki 1983
Tetranychus T. fijiensis 2n=8 Bolland et al. 1982
T. marianae 2n=8
T. lambi 2n=6
T. lombardinii 2n=6
T. macfarlanei 2n=6
T. yusti 2n=6
T. lintearius 2n=6
Tetranychus sp. 2n=10 Helle and Wysoki 1983
Tydeidae Tydeus T. caudatus 2n=4
Acaridida Rhizoglyphus R. echinopus 2n=10 Zalewska 1979
Tyrophagus T. neiswanderi 2n=12
T. putrescentiae 2n=16
T. palmarum 2n=16
Acarus A. siro 2n=18
Caloglyphus C. berlesi 2n=18
C. michaeli 2n=18
Glycyphagus G. domesticus 2n=18
Epidermoptidae Myialges M. pari 2n=16 Helle and Wysoki 1983
Gamasida Amblyseius A. arborens 2n=6 Wysoki and Bolland 1983
A. cucumeris 2n=8
A. potentillae 2n=8
A. isuki 2n=8
A. reductus 2n=8
A. salish 2n=8
Euseius E. (A.) scutalis 2n=8
Iphiseius I. degenerans 2n=8
Phytoseius P. hawaiiensis 2n=8
Typhlodromus T. (A.) transvaalensis 2n=8
T. annectens 2n=6
T. canadensis 2n=8
T. citri 2n=6
T. fallacis 2n=8
T. persianus 2n=8
T. porresi 2n=6
T. pyri 2n=8
Phytoseiidae Typhlodromus T. fallacis 2n=8 Zalewska 1979
T. occidentalis 2n=6
Argasidae Argas A. reflexus 2n=26
A. brumpti 2n=24
A. vespertilionis 2n=20
Ornithodorus O. (Pavlovskyella) gurneyi 2n=12 Oliver and Bremner 1968
O. (Pavlovskyella) macmillani 2n=16
O. papillipes 2n=16 Sokolov 1954
O. qurneyi 2n=12 Zalewska 1979
O. tartakovskii 2n=26 Sokolov 1954
Ixodidae Aponnoma A. hydrosauri 2n=18 Zalewska 1979
Boophilus B. calcaratus 2n=20 Sokolov 1954
B. microplus 2n=22 Garcia et al. 2002
Dermacentor D. andersoni 2n=20 Oliver 1972
D. hunteri 2n=20
D. occidentalis 2n=20
D. parumapertus 2n=20
D. silvarum 2n=20 Sokolov 1954
D. variabilis 2n=20 Oliver 1972
Haemaphysalis H. bispinosa 2n=20 Oliver et al. 1974
H. campanulata 2n=20
H. flava 2n=20
H. formosensis 2n=20
H. hystricis 2n=18
H. japonica 2n=20
H. kitaokai 2n=18
H. longicornis 2n=20 Oliver 1973
H. longicornis 2n=20 Oliver et al. 1974
H. megaspinosa 2n=20
H. pentalagi 2n=20
Ixodidae Hyalomma H. anatolicum 2n=20 Sokolov 1954
H. anatolicum excavatum 2n=20
H. asiaticum 2n=21
H. detritum 2n=21
H. dromedarii 2n=21
H. plumbeum (=marginatum) 2n=20
H. plumbeum plumbeum 2n=20
Ixodidae Ixodes I. ricinus 2n=28 Zalewska 1979
I. hexagonus 2n=26
I. holocyclus 2n=24
Ixodes spp. 2n=28 Kotsarenko et al. 2020
I. ricinus cell lines IRE/CTVM19 2n=23
I. ricinus cell lines IRE/CTVM20 2n=48
I. scapularis cell lines ISE18 2n=48
Rhipicaphalus R. bursa 2n=20 Sokolov 1954
Opilioacaridae Opilioacarus O. thaleri 2n=16 Vazquez et al. 2021
Oribatida Belba B. verticillipes 2n=18 Sokolov 1954
Euzetes E. semilunum 2n=18
Galumna Galumna sp. 2n=18
Hypochthonius H. rufulus 2n=18
Notaspis N. punctatus 2n=18
Nothrus N. palustris 2n=18 Zalewska 1979
N. silvestris 2n=18 Sokolov 1954
Brasilobates B. spinosus 2n=16 Heethoff et al. 2006
B. spinosus 2n=16 Zhang et al. 2004
Galumna G. longiporosa 2n=19 Heethoff et al. 2006
G. longiporosa 2n=19 Zhang et al. 2004
Hermannia H. gibba 2n=16 Zalewska 1979
Hermanniella H. gibber 2n=22 Gümüş et al. 2022
Hypochtonius H. ryfulus 2n=18 Zalewska 1979
Notaspis N. punctatus 2n=18
Oribotritia O. hermanni 2n=14 Gümüş et al. 2022
Platynothorus P. peltifer 2n=18 Zalewska 1979
Poroliodes P. farinosus 2n=18
Trhypochthonius T. tectorum 2n=18
Xenillus X. tegeocranus 2n=18
Zygoribatula Z. cognata 2n=30 Eroğlu and Per 2016

* This species was reported by Onrat et al. (2006) as having 2n = 16 chromosomes. They referenced Sokolov (1954), but did not discuss the reason for the discrepancy in chromosome numbers.

The karyotype data published to date are presented in Table 3. As illustrated in the table, there has been a gradual decline in interest in chromosomal studies over time. This decline may be attributed to the technical difficulties of cytogenetic analysis in mites and the greater focus on molecular methods in recent years. Diploid chromosome numbers in mites generally range from 4 to 30 (for detailed references, see Supplmeentary Table 1). The chromosome counts observed in T. latum and E. trigonum also fall within this range. Notably, as these represent the first chromosomal records for the families Trombidiidae and Microtrombidiidae, direct comparisons with closely related species are currently not possible. Nevertheless, the results presented here provide a valuable cytogenetic baseline and are expected to contribute significantly to the accumulation of karyological data within these understudied mite families. The S/AI parameter is widely used in detecting karyotype asymmetry (Eroğlu 2015). The karyotype of T. latum was ''symmetric'' type by S/AI value of 1.66 (1.0 < S/AI ≤ 2.0). The symmetrical karyotype indicates the early stages of karyotype evolution. The karyotype of E. trigonum was ''between symmetric and asymmetric'' type by S/AI value of 2.29 (2.0 < S/AI ≤ 3.0).

The phylogenetic utility of karyotype data in Trombidioidea remains difficult to assess due to the paucity of comparable chromosomal records within the group. While the diploid chromosome numbers and karyotype symmetry values presented here offer important baseline data for T. latum and E. trigonum, they cannot yet be reliably used for phylogenetic inference at higher taxonomic levels. Even in relatively better-studied mite groups, such as Ixodidae, significant intraspecific variation has been observed (e.g., Ixodes ricinus, Kotsarenko et al. 2020), suggesting that chromosomal characteristics may be subject to microevolutionary change. As such, the current variability within and across mite taxa cautions against overinterpretation of karyotype traits in the absence of broader comparative frameworks. Nonetheless, with future studies expanding cytogenetic datasets in mites, especially through standardized protocols, karyotype characters may eventually contribute to resolving phylogenetic relationships when combined with molecular and morphological data. The most important of these karyotype characters are basic and diploid chromosome numbers, chromosome type, and karyotype asymmetry. Especially chromosome type (monocentric or holocentric) constitutes an important differentiation model in many insect groups (Heethoff et al. 2006; Melters et al. 2012). While the chromosomes of T. latum and E. trigonum are monocentric, there are reports of holocentric chromosomes in mites (Eroğlu and Per 2016; Gümüş et al. 2018, 2022). However, monocentric chromosomes, which allow the determination of chromosome types, karyotype formula and karyotype asymmetry, are more prominent in terms of understanding karyotype evolution.

COI barcoding has emerged as a promising and increasingly valuable tool for accurately identifying mite species, particularly those within taxonomically challenging families like Trombidiidae. This molecular technique offers a standardized and complementary approach to traditional morphological identification, especially in morphologically cryptic groups. However, its effectiveness remains limited by the currently sparse sequence data available for many mite taxa, including Parasitengona. Only a limited number of species within the Trombidiidae family have reliable reference sequences available in public databases, which currently constrains the accuracy of molecular species delimitation (Young et al. 2019, 2021). In this study, COI barcoding successfully identified the specimens collected from Erzincan Province as T. latum, with 99.1–99.3% sequence identity to reference sequences from Poland. These values fall within the widely accepted threshold for intraspecific variation (≤2%) for species-level identification (Hebert et al. 2003; Young et al. 2019, 2021), supporting conspecificity despite three to four nucleotide differences. These minor variations likely reflect geographic differentiation within the species. Our results not only confirm the identity of T. latum through molecular means but also contribute to closing the molecular data gap in Parasitengona, underscoring the need for further studies with broader geographic sampling and additional genetic markers to explore population structure and evolutionary relationships in this understudied group.

While our results provide preliminary cytogenetic and molecular data for two trombidioid mite species, further integrative studies will help to more fully evaluate the potential of combining these approaches for species delimitation. The current findings offer a valuable reference point; however, certain limitations should be acknowledged. Chromosomal analyses were based on a limited number of individuals, and further studies are needed to assess intraspecific karyotypic variability. Likewise, although COI barcoding was informative for species identification, reliance on a single gene and a limited reference dataset restricts broader phylogenetic inference. In addition, we acknowledge that many of the available COI reference sequences are tied to species hypotheses that were originally based on limited morphological datasets, often involving a small number of specimens from single localities. In Parasitengona, intraspecific variation in morphological traits is rarely assessed, and other informative criteria such as reproductive isolation or life cycle data are largely absent. Consequently, COI comparisons may reflect similarity to potentially unstable or insufficiently defined species concepts. While we interpret our results as strong support for the identification of T. latum, we also recognize that molecular species delimitation in mites—especially in understudied groups—remains tentative unless supported by integrative evidence. This reinforces the importance of developing broader reference frameworks and expanding comparative analyses that combine molecular, morphological, and ecological data (Blaxter 2004; Dayrat 2005; Knowlton 2000). Future research incorporating multi-locus approaches and comparative karyotype analyses across related taxa will be critical for advancing our understanding of mite evolution and taxonomy.

Acknowledgments

This study is part of the master's thesis of the first author and was presented as a short summary (only T. latum) at 3rd International Symposium on Biodiversity Research 20-22 October 2021, Erzurum, Türkiye. This study was financially supported by the Scientific Research Fund of Erzincan Binali Yıldırım University (EBYU), research project number FYL-2020-748. We are very grateful to EBYU for its financial support. We would like to thank Alper Torunlar for his assistance in collecting T. latum specimens during fieldwork, and Nisa Gümüş for her help with the laboratory work. Also, we are very grateful to the two anonymous referees for their valuable comments, which also contributed significantly to the improvement of the manuscript.



References

  1. Antonovskaia A.A. 2018. Using DNA markers in studies of chigger mites (Acariformes, Trombiculidae). Entomol. Rev., 98: 1351-1368. https://doi.org/10.1134/S0013873818090130
  2. Blaxter M. 2004. The promise of a DNA taxonomy. Philos. Trans. R. Soc. B: Biol. Sci., 359(1444): 669-679. https://doi.org/10.1098/rstb.2003.1447
  3. Bolland H., Gutierrez J., Helle W. 1982. Chromosomes in spider mites (Tetranychidae- Acari). Acarologia, 23(3): 271-275.
  4. Bolland H.R., Gotoh T. 1992. Chromosome numbers in the genus Panonychus in Japan (Acari: Tetranychidae). Appl. Entomol. Zool., 27(4): 602-604. https://doi.org/10.1303/aez.27.602
  5. Bolland H.R., Magowski W.L. 1995. The chromosome number in tarsonemid and pyemotid mites (Acari: Heterostigmata: Tarsonemidae, Pyemotidae). Entomol. Ber., 55(10): 166-167.
  6. Bolland H.R., Ueckermann E.A. 1984. Raphignathoid mites (Acari: Prostigmata) from Cameroun with reference to their chromosome numbers. Phytophylactica, 16(3): 201-108. https://doi.org/10.10520/AJA03701263_871
  7. Cooper K.W. 1937. Reproductive behavior and haploid parthenogenesis in the grass mite, Pediculopsis graminum. Proc. Natl. Acad. Sci. U.S.A., 23: 41-44. https://doi.org/10.1073/pnas.23.2.41
  8. Cooper K.W. 1939. The nuclear cytology of the grass mite, Pediculopsis graminum, with special reference to karyomerokinesis. Chromosoma, 1: 51- 103. https://doi.org/10.1007/BF01271623
  9. Dayrat B. 2005. Toward integrative taxonomy. Biol. J. Linn. Soc., 85(3): 407-415. https://doi.org/10.1111/j.1095-8312.2005.00503.x
  10. Eroğlu H.E. 2015. Which chromosomes are subtelocentric or acrocentric? A new karyotype symmetry/ asymmetry index. Caryologia, 68: 239-245. https://doi.org/10.1080/00087114.2015.1032614
  11. Eroğlu H.E., Per S. 2016. Karyotype analysis of Zygoribatula cognata (Oudemans) (Acari: Oribatida: Oribatulidae). Turk. J. Entomol., 40(1): 33-38. https://doi.org/10.16970/ted.50556
  12. Flechtmann C.H.W. 1984. Eustigmaeus bryonemus, sp. n., a moss-feeding mite from Brasil (Acari, Prostigmata: Stigmaeidae). Rev Brasil. Zool., 2: 387-391. https://doi.org/10.1590/S0101-81751984000200010
  13. Flechtmann C.H.W., Flechtmann C.A.H. 1984. Reproduction and chromosomes in the broad mite, Polyphagotarsonemus latus (Bank,1904) (Acar, Prostigmata, Tarsonemidae), pp. 455-456. In: Griffith D.A., Bowman C., Acarology, VI, vol. 1(1), Ellis Horwood Ltd., Chichester.
  14. Folmer O., Black M., Hoeh W., Lutz R., Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294-299.
  15. Gabryś G. 1999. The world genera of Microtrombidiidae (Acari, Actinedida, Trombidioidea).
  16. Monogr. Uppe. Siles. Mus. 2: 1-361.
  17. Garcia R.N., Garcia-Fernandez C., Garcia S.M.L., Valente V.L.S. 2002. Mitotic and meiotic chromosomes of a southern Brazilian population of Boophilus microplus (Acari, Ixodidae). Iheringia Ser. Zool., 92: 51-57. https://doi.org/10.1590/S0073-47212002000100004
  18. Gokhman V.E., Quicke D.L.J. 1995. The last twenty years of parasitic Hymenoptera karyology: An update and phylogenetic implications. J. Hymenopt. Res., 4: 41-63.
  19. Gutierrez J., Bolland H.R. 1986. Description and karyotype of Schizonobia oudemansi n. sp. from The Netherlands (Acari: Tetranychidae). Entomol. Ber., 46(1): 39-43.
  20. Gutierrez J., Bolland H.R., Etienne J., Cotton D. 1991. Deuterotoky in Mononychellus caribbeanae (Acari: Tetranychidae) on Cassava in Guadeloupe. Karyotype and preliminary biological data. Modern Acarology, vol. 2: 443-447. https://hal.inrae.fr/hal-02851556
  21. Gümüş N., Per S. Eroğlu H.E. 2018. Karyotype analysis of Phauloppia lucorum (Koch, 1841) (Oribatida: Oribatulidae). Turk. J. Entemol., 42, 77-83. https://doi.org/10.16970/entoted.382980
  22. Gümüş N., Eroğlu H.E., Per S. 2022. Karyotype analysis of two oribatid mite species (Acari: Oribatida). Acarol. Stud., 4(1): 41-45. https://doi.org/10.47121/acarolstud.1059305
  23. Hansell R.I.C., Mollison M.M., Putman W.L. 1964. A cytological demonstration of arrhenotoky in three mites of the family Phytoseiidae. Chromosoma, 15: 562-67. https://doi.org/10.1007/BF00319990
  24. Hebert P.D.N., Ratnasingham S., DeWaard J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Series B: Biol. Sci., 270 (Suppl.1): 96-99. https://doi.org/10.1098/rsbl.2003.0025
  25. Heethoff M., Bergmann P., Norton R.A. 2006. Karyology and sex determination of oribatid mites. Acarologia, 46(1-2): 127-131.
  26. Helle W., Bolland H.R. 1967. Karyotypes and sex-determination in spider mites (Tetranychidae). Genetica, 38: 43-53. https://doi.org/10.1007/BF01507446
  27. Helle W., Wysoki M. 1983. The chromosomes and sex-determination of some actinotrichid taxa (Acari), with special reference to Eriophyidae. Int. J. Acarol., 9(2): 67-71. https://doi.org/10.1080/01647958308683315
  28. Hornok S., Estrada-Pe˜na A., Kontsch'an J., Plantard O., Kunz B., Mihalca A.-D., Thabah A., Tomanovi'c S., Burazerovi'c J., Tak'acs N. 2015. High degree of mitochondrial gene heterogeneity in the bat tick species Ixodes vespertilionis, I. ariadnae and I. simplex from Eurasia. Parasit. Vectors, 8: 1-8. https://doi.org/10.1186/s13071-015-1056-2
  29. Hoshiba H., Takahashi M., Misumi H., Urakami H. 2005. Chromosome studies of Leptotrombidium akamushi and L. scutellare (Acari: Trombiculidae) in Japan. Int. J. Acarol., 31(2): 171-174. https://doi.org/10.1080/01647950508683669
  30. Husband R.W., Wohltmann A. 2011. A redescription of Eutrombidium locustarum (Walsh) (Acari: Microtrombidiidae) and a new North American Podapolipoides (Acari: Podapolipidae), parasites of Schistocerca piceifrons (Walker) (Orthoptera: Acrididae) from Yucatan, Mexico. Int. J. Acarol., 37: 260-292. https://doi.org/10.1080/01647954.2011.564592
  31. Imai H., Taylor R.W. Crosland M.V., Crozier R. 1988. Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. Jpn. J. Genet., 63(2): 159-185. https://doi.org/10.1266/jjg.63.159
  32. Knowlton N. 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420(1): 73-90. https://doi.org/10.1023/A:1003933603879
  33. Kotsarenko K., Vechtova P., Lieskovska J., Füssy Z., Cabral-de-Mello D.C., Rego R.O., Alberdi P., Collins M., Bell-Sakyi L., Sterba J., Grubhoffer L. 2020. Karyotype changes in long-term cultured tick cell lines. Sci. Rep., 10(1): 13443. https://doi.org/10.1038/s41598-020-70330-5
  34. Larkin M.-A., Blackshields G., Brown N.-P., Chenna R., McGettigan P.-A., McWilliam H., Valentin F., Wallace I.-M., Wilm A., Lopez R., Thompson J.-D. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21): 2947-2948. https://doi.org/10.1093/bioinformatics/btm404
  35. Mąkol J. 2002. A redescription of Trombidium latum (C. L. Koch, 1837) (Acari: Actinotrichida, Trombidioidea) with characteristics of all active instars. Ann. Zool., 52: 433-442.
  36. Mąkol J. 2005. Trombidiidae (Acari: Actinotrichida: Trombidioidea) of Poland. Fauna Poloniae, Museum and Institute of Zoology, Polish Academy of Sciences & Natura Optima Dux Foundation, Warsaw, Vol. 1 [NS]: 1-259.
  37. Mąkol J., Sevsay S. 2011. Notes on the genus Dolichothrombium (Acari: Prostigmata: Trombidiidae) with description of a new species. Zootaxa, 2971: 1-16. https://doi.org/10.11646/zootaxa.2971.1.1
  38. Mąkol J., Felska M. 2024. The syntopic occurrence of velvet mites Trombidium spp. (Acariformes: Trombidiidae) with the first characteristics of the larva of Trombidium heterotrichum. Sci. Rep., 14: 32155. https://doi.org/10.1038/s41598-024-81750-y
  39. Mąkol J., Wohltmann A. 2012. An annotated checklist of terrestrial Parasitengona (Actinotrichida: Prostigmata) of the World, excluding Trombiculidae and Walchiidae. Ann. Zool., 62(3): 359-562. https://doi.org/10.3161/000345412X656671
  40. Mąkol J., Wohltmann A. 2000. A redescription of Trombidium holosericeum (Linnaeus, 1758) (Acari: Actinotrichida, Trombidioidea) with characteristics of all active instars and notes on taxonomy and biology. Ann. Zool., 50: 67-91.
  41. Melters D.P., Paliulis L.V., Korf I.F., Chan S.W. 2012. Holocentric chromosomes: convergent evolution, mei-otic adaptations, and genomic analysis. Chromosome Res., 20 (5): 579-593. https://doi.org/10.1007/s10577-012-9292-1
  42. Norton R.A., Kethley J.B., Johnston D.E., OConnor B.M. 1993. Phylogenetic perspectives on genetic systems and reproductive modes of mites, pp. 8-99. In: Evolution and diversity of sex ratio in insects and mites. In: Wrensch D. and Ebbert, M.A. (Eds). Chapman and Hall, New York, USA, 1993. https://doi.org/10.1007/978-1-4684-1402-8_2
  43. Oliver J.H. 1964. Comments on karyotypes and sex determination in the Acari. Acarologia, 6: 288-93.
  44. Oliver J.H. 1965. Cytogenetics of ticks. 2. Multiple sex chromosomes. Chromosoma, 17: 323-27. https://doi.org/10.1007/BF00283388
  45. Oliver J.H. 1972. Cytogenetics of ticks (Acari: Ixodoidea) 6. Chromosomes of Dermacentor species in the United States. J. Med. Entomol., 9(2): 177-182. https://doi.org/10.1093/jmedent/9.2.177
  46. Oliver J.H. 1973. Cytogenetics of Ticks (Acari: Ixodoidea) 12. Chromosome and hybridization studies of bisexual and parthenogenetic Haemaphysalis longicornis races from Japan and Korea. Chromosoma, 42: 269-288. https://doi.org/10.1007/BF00284775
  47. Oliver J.H. 1977. Cytogenetics of mites and ticks. Annu. Rev. Entomol., 22: 407-429. https://doi.org/10.1146/annurev.en.22.010177.002203
  48. Oliver J.R J.H., Bremner K.C. 1968. Cytogenetics of ticks. III. Chromosomes and sex determination in some Australian hard ticks (Ixodidae). Annals of the Entomological Society of America, 61(4): 837-844. https://doi.org/10.1093/aesa/61.4.837
  49. Oliver J.H., Tanaka K., Sawada M. 1973. Cytogenetics of ticks. 12. Chromosomes and hybridization studies of bisexual and parthenogenetic Haemaphysalis longicornis races from Japan and Korea. Chromosoma, 42: 269-88. https://doi.org/10.1007/BF00284775
  50. Oliver J.H., Tanaka K., Sawada M. 1974. Cytogenetics of Ticks (Acari: Ixodoidea) 14. Chromosomes of nine species of Asian Haemaphysalines. Chromosoma, 45: 445-456. https://doi.org/10.1007/BF00283388
  51. Onrat S.T., Aşçı F., Özkan M. 2006. A cytogenetics study of Hydrodroma despiciens (Müller, 1776) (Acari: Hydrachnellae: Hydrodromidae). Genet. Mol. Res., 5(2): 342-349.
  52. Patau K. 1934. Cytologische Untersuchungen an der haploparthenogenetischen. Milbe Pediculoides ventricosus. Z. Jahrb., Allg. Zool., Bd. 56.
  53. Reuter E. 1909. Ferokinesis, ein neur Kernteilungsmodus. Acta Soc. Sci. Fenn, 36: 4.
  54. Robaux P. 1967. Contribution à l'étude des Acariens Thrombidiidae d'Europe: 1 Étude des Thrombidions adultes de la Péninsule Iberique 2 Liste critique des Thrombidions d'Europe. Mémoires du Muséum National d'Histoire Naturelle, 46: 1-124.
  55. Schrader F. 1923. Haploidy bei einer Spinnenmilbe. Arch. Midrosk. Anat, 97: 610-22. https://doi.org/10.1007/BF02977822
  56. Shirai A., Ram S., Gan E., Lewis J.-R., Kanda T., Chiang G.L., Groves M.G. 1984. Comparative studies on the karyotypes of Leptotrombidium deliense, L. fletcheri, and L. arenicola (Acari: Trombiculidae). J. Med. Entomol., 21(5): 616-617. https://doi.org/10.1093/jmedent/21.5.616
  57. Sokolov I.I. 1934. Untersuchungen uber die Spermatogenese bei den Arachniden. V. Uber die Spermatogenese der Parasitidae. Z. Zellforsch, 21: 42-109. https://doi.org/10.1007/BF00668270
  58. Sokolov I.I. 1945. Karyological study of some Acari and the problem of sex determination in the group. Izv. Akad. Nauk, 6: 654-63.
  59. Sokolov I.I. 1954. The chromosome complex of mites and its importance for systematics and phylogeny. Trud. Leningr. Obshch. Estestvois., 72: 124-59.
  60. Vázquez M. M., Herrera I.M.Á., Just P., Lerma A.C.R., Chatzaki M., Heller T.L., Král J. 2021. A new opilioacarid species (Parasitiformes: Opilioacarida) from Crete (Greece) with notes on its karyotype. Acarologia, 61(3): 548-563. https://doi.org/10.24349/acarologia/20214449
  61. Walsh B.D. 1866. Answers to corresponds: Walter Riddel, Canada West. The Practical Entomologist, 1(12): 126.
  62. Warren E. 1940. On the genital system of Dermanyssus gallinae and several other Gamasidae. Ann. Natal. Mus., 9: 409-59.
  63. Wohltmann A., Wendt F.E. 1996. Observations on the biology of two hygrobiotic trombidioid mites (Acari: Prostigmata: Parasitengonae), with special regard to host recognition and parasitism tactics. Acarologia, 37(1): 31-44.
  64. Wysoki M. 1973. Further studies on karyotypes and sex determination of phytoseiid mites. Genetica, 44: 139-45. https://doi.org/10.1007/BF00155967
  65. Wysoki M., Bolland H.R. 1983. Chromosome studies of phytoseiid mites (Acari: Gamasida). Int. J. Acarol., 9(2): 91-94. https://doi.org/10.1080/01647958308683319
  66. Wysoki M., Swirski E. 1968. Karyotypes and sex determination of ten species of phytoseiid mites. Genetica, 39: 220-28. https://doi.org/10.1007/BF02324464
  67. Young M.R., Behan-Pelletier V.M., Hebert P.D. 2012. Revealing the hyperdiverse mite fauna of subarctic Canada through DNA barcoding. PLoS One, 7(11): e48755. https://doi.org/10.1371/journal.pone.0048755
  68. Young M.R., DeWaard J.R., Hebert P.D. 2021. DNA barcodes enable higher taxonomic assignments in the Acari. Sci. Rep., 11(1): 15922. https://doi.org/10.1038/s41598-021-95147-8
  69. Young M.R., Proctor H.C., Dewaard J.R., Hebert P.D. 2019. DNA barcodes expose unexpected diversity in Canadian mites. Mol. Ecol., 28(24): 5347-5359. https://doi.org/10.1111/mec.15292
  70. Zalewska M. 1979. Kariosystematyka roztoczy. Przegl. Zool., 23: 140-148.
  71. Zhang P.J., Fu R.S., Wang Y.H. 2004. Karyotype analysis of two species of Oribatida (Acari). Acarologia, 44(3-4): 231-234.


Comments
Please read and follow the instructions to post any comment or correction.

Article editorial history
Date received:
2025-04-11
Date accepted:
2025-06-17
Date published:
2025-06-25

Edited by:
Mąkol, Joanna

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
2025 Karağaç, Rümeysa; Eroğlu, Halil Erhan; Hekimoğlu, Olcay and Sevsay, Sevgi
Downloads
 Download article

Download the citation
RIS with abstract 
(Zotero, Endnote, Reference Manager, ProCite, RefWorks, Mendeley)
RIS without abstract 
BIB 
(Zotero, BibTeX)
TXT 
(PubMed, Txt)
Article metrics

Dimensions

Cited by: view citations with

Search via ReFindit