Share this article    

              

       

New records of species of the family Phytoseiidae (Acari: Mesostigmata) from Ivory Coast

Touré, Moustapha 1 ; Kwadjo, Koffi Eric 2 ; Doumbia, Mamadou 3 and Kreiter, Serge 4

1Université Nangui Abrogoua, UFR-SN, Unité de Recherche en Entomologie Agricole du Pôle Production Végétale, 02 BP 801, Abidjan 02, Ivory Coast.
2Université Nangui Abrogoua, UFR-SN, Unité de Recherche en Entomologie Agricole du Pôle Production Végétale, 02 BP 801, Abidjan 02, Ivory Coast.
3Université Nangui Abrogoua, UFR-SN, Unité de Recherche en Entomologie Agricole du Pôle Production Végétale, 02 BP 801, Abidjan 02, Ivory Coast.
4✉ CBGP, Institut Agro Montpellier, INRAE, CIRAD, IRD, Univ Montpellier, Montpellier, France.

2025 - Volume: 65 Issue: 1 pages: 3-35

https://doi.org/10.24349/yk4c-l3jb

Original research

Keywords

mites predators surveys Carica papaya Amblyseiinae

Abstract

Ivory Coast is one of the largest countries in Western Africa. Despite this, only five species of the Phytoseiidae mite family have been reported from this country so far. This study aims to improve the understanding of Phytoseiidae mites in papaya orchards in Ivory Coast. Sampling was conducted between 2017 and 2018 in three areas of intensive papaya cultivation in Ivory Coast: Anyama Ahoue (Abidjan), Yobouekro (Toumodi), and Ngattakro (Yamoussoukro). It involved the direct collection of mites from papaya leaves. This study identified 12 species of Phytoseiidae, all belonging to the Amblyseiinae subfamily. Among these species, 11 are newly reported for this country, namely Neoseiulus longispinosus (Evans), N. teke Pritchard & Baker, Amblyseius swirskii Athias-Henriot, A. tamatavensis Blommers, Proprioseiopsis mexicanus (Garman), P. ovatus (Garman), Iphiseius degenerans (Berlese), Euseius fustis (Pritchard & Baker), E. lokele (Pritchard & Baker), E. nyalensis (El-Badry) and E. ovaloides (Blommers). This study is part of an ongoing census of the mite family Phytoseiidae in Ivory Coast, which must be extended to other crops to improve biological control of crop pests.


Introduction

Mites of the family Phytoseiidae are predatory species that feed on phytophagous mites and small insects such as thrips and whiteflies on both commercial plants and the endemic vegetation. Several species serve as biological control agents for the control of pest organisms in open field and protected crops worldwide (McMurtry and Croft 1997; McMurtry et al. 2013; Knapp et al. 2018). This family is widespread worldwide, present on all continents except Antarctica, and consists of about 2,500 valid species in 94 genera and three subfamilies (Demite et al. 2024). Biodiversity surveys in poorly investigated areas is still an urgent need, as they may lead to the discovery of additional species potentially useful for biological control, while also enhancing our understanding of biodiversity in these areas (Kreiter et al. 2018a, b, c, 2020a, b, c, 2021; Kreiter and Abo-Shnaf 2020a, b). From this perspective, areas with high biodiversity levels are particularly promising. Most of the African intertropical region constitutes one of the highest world biodiversity hotspots, a concept defined by Myers (1988) to identify regions of critical importance for biodiversity conservation. The common characteristics of these hotspots is their high levels of endemism, combined with the loss of at least 70% of their original natural vegetation (Myers et al. 2000). Knowledge of the phytoseiid diversity in these high interest areas is especially important in the context of global climate change, as it may help identify potential biological control agents (BCA) and support the future establishment of conservation programs.

Ivory Coast is an agricultural country where agriculture plays a crucial role in the national economy, contributing to one-third of the Gross Domestic Product (Gnago et al. 2010). In addition, in order to export crops such as coffee and cocoa, there are booming fruit crops such as papaya (Carica papaya L., Caricaceae). Papaya cultivation is more practiced in the southern and central regions of the country and has expanded significantly due to the Agricultural Export Promotion and Diversification Project (PPDEA). However, papaya production faces substantial challenges due to pressure from various pests, including phytophagous mites, which cause severe damage in papaya orchards. Biological control of these phytophagous mites required the use of predatory arthropods including mites of the family Phytoseiidae. Indeed, almost all species in this family are considered potential biological control agents (BCA) of mites and small phytophagous insects (McMurtry and Croft 1997; McMurtry et al. 2013).

Despite nearly 60 years of faunal studies conducted worldwide to search for phytoseiid species, many areas remain minimally explored or completely unexplored (Kreiter et al. 2020a, b, c, d). In Ivory Coast, very few surveys have focused on phytoseiids. Ragusa and Athias-Henriot (1983) recorded Amblyseius masiaka (Blommers & Chazeau, 1974), A. usitatus = N. usitatus (Van der Merwe), and Neoseiulus erugatus Ragusa and Athias-Henriot from soil samples. Athias-Henriot (1977) described N. lamticus (Athias-Henriot) from the Lamto region, in central Ivory Coast. Twenty kilometres from Yopougon, in the capital of Ivory Coast, Zannou et al. (2007) identified the species Amblyseius sundi Pritchard & Baker on Eucommia ulmoides Oliver (Eucommiaceae). Finally, Moraes et al. (1989a) recorded the species A. largoensis Muma. It should be noted that Amblyseius masiaka and N. usitatus are both junior synonyms of Neoseiulus barkeri Hughes (Ueckermann and Loots, 1988). Consequently, five species are currently recorded from Ivory Coast: N. barkeri, N. erugatus, N. lamticus, A. masiaka and A. sundi.

These results indicate that few studies have been carried out on the fauna of Phytoseiidae in Ivory Coast. This study was therefore carried out during years 2017 and 2018 on Carica papaya L. in order to contribute to a better knowledge of Phytoseiidae mites for biological control of crop pests in Ivory Coast. Here, we present the faunistic results.

Material and methods

Sampling of mites

The sampling of Phytoseiidae mites was conducted from 14/III/2017 to 17/IV/2018, as a part of the PhD thesis of the senior author (M. Touré) in Ivory Coast. The study covered three areas: Anyama, Yobouekro, and NGattakro, located in the departments of Abidjan, Toumodi, and Yamoussoukro, respectively. The average annual temperature and rainfall in these areas are 153.34 mm and 27.64 °C, 103.76 mm and 26.41 °C and 97.44 mm and 26.41 °C, respectively.

The sampling consisted of collecting papaya leaves from orchards at the different sites. The papaya leaves were cut, placed in transparent plastic bags, and transported to the laboratory for processing. Mites were collected from the papaya leaves using a binocular microscope. To facilitate observation under the microscope, the papaya leaves were cut into smaller lobes. A small brush soaked in alcohol was used to collect the mites, which were then transferred into microtubes containing 70% ethanol. These microtubes were labeled with information such as the date, collection area, plot, and sample block number.

Mounting of mites

The mites were mounted between the slide and coverslip using Hoyer's fluid (Walter and Krantz 2009). Slides were placed in an oven at 45 °C and subsequently sealed with a durable nail polish to ensure long-term preservation.

Taxonomical concepts

Chant and McMurtry's (1994, 2007) concepts of the taxonomy of the family Phytoseiidae for identification and the world catalogue database of Demite et al. (2014, 2024) for distribution and information on descriptions and re-descriptions were used. World distribution indicated for each species is the world distribution prior to this study.

The setal nomenclature system adopted was that of Lindquist & Evans (1965) and Lindquist (1994) as adapted by Rowell et al. (1978) and Chant & Yoshida-Shaul (1989) for the dorsal surface and by Chant & Yoshida-Shaul (1991) for the ventral surface. Pore (= solenostome) and poroid (= lyrifissure) notations are that of Athias-Henriot (1975).

Macrosetal notation (Sge = genual macroseta; Sti = tibial macroseta; St = tarsal macroseta, numbered I to IV depending on the position on legs I, II, III or IV) are that of Muma and Denmark (1970). Numbers of teeth on the fixed and movable cheliceral digits do not include the respective apical teeth. Setae not referred to in the Results section should be considered as absent. Type of spermatheca or insemination apparatus are that of Denmark and Evans (2011). All species recorded are measured and data mentioned in the literature for those species are provided in this paper. All measurements are given in micrometres (µm) and presented with the mean in bold followed by the range in parenthesis.

Classification of plants follows the APG IV classification of 2016 (ex. Byng et al. 2018). Specimens of each species are deposited in the mite collections of Montpellier SupAgro conserved in UMR CBGP INRA/IRD/CIRAD/Institut Agro/University of Montpellier.

Abbreviations used in tables

The following abbreviations are used in this paper for morphological characters (Table 1 to 19) in addition to macrosetal notation (see above): dsl = dorsal shield length just above j1 to just below J5 in the middle line; dsw s4 = dorsal shield width at the level of s4; dsw R1 = dorsal shield width at the level of R1; gensl = genital shield length; gensw st5 = genital shield width at level of steae st5; gensw post. corn. = genital shield width at level of posterior corners; lisl = primary or largest inguinal sigilla (= ''metapodal plate″) length; lisw = primary or largest inguinal sigilla (= ''metapodal plate″) width; sisl = secondary or shortest inguinal sigilla (= ''metapodal plate″) length; sisw = secondary or shortest inguinal sigilla (= ''metapodal plate″) width; vsl = ventrianal (or ventral for Iphiseius degenerans) shield length; asl = anal shield length; ; gv3 – gv3 = distance between centers of solenostomes gv3 on the ventrianal shield; vsw ant. corn. & vsw anus = ventrianal shield width at anterior corners level and at paranal setae level; asw = anal shield width; scl: calyx total length; scw = calyx widest width; fdl = fixed digit length; mdl = movable digit length; No teeth Fd = number of teeth on the fixed digit; No teeth Md = number of teeth on the movable digit; shaft = length of the shaft of spermatodactyl; branch = length of the toe; BCA = Biological control agent; aasl = altitude above sea level.

The following abbreviations are used in this paper for institutions: CBGP = Centre de Biologie pour la Gestion des Populations; CIRAD = Centre International de Recherche Agronomique pour le Développement; IA = Institut Agro; INRAE = Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement; IRD = Institut de Recherche pour le Développement; UMR = Unité Mixte de Recherche.

Results

We collected 12 species, 11 of which are new records for Ivory Coast.

All recorded species belong to the subfamily Amblyseiinae, with no representatives of the subfamilies Phytoseiinae and Typhlodrominae found on the papaya plant.

The species recorded belong to three Amblyseiinae tribes: Neoseiulini, Amblyseiini, Euseiini, and to five genera: Neoseiulus (2 species), Amblyseius (3 species), Proprioseiopsis (2 species), Iphiseius (1 species) and Euseius (4 species).

In this paper, we present taxonomical information, measurements, world distribution, list of field collections and general information (when available) on these twelve species: Neoseiulus longispinosus (Evans), N. teke Pritchard & Baker, Amblyseius sundi Pritchard & Baker, A. swirskii Athias-Henriot, A. tamatavensis Blommers, Proprioseiopsis mexicanus (Garman), P. ovatus (Garman), Iphiseius degenerans (Berlese), Euseius fustis (Pritchard & Baker), E. lokele (Pritchard & Baker), E. nyalensis (El-Badry), and E. ovaloides (Blommers).

Subfamily Amblyseiinae Muma

Amblyseiinae Muma, 1961: 273

Tribe Neoseiulini Chant & McMurtry

Neoseiulini Chant & McMurtry 2003: 6

Genus Neoseiulus Hughes

Neoseiulus Hughes, 1948: 141

Neoseiulus longispinosus (Evans)

Typhlodromus longispinosus Evans 1952: 413; Evans 1953: 465; Womersley 1954: 177; Ehara 1958: 55.

Typhlodromus (Amblyseius) longispinosus, Chant 1959: 74.

Amblyseius longispinosus, Corpuz & Rimando 1966: 129; Schicha 1975: 103.

Neoseiulus longispinosus, Moraes et al. 1986: 85; 2000: 245; Chant & McMurtry 2003: 37; Moraes et al. 2004b: 129; Chant and McMurtry 2007: 29.

This species belongs to the barkeri species group and to the womersleyi species subgroup, as the calyx is markedly constricted at the junction with the atrium, the atrium is deeply forked at the junction with the major duct, and the major duct, atrium, and calyx are not of the same width (Chant and McMurtry 2003).

This species is widely distributed in many countries of the world, mainly in tropical areas (Moraeset al. 2000; Mailloux et al. 2010; Kreiter et al. 2013, 2018 a, c; Demite et al. 2024). It was found rarely in surveys made in Guadeloupe, Martinique and La Réunion, except in studies on companion plants in citrus orchards (Mailloux et al. 2010; Kreiter et al. 2013, 2018c; Le Bellec et al., unpub. data). The species seems to be more common on weeds with populations of tetranychid mites. Neoseiulus longispinosus, a type II phytoseiid predatory mite, like N. californicus (McMurtry et al. 2013), has received increasing attention in Asia since 2010 for the control of different spider mites (of genera Eutetranychus, Oligonychus, and Tetranychus) (Nusartlert et al. 2011). The feeding, development, predation, cannibalism, intra-guild predation and behaviour have been extensively studied by several authors (see for exampleLuong et al. 2017) for pest control purposes. Neoseiulus longispinosus is well-known as a BCAused in many countries worldwide for spider mite management. A recent study by Huyen et al. (2017) have shown that, at least in controlled laboratory conditions, N. longispinosus is apotential biological control agent against the citrus red mite, P. citri.

Tetranychus urticae is a major pest of papaya in south Florida, where Neoseiulus longispinosus, a newly naturalized predator, has become the most abundant predator associated with this pest. Single releases of N. longispinosus significantly suppressed TSSM populations. That study demonstrated that N. longispinosus has the potential to control TSSM on papaya, but the level of control can be negatively affected by high levels of cannibalism at low prey densities, as well as intraguild predation by aggressive intraguild predators, like A. swirskii (Döker et al. 2021).

This is the first record of this species in Ivory Coast.

Specimens examined — 45 ♀♀ and 1 ♂ collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W), on Carica papaya L.

World distribution — Australia, China (Fujian, Guangdong, Guangxi, Hainan, Yunnan), Cuba, Dominican Republic, Egypt, Grande Comore Island (Comoros), Guadeloupe Island (France), Hawaii, Hong Kong, India (Andaman Islands, Andhra Pradesh, Bihar Pradesh, Kerala, Orissa, Pondicherry, Tamil Nadu, Uttar Pradesh), Indonesia, Japan, Les Saintes Islands (France), Malaysia, Marie-Galante Island (France), Martinique (France), New Zealand, Nicaragua, Pakistan, Papua New Guinea, Philippines, La Réunion Island (France), Rodrigues Island (Mauritius), Russia (Primorsky Territory), Saint-Barthélémy Island (France), South Korea, Sri Lanka, Taiwan, Thailand, USA (Florida), Vietnam.

Remarks — The measurements of the female and male specimens from Ivory Coast (Table 1 and 2) overlap with those obtained from populations in various countries. These measurements are close to those obtained for specimens from FCI and La Réunion Island.

Table 1. Comparison of character measurements of adult females of Neoseiulus longispinosus collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (10) (this study) Grande Comore (1) La Réunion (18) Sri Lanka (3) Indonesia Holotype (1) Taiwan (?) Thailand (3) FCI (7) Martinique (8)
dsl 335 (300–352) 380 320 (278–348) 321 (313–338) 332 330 (315–340) 332 (308–398) 321 (295–340)
dsw s4 176 (150–195) 192 183 (150–205) 187 (175–208) 173 186 (178–195) 179 (154–200) 168 (150–183)
dsw R1 180 (170–198)
j1 18 (13–22) 20 18 (15–20) 18 (17–19) 14 17 19 (18–21) 18 (16–22) 16 (13–18)
j3 61 (58–65) 69 62 (53–73) 62 (61–64) 51 58 61 (56–68) 59 (52–64) 58 (48–63)
j4 59 (53–63) 70 55 (48–60) 58 (56–60) 49 59 58 (54–62) 59 (52–65) 56 (50–65)
j5 70 (65–75) 78 66 (58–73) 70 (69–71) 59 69 (65–72) 69 (64–75) 66 (60–73)
j6 73 (65-79) 78 73 (65–83) 70 (68–72) 64 71 (68–73) 72 (68–75) 68 (60–83)
J2 74 (66–81) 88 74 (68–83) 77 (75–79) 66 74 (68–81) 76 (73–78) 76 (68–88)
J5 9 (8–10) 10 8 (6–10) 8 10 9 (7–12) 9 (8–11) 9 (8–10)
r3 58 (55–65) 75 59 (48–78) 55 (55–56) 54 61 (50– 67) 57 (49–62) 54 (45–63)
R1 60 (55–65) 70 61 (54–80) 60 (59–62) 58 63 (55–70) 61 (57–65) 57 (50–63)
s4 83 (80–90) 82 (70–88) 82 (80–83) 75 72 81 (76–85) 77 (73–80) 78 (73–88)
S2 80 (73–90) 88 75 (68–85) 73 (70–79) 67 70 73 (68–80) 72 (68–76) 69 (63–76)
S4 54 (48–58) 63 56 (43–68) 59 (57–62) 49 58 61 (56–68) 57 (48–76) 52 (45–58)
S5 18 (14–20) 18 17 (15–18) 21 (19–23) 15 17 20 (18–25) 16 (14–16) 14 (13–15)
z2 68 (63–73) 75 67 (56–75) 69 (68–70) 58 62 66 (62–70) 65 (62–68) 64 (58–70)
z4 71 (65–83) 78 73 (65–80) 73 (73–75) 58 65 71 (68–75) 69 (67–73) 70 (63–87)
z5 31 (28–35) 38 27 (23–33) 32 (32–38) 31 (25–36) 35 (32–40) 31 (28–35)
Z1 76 (73–80) 83 75 (65–85) 77 (76–78) 67 75 (71–78) 75 (72–80) 74 (68–80)
Z4 72 (68–75) 78 70 (63–75) 72 (71–73) 68 65 71 (65–76) 71 (67–75) 69 (63–78)
Z5 78 (71–89) 85 81 (73–88) 80 (80–81) 72 70 78 (72–81) 80 (78–81) 77 (65–80)
st1-st1 49 (45–55) 48 47 (43–50) 46 (45–50)
st2-st2 57 (53–60) 55 58 (55–60) 53 (50–55) 59 (57–60) 55 (49–57) 54 (53–55)
st3-st3 72 (68–75) 60 71 (68–78) 77 60 (59–62) 58 (55–60)
st1-st3 55 (53–58) 73 57 (55–60) 55 (53–56) 62 63 (57–85) 70 (68–73)
st4-st4 79 (73–93) 85 71 (63–83) 72 (63–88)
gensl 117 (113–120)
st5-st5 58 (55–60) 58 54 (50–58) 53 (51–54) 61 (55–64) 56 (52–60) 53 (50–63)
gensw post. corn. 71 (65–75)
lisl 26 (23–30) 23 25 (20–30) 28 (23–33)
lisw 5 (3–6) 3 3 (3–6) 3
sisl 15 (13–18) 18 12 (10–18) 13 (10–15)
sisw 2 (1–3)
vsl 112 (105–120) 125 114 (93–125) 106 (103–111) 97 123 (120–125) 115 (94–121) 111 (103–120)
vsw ant. corn. 87 (80–93) 90 86 (80–95) 91 (89–93) 87 97 (95–100) 86 (80–92) 84 (75–90)
vsw anus 77 (73–83) 78 69 (67–73) 75 (73–77) 75 (67–83) 70 (65–75)
gv3-gv3 25 (23–28)
JV5 62 (58–65) 73 62 (55–70) 60 (55–63)
scl 20 (18–23) 25 24 (13–35) 21 (20–21) 30 28 (25–30) 20 (17–25)
scw 5 (4–6) 5 4 (3–10) 4
StIV 82 (75–88) 75 79 (75–83) 68 (68–70) 80–87 74 74 (72–77) 80 (75–87) 81 (75–88)
fdl, No teeth 24 (23–26), 4 23 24 (19–28), 6 22 (21–22), 5 23 (22–25) 25 (22–27), 4–5 24 (23–25), 4
mdl, No teeth 24 (24–26), 2 23 24 (23–30), 2 25 (23–25), 2 –, 2 26 (25–27) 25 (23–25), 2 24 (23–25), 2

Sources of measurementsGrande Comore: Kreiter et al.(2018b) (a mistake remains in this paper, 1 single female measured instead of 8 as indicated); La Réunion: Kreiter et al. (2020c); Sri Lanka: Moraes et al.(2004a); Indonesia Holotype: Schicha (1975); Taïwan: Tseng (1983); Thailand: Oliveira et al.(2012); FCI (French Caribbean Islands): Moraes et al.(2000); Martinique: Kreiter et al.(2018c); –: not provided.

Table 2. Comparison of character measurements of adult males of Neoseiulus longispinosus collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) La Réunion (1) F.C.I. (5) Indonesia Paratype (1)
dsl 250 248 247 (224–269) 231
dsw s4 158 170 160 (136–173) 138
dsw R1 166
j1 25 15 14 (13–16) 9
j3 47 50 44 (40–48) 43
j4 37 45 43 (42–43) 39
j5 45 48 52 (50–53) 43
j6 53 53 52 (50–53) 46
J2 53 55 56 (53–61) 54
J5 8 8 6 (5–6) 2
r3 33 35 32 (24–40) 32
R1 33 38 34 (32–37) 32
s4 60 63 62 (59–66) 57
S2 50 55 52 (50–54) 46
S4 27 40 30 (29–32) 22
S5 13 15 14 (13–16) 14
z2 45 48 44 (35–48) 45
z4 50 50 52 (48–54) 49
z5 30 28 27 (24–32)
Z1 45 55 56 (50–58) 46
Z4 50 53 55 (48–59) 45
Z5 53 58 57 (56–59) 57
st1-st1 45 43
st2-st2 50 53
st3-st3 55 53
st4-st4 45 103
st1-st5 100 43
st5-st5 38 35
vsl 113 100 106 (99–112) 101
vsw ant. corn. 145 130 135 (125–144) 130
vsw anus 73 65
gv3-gv3 15
JV5 30 35
StIV 55 60 66 (62–72)
fdl, No teeth 18, ? 18
mdl, No teeth 18, ? 18
shaft 15 15 12 (11–14) 21
branch 15

Sources of measurementsLa Réunion: Kreiter et al. (2020c); FCI (French Caribbean Islands): Moraes et al. (2000); Indonesia Paratype: Schicha (1975); –: not provided.

Neoseiulus teke Pritchard & Baker

Amblyseius (Amblyseius) teke Pritchard & Baker 1962: 239.

Amblyseius teke, Meyer & Rodrigues 1966: 30; Moraes et al. 1989a: 83; Moraes et al. 1989b: 97.

Neoseiulus teke, Moraes et al. 1986: 98; Chant & McMurtry 2003: 37; Moraes et al. 2004b:147; Chant & McMurtry 2007: 31.

Amblyseius (Amblyseius) bibens Blommers 1973: 111 (synonymy according to Ueckermann & Loots 1988).

Like N. longispinosus, N. teke belongs to the barkeri species group and to the womersleyi species subgroup (see above) (Chant and McMurtry 2003).

This species is found in sub-Saharan Africa often associated with Mononychellus tanajoa (Bondar), the cassava green mite (CGM). It has been studied for its potential as BCA against the CGM. Nwilene and Nachman (1996) studied its reproduction characteristics on M. tanajoa.

It was more efficient than Iphiseius degenerans (Berlese) but seems not efficient enough in field conditions (Nwilene and Nachman 1996). Quilici et al. (2000) and Kreiter et al. (2020c) have collected this specieson La Réunion Island. Measurements of specimens collected during this study are provided in table 3. This is the first record of that species for Ivory Coast.

Specimens examined — a single specimen (1 ♀) collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W), on Carica papaya L.

World distribution — Burundi, DR Congo, Ghana, Grande Comore Island (Comoros), Kenya, Madeira Island (Portugal), Malawi, Mayotte Island (France), Mohéli Island (Comoros), Mozambique, La Réunion Island (France), Rwanda, Sierra Leone, South Africa, Tanzania, Zimbabwe.

Remarks — The measurements of morphological characters for the single N. teke female specimen from Ivory Coast (Table 3) are very close to those of specimens from neighbouring countries, especially from various African countries and La Réunion. However, they differ from the holotype from Congo (Zannou et al. 2006) and specimens from South Africa, which are larger (van der Merwe 1965).

As this species is a potential BCA, and as it is very difficult to obtain type specimens from Museum for old described species, it would be very important to undertake molecular studies and / or crossbreeding experiments with population collected in the field to determine whether all specimens of this various countries / locations belong to the same species or represent several different cryptic species.

Table 3. Comparison of character measurements of adult females of Neoseiulus teke collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Congo Holotype (1) Kenya (2) La Réunion (10) Mayotte (3) Madagascar (1) South Africa (5) Other African countries (10)
dsl 330 348 295 307 (293–328) 305–323 340 332–341 308 (293–320)
dsw s4 152 160 165 (155–173) 170–183 200 190–203 172 (162–186)
dsw R1 170
j1 18 18 15 (13–18) 18–19 20 19–23 18 (16–19)
j3 50 61 39 46 (38–53) 55 50 62–67 44 (35–50)
j4 30 42 39 25 (23–28) 30–33 30 38–45 30 (23–36)
j5 43 39 39 (35–43) 47–48 45 47–54 42 (35–48)
j6 47 60 42 47 (45–53) 55 54 62–66 48 (43–53)
J2 55 68 48 55 (50–58) 62–63 65 68–75 53 (45–59)
J5 10 9 11 (10–13) 10–13 10 12–14 11 (10–12)
r3 38 61 37 44 (40–48) 47–50 50 54–66 40 (34–46)
R1 33 66 37 42 (40–45) 48–40 48 54–66 37 (27–48)
s4 63 71 55 60 (55–65) 64–65 66 75–82 60 (54–64)
S2 63 58 64 (60–68) 68–71 70 72–80 61 (56–67)
S4 38 39 47 (43–60) 51–55 50 56–63 43 (40–48)
S5 38 48 34 36 (28–38) 45–48 40 46–52 32 (23–40)
z2 53 62 46 51 (48–53) 58 56 66–71 49 (41–54)
z4 55 65 48 50 (48–50) 56–58 54 68–75 51 (43–56)
z5 27 42 35 25 (23–28) 35–38 25 33–44 29 (19–38)
Z1 58 65 44 54 (50–58) 60–63 55 71–77 53 (45–62)
Z4 63 55 57 (50–63) 65–68 66 66–74 60 (54–67)
Z5 65 58 68 (65–73) 70–78 76 80–90 65 (59–74)
st1-st1 50 – ** 44 (43–48) 45
st2-st2 65 53 55 (53–58) 54–56 58 (56–63)
st3-st3 80 – ** 67 (61–70) 68–69 63–67
st1-st3 53 53 60 (55–63) 60 56–59 56 (53–58)
st4-st4 ? – ** 66 (53–70) 61–63
gensl 100
gensw st5 53 58 54 (50–58) 56–60 70–74 56 (51–63)
gensw post. corn. 70 64–73
lisl 23 25 (23–28) 23–27
lisw 3 3 (3–5) 2–4
sisl 10 10 (8–10) 10–13
sisw 1
vsl ? 108 105 109 (100–115) 115–125 125 115–122 111 (104–118)
vsw ZV2 ? 95 80 90 (83–95) 95–103 100 95–100 97 (93–102)
vsw anus ? 71 (63–80) 75
gv3 – gv3 20 20–23
JV5 43 55 57 (55–63) 68 64 66–72
scl 8 16 25 (23–28) 25–30 24 27 24 (22–27)
scw 3 6 (5–13) 5 7
StIV 63 72 65 69 (48–75) 63–65 75 75–78 66 (51–77)
fdl, No teeth 23, ? –, 7 24 (18–25), 4 23–25, 4 24, 3 24, 4 24 (23–25), 4
mdl, No teeth 23, 3 –, 2 24 (20–28), 2 26–28, 2 26, 2 27, 2 26 (25–27), 2

Sources of measurementsCongo Holotype: Zannou et al. (2006); Kenya: El-Banhawy & Knapp (2011); La Réunion: Kreiter et al. (2020c); Mayotte: Kreiter et al. (2020a); Madagascar (Identified as Amblyseius bibens but synonymized by Ueckermann & Loots 1988): Blommers (1973); South Africa: van der Merwe (1968); Other African countries (Burundi 1♀, Ghana 2♀♀, Kenya 3♀♀, Malawi 1♀, Mozambique 1♀, Rwanda 1♀, Sierra Leone 1♀): Zannou et al. (2006); –: not provided.

Tribe Amblyseiini Muma

Amblyseiini, Muma, 1961: 68

Subtribe Amblyseiina Muma

Amblyseiina Muma, 1961: 69.

Genus Amblyseius Berlese

Amblyseius Berlese, 1914: 143.

Amblyseius sundi Pritchard & Baker

Amblyseius (Amblyseius) sundi Pritchard & Baker, 1962: 244.

Amblyseius sundi, Moraes et al. 1989a: 97; Chant &McMurtry 2004: 212; Moraes et al. 2004b: 52.

Amblyseius (Proprioseiopsis) sundi, Matthysse & Denmark, 1981: 344.

Amblyseius sundi belongs to the sundi species group and the sundi species subgroup. This species has already been recorded from the Ivory Coast. Blommers (1976) observed some Tetranychus neocaledonicus André and Brevipalpus sp. on the lemon trees on which this species was collected. But the biology of this species remain unknown.

Specimens examined — a single specimen (1 ♀) collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m Lat 5°26′00.87″N, Long 3°55′00.60″W), on Carica papaya L.

World distribution — Benin, Burundi, Cameroon, Cape Verde, Congo, Cuba, DR Congo, Ghana, Guadeloupe Island (France), Ivory Coast, Kenya, Madagascar Island, Malawi, Mozambique, Nigeria, Rwanda, Sierra Leone, Uganda, Zimbabwe.

Remarks — The measurements of the single specimen collected are very close to those of specimens from other African countries (Table 4).

Table 4. Character measurements of adult females of Amblyseius sundi collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) DRC (1) Holotype Nigeria1 (1) Nigeria2 (1) Other African Countries (14)
dsl 338 348 377 360 373 (318–421)
dsw s4 238 266 212 240 272 (248–304)
dsw R1 233
j1 38 37 36 38 39 (32–45)
j3 45 50 44 44 48 (40–56)
j4 5 2 5 2 5 (4–5)
j5 5 2 5 2 4 (3–5)
j6 5 4 5 2 6 (5–8)
J2 5 5 5 2 6 (5–8)
J5 5 6 5 5 7 (6–8)
r3 18 13 16 10 14 (10–16)
R1 8 8 5 7 8 (5–11)
s4 165 158 152 137 165 (133–206)
S2 5 8 6 5 7 (5–8)
S4 5 6 6 5 7 (6–8)
S5 4 6 6 5 6 (5–8)
z2 5 8 5 7 7 (5–8)
z4 5 6 5 7 7 (5–14)
z5 8 4 5 5 5 (4–5)
Z4 163 174 165 168 172 (144–208)
Z5 385 450 426 394 445 (366–547)
st1-st1 68
st2-st2 78 78 79 (73–88)
st3-st3 83
st1-st3 69 66 69 (62–82)
st4-st4 85
gensl 123
st5-st5 75 78 78 (72–85)
gensw post. corn. 73
lisl 30
lisw 3
sisl 18
sisw 1
vsl 118 126 120 122 (100–141)
vsw ant. corn. 65 70 60 73 (64–85)
vsw anus 78 79 72 80 (69–91)
gv3 – gv3 28
JV5 ?
scl 38 31 36 40 (34–48)
scw 4
SgeI 73 72 36 74 (61–96)
SgeII 45 48 48 49 (40–59)
SgeIII 63 66 66 72 (50–88)
StiIII 45 53 53 56 (43–67)
StIII 38
SgeIV 175 186 190 156 209 (157–270)
StiIV 125 134 137 120 156 (112–208)
StIV 87 85 92 84 99 (69–141)
fdl, No teeth 35, 13 34, 12–13 36 34 (33–36), 13–14
mdl, No teeth 38, 3 36 36 38 (37–39), 3

Sources of measurementsDRC (Democratic Republic of Congo) Holotype: Pritchard & Baker (1962) in Zannou et al. (2007); Nigeria1: Matthysse & Denmak (1981); Nigeria2: Moraes et al. (1989b); Other African Countries (Burundi 1♀, Ghana 3♀♀, Ivory Coast 1♀, Kenya 4♀♀, Malawi 1♀, Rwanda 2♀♀, Sierra Leone 1♀, Uganda 1♀): Zannou et al. (2007); –: not provided.

Amblyseius swirskii Athias-Henriot

Amblyseius swirskii Athias-Henriot, 1962: 5; Swirski et al. 1998: 102; Chant & McMurtry 2004: 201.

Typhlodromips swirskii, Moraes et al. 2004b: 227.

Typhlodromips capsicum Basha, Youssef, Ibrahim & Mostafa 2001: 372 (synonymy according to Abo-Shnaf & Moraes 2014).

Amblyseius enab El-Badry 1967: 178 (synonymy according to Abo-Shnaf & Moraes 2014).

Amblyseius (Amblyseius) rykei Pritchard & Baker 1962: 249 (synonymy according to Zannou et al. 2007).

Amblyseius swirskii belongs to the obtusus species group, characterized by the presence of setae J2 and Z1, setae z4 are minute and a female ventrianal shield is neither vase-shaped nor divided. Within this group, it belongs to andersoni species subgroup (120 species), as its spermatheca has a cup-shaped calyx. The predatory mite Amblyseius swirskii Athias-Henriot, 1962 (Acari: Phytoseiidae) is one of the most efficient predators; it is currently released in more than 50 countries of the world. Originally described in 1962 from almond (Prunus amygdalus [Miller] D.A. Webb) in Bet Dagan, Israel, by Athias-Henriot. The species was reported along the coast of Israel, in the Middle East, Southern Europe, Sub-Saharan Africa, and the Americas (Demite et al. 2024).

This species is able to develop not only in the Mediterranean basin but also in subtropical and tropical areas (Zannou and Hanna 2011). Since it does not enter diapause, it is suitable for use throughout much of the growing season in regions where daytime temperatures regularly exceed 22 °C (Calvo et al. 2015). Amblyseius swirskii is commonly used to control whiteflies and thrips in greenhouse vegetables (especially cucumber, pepper and eggplant) and some ornamental crops, in Europe and North America (Calvo et al. 2015). The biology of this species and its importance for biocontrol were comprehensively reviewed by Calvo et al. (2015) and Buitenhuis et al. (2015). In 2015, a species ressembling to A. swirskii was discovered after a thrips outbreak on peppers and roses on La Réunion Island (Kreiter et al. 2016a, b), located thousands of kilometres from its supposed native area. Morphological and molecular analysis confirmed its identity as A. swirskii (Kreiter et al. 2016a, b). This is the first record of this species from Ivory Coast.

Specimens examined — 7 ♀♀ collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W), 3 ♀♀ and 1 ♂ collected between 05/IV/2017 and 17/IV/2018 in Toumodi, Yobouekro (aasl 184 m, Lat 6°31′19.196″N, Long 5°6′41.36″W) and 32 ♀♀ collected between 06/04/2017 au 18/03/2018 in Yamoussoukro, Ngattakro (aasl 158 m, Lat 6°49′39.443″N, Long 5°17′21.635″W) on Carica papaya L.

World distribution — Argentina, Azerbaijan, Benin, Burundi, Cape Verde, DR Congo, Egypt, Gaza Strip, Georgia, Ghana, Israel, Italy, Morocco, Reunion Island, Saudi Aarabia, Senegal, Slovenia, Spain, Syria, Tanzania, Türkiye, USA (California and Florida), Yemen.

Remarks — The measurement values (Tables 5 and 6) are very close to those reported in the literature, especially for specimens from Africa.

Table 5. Comparison of character measurements of adult females of Amblyseius swirskii collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (10) (this study) Cape Verde (16) Egypt (8) Other African Countries (10) La Réunion (10) Israel (5) Spain (?) Türkiye (5)
dsl 347 (325–395) 347–408 375 (358–397) 338 (326–352) 384 (368–400) 345–370 342 (335–350)
dsw s4 197 (180–213) 211–246 214 (195–224) 205 (202–208) 233 (205–245) 188–202 169 (165–175)
dsw R1 208 (195–225) 212 (200–230)
j1 31 (28–35) 31–39 30 (25–32) 29 (24–32) 29 (25–31) 29 (25–32) 24–28 29 (24–32)
j3 54 (50–58) 57–69 55 (52–57) 53 (48–56) 53 (50–58) 51 (46–57) 56 53 (50–57)
j4 8 8–9 10 (9–15) 8 8 (8–10) 9 10 (9–10)
j5 8 8–9 9 (8–10) 8 8 8 10 (9–10)
j6 8 (8–10) 9–11 10 (9–11) 9 (8–10) 8 (8–10) 8 9 (8–10)
J2 9 (8–10) 9–11 9 (8–10) 9 (8–10) 8 8 (7–9) 8 10 (9–10)
J5 8 (8–9) 9–11 10 (8–10) 7 (6–8) 10 (8–10) 8 10 (9–10)
r3 23 (20–25) 23 25 (23–27) 20 (19–21) 24 (23–25) 22–25 25 (25–26)
R1 13 (10–15) 12–15 15 (12–17) 11 (10–13) 15 (13–17) 14–16 17 (15–20)
s4 77 (73–83) 74–85 78 (72–81) 75 (70–82) 83 (78–100) 76 (70–81) 76–80 78 (75–80)
S2 13 (11–13) 15–20 19 (18–21) 13 (11–14) 18 (17–22) 19 (17–25) 16–22 15 (14–16)
S4 9 (8–10) 9–11 11 (8–13) 9 (8–10) 11 (10–12) 12 (10–14) 12–14 12 (10–13)
S5 8 (8–9) 9–11 11 (9–12) 7 (6–8) 10 (10–11) 10–12 10 (8–11)
z2 11 (8–13) 12–15 14 (11–16) 12 (11–16) 15 (13–15) 15 (13–20) 16 15 (12–17)
z4 12 (10–15) 12–15 15 (12–18) 13 (10–16) 15 (15–17) 17 (15–26) 16–22 14 (12–16)
z5 8 (8–9) 8–9 8 (7–10) 7 (6–8) 8 (5–8) 8–0 10 (9–10)
Z1 9 (8–10) 9–11 11 (10–12) 9 (8–10) 10 (8–10) 8–10 10 (9–11)
Z4 74 (68–78) 69–77 73 (70–76) 73 (69–78) 76 (73–80) 72 (67–76) 76–80 71 (69–73)
Z5 113 (105–120) 100–126 109 (105–112) 110 (106–115) 113 (108–114) 108 (102–116) 110–118 110 (104–120)
st1‐st1 62 (58–65) 63 (55–68) 61 (58–65) 61 (61–62)
st2‐st2 73 (70–75) 77 (71–87) 70 (69–70) 71 (63–78) 76 (75–76)
st3‐st3 85 (81–90) 87 (79–91) 85 (82–90) 81 (78–83)
st1‐st3 63 (61–66) 62 64 (63–65) 64 (61–66) 67 (67–68)
st4‐st4 94 (83–165) 91 (82–101) 86 (80–92)
gensl 129 (120–170)
st5‐st5 74 (70–78) 76 (70–81) 73 (67–78) 68 (60–73) 70 (64–76) 79 (75–81)
gensw post. corn. 84 (80–88)
lisl 23 (20–28)
lisw 4 (4–5)
sisl 13 (12–15)
sisw 2 (2–3)
vsl 125 (118–135) 130 132 (126–135) 115 (110–120) 131 (125–140) 117 (106–129) 123–134 130 (127–135)
vsw ant. corn. 84 (80–88) 85–90 83 (71–89) 79 (72–86) 87 (85–90) 83 (78–85) 89–92 87 (85–90)
vsw anus 82 (78–88) 86 79 (78–80) 84 (83–85) 87 (85–90)
gv3–gv3 23 (21–26) 26 (24–28)
JV5 70 (63–75) 62–77 72 (65–72) 67 (63–70) 66 (64–70)
scl 10 (8–13) 11 10 10 9 (8–10)
scw 14 (12–20)
Sge I 31 (27–35) 26–31 29 (27–30) 24 25 33 (29–36)
Sge II 33 (30–38) 31–39 33 (32–35) 28 (27–29) 33 (30–38) 32 (26–37) 31 (30–32)
Sge III 36 (30–40) 31–39 36 (35–37) 32 37 (33–48) 37 (36–39) 34 (32–35)
Sti III 26 (23–28) 26–28 27 (26–28) 22 (21–24) 26 (25–28) 25 (23–27)
StIII 25 (23–26)
Sge IV 63 (60–68) 57–69 63 (60–65) 61 (56‐66) 64 (60–67) 64 (61‐66) 65 57 (53–62)
Sti IV 38 (33–53) 46–54 47 (44–50) 44 (40–51) 43 (40–45) 45 (42–47) 40–42 43 (40–46)
St IV 64 (60–73) 57–69 66 (60–68) 59 (53–64) 64 (63–65) 62 (53–68) 62–66 59 (51–64)
fdl, No teeth 31 (30–33), 8 –, 11 33 (32–34), 9–10 33 (33–35), 9‐10 33, 9 –, 11 31 (30–32), 9
mdl, No teeth 34 (33–34), 3 –, 3 33 (31–34), 3 28 (28–30), 3 33, 3 –, 3 31 (30–32), 3

Sources of measurementsCape Verde: Ueckermann (1992); Egypt: Abo-Shnaf & Moraes (2014); Other African Countries (Benin: 2♀♀; Burundi: 1♀; Ghana: 4♀♀; Democratic Republic of Congo: holotype of A. (A.) rykei); Israel: 2♀♀; : Zannou et al.* (2007); Israel: Athias-Henriot (1962); La Réunion: Kreiter et al. (2016a); Spain: Ferragut et al.(2010); Türkiye: Döker et al. (2020); –: not provided.

Table 6. Comparison of character measurements of adult males of Amblyseius swirskii collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Egypt (5) Ghana (1) La Réunion (5) Israel (10) Türkiye (2)
dsl 265 275 (254–292) 258 289 (280–300) 255–295 267 (266–268)
dsw s4 145 179 (145–203) 190 180 (167–187) 144 (143–144)
dsw R1 175 158
j1 15 22 (20–24) 25 24 (23–25) 21–26 24 (23–24)
j3 38 44 (41–47) 43 44 (41–47) 44–49 42 (41–43)
j4 10 8 (7–11) 7 8 (8–10) 5–8 7
j5 8 8 (7–8) 7 8 5–8 7 (6–7)
j6 8 8 (7–9) 8 8 5–8 7
J2 8 8 (7–9) 7 8 5–8 8
J5 8 8 (7–8) 8 8 5–8 9
r3 18 21 (19–23) 20 21 (19–23) 21–23 21 (19–22)
R1 13 14 (13–14) 14 13 (13–15) 16–18 13 (12–13)
s4 55 61 (57–64) 59 63 (60–65) 57–65 65 (64–66)
S2 14 15 (13–18) 14 15 (13–18) 13–18 13 (12–13)
S4 8 9 (7–13) 9 14 (13–18) 9–13 11 (10–11)
S5 8 9 (8–10) 9 10 (8–11) 9–13 10
z2 13 14 (12–16) 13 15 (14–15) 12–16 17 (16–17)
z4 13 13 (10–15) 13 15 (14–15) 13–18 16 (15–16)
z5 8 7 (7–8) 6 8 5–8 7
Z1 8 11 (10–13) 8 8 10–16 8 (7–8)
Z4 50 52 (49–53) 52 58 (55–60) 49–62 56 (55–57)
Z5 68 74 (70–78) 80 79 (78–80) 73–81 80 (79–80)
st1-st1 50 55 (52–60) 52 (50–53)
st2-st2 32 59 (56–63) 60
st3-st3 63 61 (56–66) 60 (57–63)
st4-st4 50 47 (43–51) 49 (48–50)
st5‐st5 41 39 (35–43) 39 (35–40)
st1-st5 113 112* (110–113)
vsl 123 121 (109–128) 113 110 (108–110) 112–125 119 (118–120)
vsw ant. corn. 158 151 (123–164) 145 158 (150–160) 166 (165–167)
vsw anus 80 79 (75–80)
gv3–gv3 ?
JV5 30 36 (33–39) 29 (28–31) 31–41 34
Sge I 18 24 (21–25) 20
Sge II 25 26 (23–28) 25 29 (28‐30) 29 (28–29)
Sge III 25 26 (23–28) 24 30 26 (25–26)
Sti III 20 21 (18–23) 20 28 23
StIII 22 (21–22)
Sge IV 40 45 (40–47) 39 47 (45–48) 39–52 42 (41–43)
Sti IV 28 36 (32–38) 35 38 (35–40) 31–44 37 (36–37)
St IV 42 54 (48–58) 50 54 (50–55) 49–62 51 (50–52)
fdl, No teeth 22, 6 26 (25–27), 6 31 (27–33), 6 –, 6 –, 7
mdl, No teeth 22, 1 25 (23–27), 1 29 (25–30), 1 –, 1 –, 1
shaft 18 20 (19–21) 19 21 (19–23) 19 (18–20)
branch 8

Sources of measurementsEgypt: Abo-Shnaf & Moraes (2014); Ghana: Zannou et al.(2007); La Réunion: Kreiter et al. (2016a); Israel: Athias-Henriot (1962); Türkiye: Döker et al. (2020); –: not provided.

Amblyseius tamatavensis Blommers

Amblyseius tamatavensis Blommers 1974: 144; Moraes et al. 1986: 31; Denmark & Muma 1989: 13; Chant & McMurtry 2004: 203; Ehara & Amano 2004: 17; Moraes et al. 2004b: 52; Chant & McMurtry 2007: 81; Döker et al. 2018: 101.

Amblyseius (Amblyseius) tamatavensis, Ehara 2002: 33; Ehara & Amano 2002: 322.

Amblyseius aegyptiacus Denmark & Matthysse in Matthysse & Denmark 1981: 343 (synonymy according to Denmark & Muma 1989)

Amblyseius maai Tseng 1976: 123 (synonymy according to Denmark & Muma 1989).

Amblyseius tamatavensis, like the previous species, belongs to the obtusus species group, characterized by the presence of setae J2 and Z1, setae z4 are minute, and a female ventrianal shield that is neither vase-shaped nor divided. It is further classified in the aerialis species subgroup (46 species) due to the tubular calyx of the spermatheca (Chant and McMurtry 2004a).

It seems to fit the type III-b feeding habit (generalist predators living on glabrous leaves) as defined by McMurtry et al. (2013). Cavalcante et al. (2017) reported this species as a promising natural enemy of B. tabaci. Experimental releases on caged plants in a screen house have demonstrated its efficacy, reducing B. tabaci densities of on pepper plants by 60-80% (Massaro and Moraes 2019). Additionally, it can be easily mass-produced in large numbers using astigmatine mites as a food source, making it suitable for augmentative biological control programs (Massaro et al. 2021). This species has been reported in tropical areas from over 20 countries around the world including Africa, Asia, Americas, and Oceania. Measurements of specimens collected during this study are provided in table 7. This is the first record of this species from Ivory Coast.

Specimens examined — 4 ♀♀ and 1 ♂ collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) on Carica papaya L.

World distribution — Australia (New South Wales, Queensland), Benin, Brazil (Alagoas, Amazonas, Bahia, Ceará, Esperíto Santo, Goiás, Minas Gerais, Pará, Pernambuco, Piauí, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Roraima, Sergipe, São Paulo, Tocantins), Burundi, Cameroon, Cook Islands, Cuba, Dominican Republic, DR Congo, Easter Island/Isla de Pascua (Chile), Fiji, Ghana, Guadeloupe Island (France), Indonesia, Japan, Kenya, Madagascar Island, Malawi, Malaysia, Marie-Galante Island (France), Martinique (France), Mauritius Island, Mayotte Island (France), Mozambique, Nigeria, Papua New Guinea, Peru, Philippines, Réunion Island (France), Rodrigues Island (Mauritius), Rwanda, Singapore, South Africa, Sri Lanka, Taiwan, Thailand, Uganda, USA (Florida), Vanuatu, Venezuela, Vietnam, Western Samoa.

Remarks — The measurement values (Tables 7 and 8) are very close to that reported in the literature, especially for specimens from Africa. However, the current specimens exhibit r3, z2, Z5 and SgeIV being shorter compared to those of previous reports.

Table 7. Comparison of character measurements of adult females of Amblyseius tamatavensis collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (4) (this study) Madagascar Holotype (1) Other African Countries (10) La Réunion (11) Thailand (9) Brazil (7) Dominican Republic (5) USA (4)
dsl 367 (348–388) 340 354 (328–390) 320 (295–338) 337 (310–360) 352 (323–379) 337 (320–350) 295 (292–298)
dsw s4 217 (195–232) 250 237 (218–256) 240 (223–288) 213 (190–230) 216 (182–238) 216 (200–228) 183 (180–184)
dsw R1 229 (205–248) 209 (208–210)
j1 32 (30–33) 32 31 (26–40) 30 (25–35) 32 (28–37) 33 (31–36) 28 (25–30) 32 (30–34)
j3 48 (44–52) 54 50 (38–59) 52 (48–55) 52 (49–55) 53 (50–57) 48 (43–50) 53 (52–54)
j4 4 (3–5) 4 5 (5–8) 4 (3–5) 5 (4–5) 5 (4–5) 4 (2–6) 5 (46)
j5 4 (3–5) 3 4 (3–5) 3 (3–5) 4 (3–4) 4 (3–4) 3 (2–4) 5 (46)
j6 5 (5–6) 3 6 (5––8) 3 (3–5) 5 (4–6) 5 (5–6) 3 (3–4) 5 (46)
J2 6 (5–6) 5 7 (5–8) 4 (3–5) 5 (5–7) 6 (5–6) 4 (4–5) 5 (46)
J5 7 (7–8) 6 8 (5––10) 6 (4–8) 6 (4–7) 7 (6–7) 5 (4–6) 7 (6–8)
r3 8 (7–9) 15 15 (14–18) 13 (10–15) 14 (9–17) 14 (13–16) 12 (11–13) 14 (12–16)
R1 6 (6–7) 5 8 (6–10) 5 (5–7) 7 (6–8) 8 (7–8) 7 (6–8) 5 (46)
s4 85 (83–88) 88 87 (77–96) 85 (80–90) 86 (80–92) 91 (90–92) 83 (76–88) 87 (86–88)
S2 8 (6–9) 5 8 (6–10) 5 (4–8) 7 (6–9) 7 (6–7) 7 (5–8) 5 (46)
S4 7 (6–8) 6 8 (6–10) 5 (4–6) 6 (5–9) 6 (6–7) 7 (5–8) 5 (46)
S5 5 (5–6) 6 8 (6–10) 5 (5–6) 6 (5–9) 6 (5–6) 5 (4–7) 5 (46)
z2 5 6 9 (8–11) 5 (5–6) 7 (6–9) 7 (6–8) 7 (5–10) 5 (46)
z4 7 (6–8) 6 8 (6–10) 6 (5–8) 6 (5–9) 8 (7–8) 7 (5–8) 5 (46)
z5 4 (3–5) 3 5 (3–6) 4 (3–4) 4 (3–5) 4 (3–4) 5 (4–7) 5 (46)
Z1 7 (5–8) 5 7 (5–8) 5 (4–6) 6 (5–7) 6 (6–7) 7 (5–8) 5 (46)
Z4 108 (106–110) 115 108 (94–125) 106 (100–113) 107 (86–116) 108 (100–115) 108 (105–113) 117 (114–120)
Z5 228 (215–235) 250 250 (221–272) 221 (203–233) 231 (212–240) 235 (227–246) 233 (225–238) 237 (232–242)
st1-st1 58 (55–60) 60 (55–63)
st2-st2 65 (64–68) 72 (67–77) 68 (65–70) 70 (67–75) 69 (67–72) 71 (70–73) 67 (66–68)
st3-st3 74 (70–76) 76 (70–80)
st1-st3 59 (58–60) 63 (59–66) 60 (58–63) 60 (58–65) 60 (58–63) 60 (58–63) 63 (60–64)
st4-st4 79 (78–80) 77 (68–88)
gensl 109 (105–115)
st5-st5 72 (70–75) 73 (69–77) 73 (70–78) 74 (69–80) 73 (70–77) 71 (75–78) 68 (66–72)
gensw post. corn. 74 (72–75)
lisl 20 19 (18–20)
lisw 5 (5–6) 7 (5–8)
sisl 12 (12–13) 10
sisw 1
vsl 121 (105–138) 120 122 (110–136) 111 (100–115) 117** **(110–125) 113 (108–118) 110 (100–118) 105 (104–108)
vsw ZV2 90 (88–92) 100 90 (75–101) 92 (85–100) 89 (79–100) 95 (89–99) 94 (90–100)
vsw anus 83 (80–85) 84 (69–102) 82 (75–88) 85 (80–87) 87 (83–90) 91 (88–94)
JV5 77 (75–80) 84 83 (70–93) 79 (78–80)
gv3–gv3 23 (21–25) 19 (18–20)
scl 42 (38–48) 23 (18–32) 17 (13–23) 12 (9–15) 17 (16–18) 14 (12–15)
scw 3
SgeI 38 (36–39) 41 39 (39–40) 41 (39–43) 39 (37–44) 40 (37–42) 38 (35–40) 41 (40–42)
SgeII 35 (35–37) 39 38 (35–42) 39 (38–40) 36 (34–38) 39 (35–41) 37 (35–38) 40 (38–42)
SgeIII 52 (50–55) 61 58 (48–70) 55 (53–58) 55 (50–60) 57 (55–61) 54 (53–58) 53 (52–54)
StiIII 40 (38–42) 41 46 (34–53) 45 (43–48) 46 (42–48) 47 (46–47) 44 (43–45) 43 (42–44)
SgeIV 95 (88–98) 120 106 (85–126) 102 (100–103) 106 (100–120) 103 (100–105) 103 (97–115) 103 (102–104)
StiIV 69 (68–73) 69 (54–86) 73 (69–78) 72 (65–77) 77 (68–80) 69 (63–73) 73 (72–74)
StIV 63 (60–68) 71 (58–86) 69 (68–70) 66 (62–70) 71 (70–72) 58 (63–75) 71 (70–72)
fdl, No teeth 34 (33–35), 13 34 (34–35), 13 34 (30–38), 11 31 (29–35) 30 (27–32) 32 (30–33), 11
mdl, No teeth 36 (33–37), 3 39 (39–40), 3 37 (28–38), 3 38 (35 – 41) 37 (36–38) 32 (31–33), 4

Sources of measurementsMadagascar Holotype: Blommers (1974a); Other African Countries (Benin 2 ♀♀, Burundi 1♀, Cameroon 2♀♀, DR Congo 1♀, Ghana 2♀♀, Rwanda 1♀, Uganda 1♀): Zannou et al.(2007); La Réunion: Kreiter et al. (2020c); Thailand: Oliveira et al.(2012); Brazil (Bahia): Souza et al.(2015); Dominican Republic: Abo-Shnaf et al.(2016); USA (Florida): Döker et al. (2018); –: not provided.

Table 8. Comparison of character measurements of adult males of Amblyseius tamatavensi*s* collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Ghana (1) La Réunion (5) Thailand (1) Brazil (2)
dsl 243 273 248 (245–250) 254 259–292
dsw s4 163 187 169 (150–195) 170 177–179
dsw R1 170
j1 25 25 24 (21–25) 25 27–29
j3 40 42 42 (40–45) 40 43–45
j4 4 5 4 (4–5) 5 4–5
j5 4 5 3 (3–4) 3 3–4
j6 5 5 3 (3–4) 4 5
J2 5 5 4 (4–5) 5 5
J5 5 5 5 (4–8) 6 7
r3 10 11 12 (10–13) 11 11–12
R1 8 5 (5–6) 6 7
s4 63 62 68 (58–90) 65 67–69
S2 5 6 5 (5–6) 6 6–7
S4 5 6 4 5 5–6
S5 5 6 4 5 5
z2 5 6 5 (5–6) 6 6
z4 6 5 6 (5–6) 6 7
z5 3 5 5 3 3–4
Z1 5 6 5 5 5–6
Z4 78 86 80 (75–83) 78 82–90
Z5 155 164 151 (143–158) 158 172
st1-st1 48 51 (50–53)
st2-st2 55 57 (55–58)
st3-st3 53 55 (53–58)
st4-st4 45 46 (43–110)
st5-st5 38 38 (38–48)
st1-st5 100 106 (100-112)
vsl 103 109 107 (100–113) 112 108–118
vsw ant. corn. 173 145 140 (130–150) 135 137–150
vsw anus 75 75 (63–90)
gv3–gv3 14
JV5 40 41 (38–43)
SgeI 30 30 31 (30–33) 30 31–32
SgeII 28 28 26 (20–28) 30 30–31
SgeIII 38 41 37 (35–40) 37 38
StiIII 30 31 30 (28–35) 34 33–34
SgeIV 63 62 63 (60–65) 68 67
StiIV 45 39 44 (40–48) 50 47–50
StIV 50 51 55 (53–60) 55 55–56
fdl, No teeth 24, 6 24 (23–25), 6 20
mdl, No teeth 24, ? 22 (20–25), 1 23
shaft 15 17 28 (25–30) 16 17
branch 5

Sources of measurementsBrazil (Bahia): Souza et al.(2015); Ghana: Zannou et al.(2007); La Réunion: Kreiter et al. (2020c); Thailand: Oliveira et al.(2012); –: not provided.

Subtribe Proprioseiopsina Chant & McMurtry

Proprioseiopsina Chant & McMurtry 2004: 219.

Genus Proprioseiopsis Muma

Proprioseiopsis Muma 1961: 277.

Proprioseiopsis mexicanus (Garman)

Amblyseiopsis mexicanus Garman 1958: 75.

Amblyseius mexicanus, Moraes & McMurtry 1983: 134.

Proprioseiopsis mexicanus, Muma & Denmark 1970: 48; Denmark & Muma 1973: 237; Moraes et al. 1986: 118; Kreiter & Moraes 1997: 379; Moraes et al. 2004b: 181; Chant & McMurtry 2005a: 13, 2007: 89.

Amblyseiulus amotus Zack 1969: 72 (Synonymy according to Denmark & Evans 2011).

Typhlodromus (Amblyseius) asetus Chant, 1959: 80 (Synonymy according to Denmark & Evans 2011).

Amblyseiulus clausae Muma 1962: 1 (Synonymy according to Denmark & Evans 2011).

Amblyseius kogi Chant & Hansell 1971: 713 (Synonymy according to Denmark & Evans 2011).

Typhlodromus (Amblyseius) putmani Chant 1959: 91 (Synonymy according to Denmark & Evans 2011).

Amblyseeiulus temperellus Denmark & Muma1967: 171 (Synonymy according to Denmark & Evans 2011).

Amblyseiopsis tropicanus Garman 1958: 77 (Synonymy according to Denmark & Evans 2011).

Amblyseius (Proprioseiopsis) tulearensis Blommers 1976: 100 (Synonymy according to Denmark & Evans 2011).

Amblyseiulus versutus Zack 1969: 74 (Synonymy according to Denmark & Evans 2011).

Proprioseiopsis mexicanus belongs to the belizensis species group as genu I lacks macrosetae. It is classified within the asetus species subgroup due to its spermatheca having a short, cup-shaped calyx (Chant and McMurtry 2005a). This species is known from all islands of French West Indies (Kreiter and Moraes 1997; Moraes et al. 2000, Kreiter et al. 2006; Mailloux et al. 2010; Kreiter et al. 2018c) but was found in large number only during a previous study on companion plant in Guadeloupe (Mailloux et al. 2010) and on La Réunion (Le Bellec, unpub. data). This species seems to be very abundant on weeds in the lower vegetation. Phytoseiid mites of the genus Proprioseiopsis are mainly found in ground surfaces, humus, litter, soil, moss or on grass (Muma and Denmark 1970; McMurtry et al. 2015). Populations of P. mexicanus increase when fed T. urticae eggs (Megevand et al. 1993), and this species has shown potential as a predator of thrips (Kreiter, unpub. data). It is one of the prevailing phytoseiid species in citrus orchards in Alabama (Fadamiro et al. 2009). Denmark and Evans (2011) mentioned that the species can be reared on T. urticae and Oligonychus pratensis (Banks) and is associated with Bryobia praetiosa Koch, Bryobia sp. and P. ulmi. It was also found in association with Tetranychus evansi Baker and Pritchard (Furtado et al. 2014), although it is mentioned as a poor predator of this species. The biology of this species remains, however, almost unknown. This is the first record of this species from the Ivory Coast.

Specimens examined — a single female (1 ♀) collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) on Carica papaya L.

World distribution — Australia, Benin, Brazil (Alagoas, Bahia, Distrito Federal Maranhão, Mato Grosso do Sul, Paraná, Paraíba, Pernambuco, Piauí, Rondonia, São Paulo, Tocantins), Colombia, Cuba, Ghana, Guadeloupe Island (France), Hawaii, Kenya, Martinique Island, Mexico, New Zealand, Panama, Peru, Réunion Island (France), Rodrigues Island (Mauritius), USA (Alabama, Florida, Georgia, Iowa, Kansas, Louisiana, Maryland, Minnesota, Missouri, New Jersey, North Carolina, Ohio, Pennsylvania, West Virginia).

Remarks — The measurements of the single female specimen of the Ivory Coast (Table 9) fit well those obtained for populations of various countries. The number of setae on genu II of our single specimen is the same than the number given by Moraes et al. (2007) with the same formula: 2-2/0,2/0-1. This character may be of interest with some molecular taxonomy in the future, in the framework of an integrative taxonomy, in order to distinguish if we have one species or a species complex.

Table 9. Comparison of character measurements of adult females of Proprioseiopsis mexicanus collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Other African Countries (3) Madagascar (?) La Réunion (15) Brazil (2) Guadeloupe (5) Martinique (12) Mexico Holotype (1)
dsl 358 340 (336–344) 340 357 (325–368) 325–350 335 (331––339) 337 (312–369) 355
dsw s4 180 223 (214–230) 230 232 (213–240) 195–215 224 (212–241) 205 (186–257) 216
dsw R1 238
j1 18 17 (16–18) 20 24 (23–28) 21–22 19 (15–22) 22 (19–24) 22
j3 33 28 (26–29) 27 31 (28–33) 30–31 30 (24–34) 30 (28–31) 28
j4 5 5 (5–6) 3 5 (5–8) 5 5 (4–7) 5 (3–6) 6
j5 5 4 (3–5) 4 4 (3–5) 5 5 (4–7) 5 (4–6) 5
j6 8 6 (5–6) 4 5 (3–8) 6 5 (5–6) 6 (5–7) 7
J5 9 9 (8–10) 7 9 (8–10) 9–10 9 (9–10) 10 (6–14) 7
r3 15 15 (14–16) 12 14 (13–15) 14–16 11 (9–14) 13 (13–16) 13
R1 ? 8 (6–10) 12 10 (8–13) 10–11 9 (8–10) 9 (7–10) 7
s4 58 54 (53–56) 54 63 (58–68) 49–52 59 (56–65) 63 (53–68) 56
S2 10 9 (8–10) 9 9 (8–10) 8–9 9 (8–10) 9 (8––10) 8
S4 11 9 (8–10) 9 9 (8–10) 10 9 (8–10) 9 (8–10) 8
S5 10 10 (10–11) 9 10 (8–10) 10 9 (9–12) 10 (8–11) 8
z2 15 12 (8–16) 13 16 (13–18) 12 12 (11–14) 14 (13–15) 14
z4 10 9 (8–11) 9 11 (8–13) 11–12 10 10 (8–11) 10
z5 5 4 (3–5) 4 4 (3–5) 4 4 (4–5) 5 (4–5) 5
Z1 9 8 9 8 (8–10) 9 6 (5–7) 7 (6–8) 6
Z4 75 69 (62–74) 60 79 (75–83) 64–70 74 (72–76) 78 (66–83) 73
Z5 105 102 (94–112) 104 110 (103–120) 85–93 103 (97–110) 108 (95–131) 98
st1-st1 50 54 (53–58) 49 (45–52)
st2-st2 65 64 65 (63–68) 64–65 68 (65–74) 61 (57–64)
st3-st3 46 74 (73–80) 69 (62–71)
st1-st3 58 60 (59–61) 64 (63–75) 57–60 60 (58–62) 58 (55–62)
st4-st4 65 72 (68–75) 70 (64–74)
gensl 130
st5-st5 65 65 (61–69) 69 (63–73) 65–70 66 (64–72) 62 (58–69)
gensw post. corn. 83
lisl 24 27 (23–30) 23 (21–26)
lisw 3 5 (5–5) 6 (5–7)
sisl 8 11 (8–15) 12 (10–16)
sisw 1
vsl 108 113 (109–115) 115 116 (100–125) 102–108 108 (103–114) 102 (95–120) 112
vsw ant. corn. 98 97 (81–101) 90 86 (78–90) 92–95 92 (86–97) 91 (83–100) 96
vsw anus 80 77 (72–80) 66 (60–73) 80 85 (80–89) 75 (68–81)
gv3–gv3 15
JV5 63 62 71 (60–78) 60–65 68 (62–76)
scl 15
scw 10
SgeII 24 23 (22–24) 20 24 (23–28) 21–22 23 (20–24) 23 (21–24) 25
SgeIII 23 23 (22–24) 20 24 (23–25) 23 24 (23–25) 26 (21–28) 25
SgeIV 50 49 (45–51) 48 50 (43–55) 45 49 (48–51) 52 (46–55) 54
StiIV 33 27 30 31 (23–35) 26 32 (27–36) 32 (25–35) 32
StIV 55 58 61 61 (55–63) 55 56 (51–60) 59 (53–67) 62
fdl, No teeth 35, 8 29 (28–29), 8 28, 8 31 (30–33), 8 + 2 29, 8 33 (29–38) 29 (27–32), 9
mdl, No teeth 32, 1 34 (33–34), 1 28, 1 31 (30–33), 1 31, 1 31 (29–32) 33 (31–34), 1

Sources of measurementsOther African Countries: Moraes et al.(2007); Madagascar (identified as Amblyseius tulearensis, synonymized by Denmark & Evans 2011): Blommers (1976); La Réunion: Kreiter et al. (2020c); Brazil: Lofego et al.(2009); Guadeloupe: Kreiter & Moraes (1997); Martinique: Kreiter et al. (2018c); Holotype Mexico: Moraes et al.(2007); –: not provided.

Proprioseiopsis ovatus (Garman)

Amblyseiopsis ovatus Garman 1958: 78.

Amblyseiulus ovatus, Muma 1961: 278.

Typhlodromus (Amblyseius) ovatus, Chant 1959: 90.

Typhlodromus ovatus, Hirschmann 1962: 19.

Proprioseiopsis (Proprioseiopsis) ovatus, Karg 1989: 208.

Proprioseiopsis ovatus, Moraes et al. 1986: 121; 2004b: 184; Chant & McMurtry 2005a: 15; 2007: 89.

Proprioseiopsis antonelli Congdon 2002: 15 (Synonymy according to Denmark & Evans 2011).

Amblyseiuluscannaensis Muma 1962: 4 (Synonymy according to Denmark & Evans 2011).

Amblyseius hundsonianus Chant & Hansell 1971: 723 (Synonymy according to Denmark & Evans 2011).

Amblyseius parapeltatus Wu & Chou 1981: 274 (synonymy according to Tseng 1983).

Amblyseius (Amblyseius) peltatus van der Merwe 1968: 119 (synonymy according to Tseng 1983).

Like P. mexicanus, P. ovatus belongs to the belizensis species (see above). As the spermatheca of this species is saccular, it belongs to the belizensis species subgroup (Chant and McMurtry 2005a).

This species is known from Guadeloupe, Marie-Galante and Martinique (Kreiter and Moraes 1997; Moraes et al. 2000; Mailloux et al. 2010; Kreiter et al. 2018c). It was found in large number only during a previous study on companion plants in Guadeloupe (Mailloux et al. 2010) and a recent study on La Réunion (Le Bellec, unpub. data). In other habitats, this species seems to be rare. Similar to P. mexicanus, P. ovatus seem to abundant on weeds in the lower vegetation. Denmark and Evans (2011) indicated that this species is associated with O. pratensis and Brevipalpus sp. It was also found in association with T. evansi (Furtado et al. 2014) but is considered a poor predator of that species. Despite this findings, the biology of this species remains largely unknown. This is the first record of this species from the Ivory Coast.

Specimens examined — a single female (1 ♀) collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) on Carica papaya L.

World distribution — Argentina, Brazil (Alagoas, Bahia, Distrito Federal, Goías, Mato Grosso do Sul, Mato Grosso, Minas Gerais, Paraná, Pará, Rio Grande do Sul, São Paulo), Colombia, Costa Rica, Cuba, Ecuador, Egypt, French Guiana (France), Ghana, Grande Comore Island (Comoros), Hawaii, Honduras, Japan, Malaysia, Martinique Island (France), Mayotte Island (France), Mozambique, Peru, Philippines, Puerto Rico, La Réunion Island (France), Saudi Arabia, Sierra Leone, South Africa, Spain, Sri Lanka, Taiwan, Thailand, Türkiye, USA (Arizona, California, Florida, Kansas, Louisiana, Minnesota, Missouri, New Mexica, Texas, Utah, Washington), Venezuela.

Remarks– The measurements of the single female specimen from the Ivory Coast (Table 10) fit well those obtained for populations from various countries.

Table 10. Comparison of character measurements of adult females of Proprioseiopsis ovatus collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) South Africa (3) Madagascar (?) Other African Countries (10) La Réunion (12) Sri Lanka (1) Thailand (8) USA Holotype (1)
dsl 388 358–362 320 348 (324–381) 361 (328–400) 357 329 (320–337) 372
dsw s4 288 294–313 230 270 (227–290) 290 (253–330) 292 268 (225–315) 252
dsw R1 338
j1 ? 28–30 32 29 (28–32) 31 (30–35) 27 26 (24–29) 28
j3 ? 66 61 64 (57–69) 66 (57–75) 61 64 (60–68) 64
j4 5 6 6 (4–8) 5 (5–8) 5 6 (5–8) 8
j5 9 6 6 (5–8) 5 (4–8) 5 (5–6) 8
j6 8 9–13 9 (8–10) 10 (8–13) 8 11 12
J5 10 9–13 8 (6–10) 8 (8–10) 9 8 (6–9) 8
r3 20 20 19 (16–21) 20 (15–25) 20 21 (17–25) 22
R1 13 10 10 (9–11) 13 (10–15) 11 10 (10–11) 17
s4 105 105–110 100 99 (91–106) 103 (93–108) 96 100 (98–100) 88
S2 20 19–21 21 20 (14–26) 21 (18–25) 22 21 (14–25) 17
S4 15 9–13 14 (9–16) 13 (10–17) 13 16 (12–18) 16
S5 10 9–13 10 (9–11) 12 (10–15) 11 12 (10–15) 12
z2 40 43–45 30 39 (32–44) 42 (35–53) 45 34 (31–36) 42
z4 28 28–30 25 25 (19–34) 26 (18–36) 24 22 (20–27) 22
z5 5 6 6 (5–8) 5 (5–6) 5 5 (4–6) 8
Z1 13 19–21 21 (14–24) 24 (23–25) 20 21 (18–25) 17
Z4 ? 122 100 108 (88–120) 107 (103–118) 107 109 (105–115) 101
Z5 100 105–110 110 88 (67–107) 95 (90–103) 96 92 (83–96) 90
st1-st1 53 54 (49–60)
st2-st2 75 70 (63–77) 76 (70–80) 70 73 (70–77)
st3-st3 88 82 (78–84) 93 (85–98)
st1-st3 55 48–52 53 (50–56) 60 (55–63) 47 54 (52–55)
st4-st4 91 91 (83–98)
gensl 128
st5-st5 92 111–115 102 89 (82–96) 95 (88–103) 93 92 (90–97)
gensw ant. corn. 110
lisl 25 30 (25–33)
Lisw 6 5 (4–5)
sisl 13 10
sisw 3
vsl 115 110–115 93 109 (98–122) 114 (103–133) 115 106 (100–115)
vsw ant. corn. 113 110–115 102 108 (104–115) 97 (75–115) 113 112 (109–115)
vsw anus 75 90 (84–104) 87 (75–95) 90
**gv3*–gv3** 23
JV5 73 89–93 77 85 (75–95) 78 -
scl 14 24 16 (13–19) 22 (18–23) 18 14 (12–17) 22
scw 8 10 9 (8–10)
SgeIII 26 33 32 28 (25–32) 27 (22–31) 25 27 (24–29)
StiIII 23 22 (20–25) 24 (22–26)
SgeIV 65 66 50 58 (46–66) 61 (55–65) 50 55 (45–61) 55
StiIV 43 45 36 41 (34–47) 40 (35–45) 37 37 (35–40) 43
StIV 93 90 86 84 (77–91) 87 (73–105) 79 88 (83–90) 96
fdl, No teeth 33, 6 33, 5 30 (28–32), 5 32 (25–35), 6–7 32, 6–7 30 (29–31)
mdl, No teeth 33, 1 35, 1 33 (32–34), 1 32 (30–35), 1 30, 1 31 (29–34)

Sources of measurementsSouth Africa (identified as Amblyseius peltatus, synonymized by Tseng 1983): van der Merwe (1968); Madagascar (identified as Amblyseius peltatus, synonymized by Tseng 1983): Blommers (1976); Other African Countries (Ghana 4♀♀, Kenya 2♀♀, Sierra-Leone 1♀, Zimbabwe 1♀, South Africa 2♀♀): Moraes et al.(2007a); La Réunion: Kreiter et al.(2020c); Sri Lanka: Moraes et al.(2004b); Thailand: Oliveira et al.(2012); USA Holotype: Moraes & McMurtry (1983); –: not provided.

Tribe Euseiini Chant & McMurtry

Euseiini Chant & McMurtry 2005b: 191.

Genus Iphiseius Berlese

Iphiseius Berlese, 1916: 33, Chant & McMurtry 2005b: 217, 2007: 123.

Iphiseius degenerans (Berlese)

Seius degenerans Berlese 1889: 9.

Amblyseius (Iphiseius) degenerans, Muma 1961: 288.

Typhlodromus degenerans, Hirschmann 1962: 2.

Iphiseius (Iphiseius) degenerans, Pritchard & Baker 1962: 299.

Amblyseius degenerans, Zaher 1986: 99, Northcraft 1987: 521, Papadoulis & Emmanouel 1991: 36.

Iphiseius degenerans, Berlese 1921: 95, Evans 1954: 518, Moraes et al. 1986: 61, 2004b: 92, Chant & McMurtry 2005b: 215, 2007: 125.

Iphiseius martigellus El-Badry 1968: 325 (synonymy according to Chant & McMurtry 2005b).

The biological characteristics of this Ethiopian species have been well documented because of its use in controlling thrips on various cultivated plants in greenhouses. Iphiseius degenerans is a commercially available biological control agent of thrips and spider mites in greenhouse crops. Although it can feed on a wide range of foods, thrips larvae and sweet pepper pollen are less favourable for immature development (Vanthornhout et al. 2004, 2005), potentially hindering the establishment of this predator in sweet pepper crops. According to McMurtry et al. (2013), I. degenerans is classified as a type-IV generalist predator, it is one of the most common native phytoseiid mite species on cassava in southern Africa (Zannou et al. 2005) and feeds on Mononychellus tanajoa (Bondar) (Nwilene and Nachman 1996), a widely distributed neotropical mite pest of cassava in Africa, as well as insect larvae and pollen of many plants (Vantornhout et al. 2005). Another study concluded that I. degenerans can be considered a suitable biological control candidate based on its preference with Eutetranychus orientalis (Klein) in the Mediterranean region (Fantinou et al. 2012). Iphiseius degenerans preys on Oligonychus perseae Tuttle, Baker & Abbatiello outside the webbed nests. Although I. degenerans contributed towards the control of O. perseae, it is effectiveness is limited and needs further investigation, considering the inclusion of alternative food (e.g. Castor oil pollen) for predator population growth (Zappala et al. 2015). This is the first record of this species from the Ivory Coast.

Specimens examined — 34 ♀♀ and 21 ♂♂ collected between 05/IV/2017 and 17/IV/2018 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) on Carica papaya L.

World distribution — numerous countries in Northern and Southern Africa (Demite et al. 2024), Mediterranean area (Cyprus, Greece, Italy, Portugal), Near East or Middle East (Egypt, Israel, Lebanon, Saudi Arabia, Syria, Türkiye, Yemen), in Europe (Georgia), South America (Brazil) and in North America (USA in California, Florida, Georgia, New Hampshire), Indian Ocean (Grande Comore Island, Comoros).

Remarks — The measurements of the 10 ♀♀ + 1 ♂ (Tables 11 & 12) fit well with measurements of specimens reported in the literature.

Table 11. Comparisons of character measurements of female specimens of Iphiseius degenerans collected in different locations (Localities followed by the number of specimens measured between brackets).

Download as CSV


Characters Ivory Coast (10) (this study) Algeria (?) Kenya (66) Other African Countries (12) Grande Comore (7) Spain (?) Syria (20) Türkiye (10)
dsl 387 (360–450) 360 373 (363–387) 420 (370–462) 374–382 405 (395–420) 383 (378–388)
dsw s4 297 (258–400) 345 309 (290–317) 362 (350–375) 284–294 359 (355–360) 263 (260–265)
dsw R1 329 (286–390) 274 (270–278)
j1 25 (20–28) 27 23 24 (14–32) 24 (20–25) 24 27 (25–38) 24 (20–28)
j3 3 5 (4–8) 5 4 5 4 (3–5)
j4 3 4 (3–6) 5 4 5 4 (3–5)
j5 3 4 (3–5) 5 4 5 4 (3–5)
j6 3 5 (4–6) 5 4 5 4 (3–5)
J2 3 (3–5) 6 (4–7) 5 4 5 4 (3–5)
J5 3 6 (5–7) 5 5 4 (3–5)
r3 6 (6–7) 12 (10-13) 14 (13–15) 5 4 (3–5)
R1 5 9 (7-10) 11 (9–13) 5 4 (3–5)
s4 8 (8–9) 9 (7–12) 8 7–8 5 4 (3–5)
S2 5 8 (6–9) 8 4–5 5 4 (3–5)
S4 5 9 (6–11) 9 (8–9) 4–7 5 4 (3–5)
S5 5 9 (7–11) 9 (8–9) 6–7 5 4 (3–5)
z2 3 5 (4–8) 5 4 5 4 (3–5)
z4 3 5 (4–9) 5 4 5 4 (3–5)
z5 3 4 (3–5) 5 4 5 4 (3–5)
Z1 3 6 (5–8) 5 4–5 5 4 (3–5)
Z4 6 (6–7) 7 (5–9) 8 (6–9) 4–6 5 4 (3–5)
Z5 13 (11–13) 14 12 14 (11–20) 14 (11–15) 10–12 16 (13–17) 11 (10–13)
st1-st1 55 (53–58) 57 (55–60) 60
st2-st2 68 (65–72) 46 49 (42–52) 54 (53–55) 75 (72–78) 69 (65–73)
st3-st3 84 (83–86) 64 71 (67–73) 71 (68–75) 92 (90–92)
st1-st3 52 (50–55) 86 (65–93) 60 (60–62) 54 (53–55)
st4-st4 90 (86–95) 96 (90–100) 105 (105–107)
gensl 149 (135–168)
St5-St5 96 (92–100) 100 96 (90–103) 105 (100–110) 101 (98–105)
gensw post. corn. 101 (95–113)
lisl 35 (33–38) 36 (30–38)
lisw 5 (5–6) 5 (4–8)
sisl 13 (10–15) 14 (13–18)
sisw 2
vsl 26 (23–33) 35 (33–38)
vsw ant. corn. 72 (68–87) 74 65 (58–73) 77 (70–83)
asl 61 (58–65) 72 (68–75)
asw anus 74 (72–76) 72 (68–77) 77 (70–83)
JV5 24 (22–25) 14 24 (20–25) 30 (28–30) 19 (18–20)
gv3–gv3 31 (30–31)
scl 37 (35–40) 30 35 (33–38)
scw < 1
SgeII 20 (18–25) 22 23 24 (21–25)
SgeIII 26 (23–28) 33 35 30 (28–33)
StiIII 23 (21–25) 27 25 (25–26)
SgeIV 40 (38–45) 42 30 43 (40–50) 38–44 43(40–45) 38 (35–40)
StiIV 30 (28–33) 35 25 29 (25–33) 32–36 34 (30–35) 32 (30–33)
StIV 27 (23–30) 37 38 32 (30–33) 28–34 30 26 (25–28)
fdl, No teeth 26 (25–28), 8 26 (24–27), 6–8 27 (25–30), – 28, 5-6 27 (25–28), 6
mdl, No teeth 29 (23–30), 2 31 (27–35), 1–2 25 (23–27), – 25, 1 24 (23–25), 1

Sources of measurementsAlgeria: Athias-Henriot (1957); Kenya: El-Banhawy & Knapp (2011); Other African Countries (Burundi 1♀, Cameroon 1♀, Ghana 1♀, Kenya 2♀♀, Malawi 2♀♀, Rwanda 1♀, Sierra Leone 2♀♀, Uganda 1♀, Zambia 1♀): Moraes et al.(2007); Grande Comore: Kreiter et al.2018b; Spain: Ferragut et al. (2010); Syria: Barbar (2013); Türkiye: Döker et al. (2018); –: not reported.

Table 12. Comparisons of character measurements of male specimens of Iphiseius degenerans collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (5) (this study) Kenya (?) South Africa (?) Other African Countries (5) Grande Comore (4) Türkiye (3)
dsl 344 (338–350) 353-376 318 (283–356) 306 (295-312) 353 (350–355)
dsw s4 260 (253–267) 282-294 255 (244–261) 232 (238-250) 233 (230–235)
dsw R1 278 (270–288) 234 (240–247)
j1 23 (22–24) 28-31 20 (11–25) 21 (18-23) 22 (20–24)
j3 3 5 (4–5) 5 4 (3–5)
j4 3 3 (3–5) 5 4 (3–5)
j5 3 3 (3–4) 5 4 (3–5)
j6 3 4 (4–5) 5 4 (3–5)
J2 3 4 (3–4) 5 4 (3–5)
J5 4 5 (4–6) 5 4 (3–5)
r3 6 11 (10–12) 12 (10-13) 4 (3–5)
R1 5 7 (6–9) 6 (5-9) 4 (3–5)
s4 3 7 (6–9) 5 4 (3–5)
S2 3 6 (5–7) 7 4 (3–5)
S4 3 6 (5–8) 7 4 (3–5)
S5 3 7 (5–10) 7 4 (3–5)
z2 3 4 (3–5) 5 4 (3–5)
z4 3 4 (3–5) 5 4 (3–5)
z5 3 3 (3–4) 5 4 (3–5)
Z1 3 5 5 4 (3–5)
Z4 3 5 (4–5) 8 4 (3–5)
Z5 15 (13–17) 15-19 13 (9–16) 14 (13-15) 10 (9–12)
st1st1 49 (47–61) 49 (48-50)
st2st2 62 (60–64) 62 (60-63)
st3st3 65 (64–67) 64 (60-68)
st4st4 57 (54–60) 60 (58-63)
st5st5 113 (111–115) 52 (48-58)
st1st5 51 (48–53) 114 (110-118)
vsl 72 (70–75) 86 68-73 72 (65–85) 71 (68-73)
vsw ant. corn. 169 (154–180) 210 188-195 176 (172–179) 171 (165-175)
asl 50 (46–53) 63 49-53 50 (48–53) 51 (48-55)
asw 60 (58–63) 75 65-69 66 (63–75) 64 (58-68)
JV5 17 (16–18) 21-24 22 (20-23)
gv3–gv3 25
SgeII 20 26-28 21 (18–24) 21 (18-25)
SgeIII 26 (25–26) 35-38 27 (21–32) 29 (28-30)
StiIII 23 (20–25) 26-28 21 (20–24) 24 (23-25)
SgeIV 35 (33–38) 44-48 36 (30–40) 42 (40-43) 36 (34–38)
StiIV 28 (27–29) 34-38 28 (27–30) 30 (28-30) 31 (30–33)
StIV 28 (27–29) 31-35 28 (26–32) 31 (30-33) 27 (25–28)
fdl, No teeth 23 (20–24), 5 24, 4 23 (20-25), 4 24 (23–25), 4
mdl, No teeth 21 (19–22), 1 24, 1 22 (20-23), 1 22 (20–23), 1
shaft 25 22 28 29 (22–45) 24 (23-25) 32 (28–35)

Sources of measurementsKenya: el-Banhawy & Knapp (2011); South Africa: van der Merwe (1968); Other African Countries (Ghana 1♀, Kenya 1♀, Rwanda 1♀, Sierra Leone 1♀, Uganda 1♀): Moraes et al.(2007); Grande Comore: Kreiter et al. (2021); Türkiye: Döker et al. (2018a); –: not reported.

Genus Euseius Wainstein

Amblyseius (Amblyseius) section Euseius, Wainstein, 1962: 15;

Euseius De Leon, 1967: 86.

Euseius fustis (Pritchard & Baker)

Amblyseius (Amblyseius) fustis Pritchard & Baker, 1962: 283; Ueckermann & Loots, 1988: 83.

Euseius fustis, Matthysse & Denmark, 1981: 348; Moraes et al. 1986: 45, 2004b: 69; Moraes & McMurtry, 1988: 15; Chant & McMurtry 2005b: 215, 2007: 121.

Bruce-Oliver et al. (1996) have tested various foods associated with cassava for their effect on the development, fecundity and longevity of Euseius fustis, the most common phytoseiid species found on cassava in Africa. Euseius fustis developed successfully to adulthood on the spider mite prey species Mononychellus tanajoa (Bondar) and Oligonychus gossypii (Zacher) and on pollen from maize, castor bean, and cassava. Euseius fustis also completed development on water-diluted phloem exudate from cassava, diluted honeydew from the cassava mealybug and on various pollen and prey combinations. When reared on Tetranychus urticae Koch prey or free water only, E. fustis did not develop after the deutonymphal stage. All larvae held on clean leaf discs on water-soaked cotton died without moulting. Diets of maize plus castor bean pollen and maize pollen plus M. tanajoa resulted in the highest rate of development, the highest fecundity and the greatest longevity. Castor bean pollen alone and maize pollen alone produced a higher fecundity and greater longevity than M. tanajoa tested alone. A colony of E. fustis reared continuously for seven generations on castor bean pollen produced nine times more adult females than a colony of E. fustis reared continuously on M. tanajoa. No negative effects on the development and fecundity of E. fustis were observed after seven generations were reared on pollen. On cassava, the leaf-dwelling Typhlodromalus manihoti and E. fustis occur on the middle leaves, whereas the apex-inhabiting T. aripo migrates from the apex to the top leaves only during the night (Magalhaes et al. 2002). We found that differential distributions of these predators allow prey to escape predation by vertical migration to other plant strata. We studied the role of odours in the underlying prey behaviour on predator-free plants placed downwind from plants with predators and prey or with prey only. Prey showed increased vertical migration in response to predator-related odours. Moreover, these responses were specific: when exposed to odours associated with T. manihoti, prey migrated upwards, irrespective of the plant stratum where they were placed. Odours associated with T. aripo triggered a flexible response: prey on the top leaves migrated downwards, whereas prey on the middle leaves migrated upwards. Odours associated with E. fustis, a low-risk predator, did not elicit vertical migration. Further experiments revealed that: (1) prey migrate up or down depending on the stratum where they are located, and (2) prey discrimination among predators is based upon the perception of predator species-specific body odours. Thus, at the scale of a single plant, odour-based enemy specification allows herbivorous mites to escape predation by vertical migration. This is the first record of this species from the Ivory Coast.

Specimens examined — a single specimen (1 ♀) collected between 05/IV/2017 and 17/IV/2018 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) and 107 ♀♀ and 39 ♂♂ collected between 06/IV/2017 au 18/III/2018 in Yamoussoukro, Ngattakro (aasl 158 m, Lat 6°49′39.443″N; Long 5°17′21.635″W) on Carica papaya L.

World distribution — Benin, Burundi, Cape Verde, Congo, DR Congo, Ghana, Malawi, Nigeria, Rwanda, Tanzania, Uganda, Zimbabwe.

Remarks — The measurements of specimens from the Ivory Coast (tables 13 and 14) are very close to those of specimens from other regions of Africa.

Table 13. Comparisons of character measurements of adult females of Euseius fustis collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (10) (this study) Cape Verde (5) DRC (1) Holotype Kenya1 (3) Kenya2 (1?) Tanzania (1) Other African Countries (2)
dsl 345 (330–358) 341 (326–347) 365 347 (334–360) 310 344 (329–360)
dsw s4 221 (205–228) 204 (199–214) 233 222 (216–226) 200 221 (206–235)
dsw R1 216 (205–225)
j1 28 (25–30) 27 (26–27) 28 22 (19–26) 23 29 24 (21–27)
j3 15 (13–17) 19 (18–20) 18 18 (17–19) 17 29 15 (14–16)
j4 8 (6–8) 10 (8–11) 13 11 (10–12) 9 15 10
j5 7 (6–8) 11 12 11 (10–12) 9 15 9 (8–10)
j6 8 (8–9) 13 (12–13) 13 14 (12–14) 12 22 11
J2 10 (9–11) 14 (13–15) 14 16 (14–17) 14 22 14 (13–14)
J5 7 (6–8) 8 (7–8) 6 7 8 11 7 (6-8)
r3 13 (11–16) 16 (15–16) 14 15 (12–17) 5 14 14
R1 7 (6–9) 13 12 13 (12–14) 12 15 11
s4 16 (15–17) 23 (22–24) 18 21 (17–24) 19 31 18 (16–21)
S2 12 (10–13) 16 (13–17) 12 14 (12–17) 15 25 12 (11–13)
S4 13 (11–15) 12 (11–13) 12 13 (10–14) 13 24 11
S5 11 (9–13) 14 (13–17) 12 12 (10–14) 13 26 11
z2 8 (8–9) 15 (14–16) 14 14 (12–17) 14 22 11 (10–13)
z4 10 (9–11) 13 (12–13) 14 14 (12–17) 14 22 12 (11–13)
z5 8 (6–9) 12 (11–13) 13 11 (10–12) 12 18 10
Z1 8 (8–9) 13 (13–14) 14 11 (10–12) 14 22 10 (10–11)
Z4 11 (10–12) 14 (12–15) 13 14 (12–17) 14 26 12 (11–13)
Z5 44 (41–48) 46 (42–49) 47 45 (43–48) 42 48 41 (37–45)
st1-st1 57 (54–58)
st2-st2 65 (63–68) 72 70 (67–72) 65 68 (67–69)
st3-st3 77 (75–80)
st1-st3 58 (55–60) 64 62 (60–65) 62 62
st4-st4 92 (86–104)
gensl 121 (115–125)
st5-st5 75 (73–78) 86 80 (77–84) 82 76 (74–78)
gensw post. corn. 86 (84–88)
lisl 25 (23–26)
lisw 5
sisl 7 (6–8)
sisw < 1
vsl 95 (93–98) 100 (98–101) 90 100 (96–104)
vsw ZV2 53 (50–55) 48 48 (46–50) 62 50
vsw anus 67 (64–68) 62 70 (67–72) 60 (58–62)
gv3 – gv3 32 (30–33)
JV5 32 (28–36) 28
SgeI 33 (31–34) 28 20 (19–22) 22 18 (18–19)
scl 6 56 (48–65) 40 30 (29–32)
scw 23 (21–25)
SgeII 22 (20–23) 24 22 20 21 (19–22)
SgeIII 29 (26–31) 28 29 (26–31) 25 20 27 (22–32)
StiIII 19 (18–20) 19 19 20 14 18 (18–19)
SgeIV 44 (41–47) 48 41 (38–43) 45 42 39 (34–45)
StiIV 30 (28–33) 28 24 18 23 24 (22–26)
StIV 41 (40–43) 42 43 (41–46) 48 28 41 (37–45)
fdl, No teeth 25 (24–25), 8 24, – –, 3
mdl, No teeth 23 (22–24), 2 24, – –, 2

Sources of measurementsCape Verde: Ferragut & Baumann (2021); DRC (Democratic Republic of Congo) Holotype: Pritchard & Baker (1962) in Moraes & McMurtry (1988); Kenya1: Moraes & McMurtry (1988); Kenya2: El-Banhawy & Knapp (2011); Tanzania: El-Banhawy & Abou-Awad (1990); Other African Countries (Uganda 1♀, RDC: 1♀): Moraes et al. (2001); –: not provided.

Table 14. Comparisons of character measurements of male specimens of Euseius fustis collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (5) (this study) Cape Verde (6)
dsl 252 (248–258) 250 (242–257)
dsw s4 173 (163–180) 175 (169–182)
dsw R1 173 (163–180)
j1 22 (20–25) 22 (20–25)
j3 14 (13–15) 17 (16–17)
j4 5 (5–6) 12 (11–13)
j5 5 (5–6) 11 (10–12)
j6 6 (6–7) 12 (11–13)
J2 8 (8–9) 12 (11–14)
J5 5 (5–6) 8 (7–8)
r3 11 (10–13) 16 (15–18)
R1 7 (6–8) 13 (11–16)
s4 14 (13–16) 23 (20–25)
S2 8 15 (13–17)
S4 8 (8–9) 13 (12–15)
S5 9 (8–10) 12 (11–13)
z2 7 (6–8) 14 (13–15)
z4 7 12 (11–14)
z5 6 (6–8) 10 (9–11)
Z1 6 (5–7) 10 (9–11)
Z4 8 13 (11–14)
Z5 37 (36–39) 39 (36–41)
st1–st1 48 (46–50)
st2–st2 54 (53–56) 74 (72–76)
st3–st3 59 (58–61)
st4–st4 46 (45–48)
st5–st5 38 (36–39)
st1–st5 96 (95–98) 111 (109–112)
vsl 103 (98–108) 49 (47–51)
vsw 136 (133–138) 137 (128–146)
vsw anus 54 (53–58)
gv3-gv3 22 (21–23) 22 (20–23)
JV5 24 (23–27) 26 (24–28)
SgeI 19 (18–21) 22 (21–23)
SgeII 20 (18–22) 20 (20–21)
SgeIII 26 (24–28) 26(25–28)
StiIII 18 (18–19) 17 (16–18)
SgeIV 38 (36–39) 34 (33–34)
StiIV 25 (24–27) 23 (22–23)
StIV 33 (31–35) 34 (33–35)
fdl, No teeth 20 (19–22), 6 22 (21–22), 4 or 5*
mdl, No teeth 19 (18–20), 1 21 (20–21), 1
shaft 20 (20–21)
Branch 6 (5–6)

Sources of measurementsCape Verde: Ferragut & Baumann (2021); –: not reported.

Euseius lokele (Pritchard & Baker)

Amblyseius (Amblyseius) lokele Pritchard & Baker, 1962: 271.

Euseius lokele, Moraes et al. 1986: 47, 1989a: 99, 1989b: 85, 2004b: 72; Chant & McMurtry 2005b: 215, 2007: 121.

Euseius lokele was found on Solanum aethiopicum in association with tetranychid and tarsonemid mites in southern Benin (Moraes et al. 2001). But, its biology is unknown. This is the first record of this species from the Ivory Coast.

Specimens examined — a single specimen (1 ♀) collected between 05/IV/2017 and 17/IV/2018 in Toumodi, Yobouekro (aasl 184 m, Lat 6°31′19.196″N, Long 5°6′41.36″W) and 12 ♀♀ and 6 ♂♂ collected between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N, Long 3°55′00.60″W) on Carica papaya L.

World distribution — Benin, Burundi, Cameroon, DR Congo, Ghana, Kenya, Nigeria, Sierra Leone, Uganda.

Remarks — The measurements of specimens from the Ivory Coast (tables 15 and 16) are very close to those of specimens from other regions of Africa.

Table 15. Character measurements of adult females of Euseius lokele collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (13) (this study) DRC (1) Holotype DRC (1) Paratype Kenya1 (5) Kenya2 (1) Kenya3 (1?) Other African Countries (21)
dsl 366 (325–400) 320 346 (334– **355) 310 323 (291– **408)
dsw s4 237 (215– 260) 220 233 (218– **240) 210 219 (200– **274)
dsw R1 234 (212– 250)
j1 30 (24– 35) 33 30 29 (26– **31) 23 27 27 (26– **35)
j3 13 (10– 16) 8 22 17 (10– **22) 17 16 11 (10– **24)
j4 8 (6– 10) 8 9 9 (7– **12) 9 10 6 (6– **11)
j5 9 (7– 10) 8 10 (7– **12) 10 6 (6– **11)
j6 12 (9– 14) 8 11 (10– **12) 10 8 (6– **14)
J2 13 (11– 15) 9 12 12 (10– **12) 13 12 10 (8– **16)
J5 7 (6– 8) 6 7 (5– **10) 7 6 (5– **8)
r3 14 (11–20) 16 15* *(12– **17) 17 14 (11– **22)
R1 12 (10–13) 12 10 10 (8– **13)
s4 17 (13–24) 13 20 21 (14– **26) 28 25 14 (11– **29)
S2 13 (12–15) 11 13 (12– **14) 14 12 (10– **16)
S4 13 (11–15) 11 12 12 (10– **14) 13 12 10 (8– **18)
S5 12 (11–14) 11 12 (10– **14) 12 10 (7– **16)
z2 11 (8–14) 9 13 12 (10– **14) 12 12 10 (6– **16)
z4 12 (9–15) 8 13 (10– **17) 14 10 (8– **16)
z5 10 (8–14) 8 10 (7– **12) 10 8 (6– **11)
Z1 11 (9–14) 10 11 (10– **12) 12 11 (8– **14)
Z4 12 (10–16) 8 12 (10– **14) 13 11 (8– **16)
Z5 61 (55–65) 47 61 57 (53– **58) 60 55 51 (48– **70)
st1-st1 63 (60–65)
st2-st2 73 (69–75) 66 72 (65– **77) 70 68 (64– **80)
st3-st3 80 (76–82)
st1-st3 60 (55–63) 53 61 (55– **62) 60 57 (40– **67)
st4-st4 114 (110–118) – ** – **
gensl 124 (113–133) – ** – **
st5-st5 75 (73–78) 65 78 (77– **79) 80 71 (67– **86)
gensw post. corn. 86 (85–88)
lisl 25 (23–28)
lisw 4 (3–4)
sisl 12 (10–14)
sisw 1
vsl 99 (95–105) 88 91 (86– **96) 92 91 (88– **120)
vsw ant. corn. 53 (50–56) 44 48 (48– **50) – ** 50 (40– **58)
vsw anus 72 (68–76) 65 70 (65– **72) 60 72 (62– **82)
gv3 – gv3 28 (26–30)
JV5 45 (43–57) 42 43
Scl 18 (16–20) 16 18 (17– **22) 18 14 (11– **19)
Scw 8 (7–8) – ** 7
SgeI 19 25 (22– **29)
SgeII 30 (26–33) 28 32 (29– **36) 32 28 (24– **34)
SgeIII 42 (40–45) 33 37 (36– **41) 37 35 (32– **42)
StiIII 29 (26–32) 24 32 (31– **34) 26 (22– **34)
SgeIV 62 (58–68) 58 66 (60– **74) 60 54 (50– **70)
StiIV 41 (36–45) 39 42 (41– **43) 38 34 (30– **53)
StIV 73 (69–77) 66 76 (67– **82) 70 68 (62– **86)
fdl, No teeth 25 (24–29), 6 29 –, 4
mdl, No teeth 25 (23–26), 2 26 –, 2

Sources of measurementsDRC (Democratic Republic of Congo) Holotype: Pritchard & Baker (1962) in Moraes et al. (1989); DRC Paratype: Pritchard & Baker (1962) in Swirski & Ragusa (1978); Kenya1: Moraes et al. (1989a); Kenya2: Swirski & Ragusa (1978); Kenya3: El-Banhawy & Knapp (2011); Other African Countries (Benin: 1♀, Burundi: 2♀♀, Cameroon: 1♀, Ghana: 2♀♀, Kenya:7♀♀, Sierra Leone: 2♀♀, Uganda: 3♀♀, Zaire: 3♀♀): Moraes et al. (2001); –: not provided.

Table 16. Comparisons of character measurements of male specimens of Euseius lokele collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (5) (this study)
dsl 281 (275–288)
dsw s4 209 (203–218)
dsw R1 208 (203–216)
j1 27 (25–28)
j3 12 (11–13)
j4 8 (8–9)
j5 8 (8–9)
j6 10 (8–11)
J2 13 (12–13)
J5 6 (5–6)
r3 17 (16–18)
R1 12 (10–13)
s4 22 (20–24)
S2 15 (14–16)
S4 13 (12–13)
S5 12 (11–13)
z2 12 (11–13)
z4 13 (12–13)
z5 10 (9–11)
Z1 12 (12–13)
Z4 13 (12–14)
Z5 52 (50–53)
st1–st1 54 (53–55)
st2–st2 63 (60–65)
st3–st3 60 (59–60)
st4–st4 48 (47–49)
st5–st5 38 (37–39)
st1–st5 108 (107–110)
vsl 110 (108–113)
vsw ant. corn. 157 (153–160)
Vsw anus 61 (55–65)
gv3-gv3 26 (25– 27**)
JV5 26 (25–28)
SgeII 24 (23–25)
SgeIII 29 (28–30)
StiIII 28 (27–28)
SgeIV 47 (45–50)
StiIV 34 (34–35)
StIV 57 (53–60)
fdl, teeth 21 (20–22)
mdl, teeth 23 (23–24)
shaft 21 (20–22)
branch 5 (5–6)

Euseius nyalensis (El-Badry)

Amblyseius nyalensis El-Badry 1968: 322.

Euseius nyalensis, Moraes et al. 1986: 47, 2001: 40, 2004b: 72; Chant & McMurtry 2005b: 215, 2007: 121.

Euseius neotutsi Ueckermann 1992: 149 (synonymy according to Moraes et al. 2001).

The biology of this species remains unknown and this is its first record for the Ivory Coast.

Specimens examined — 7 ♀♀ and 1 ♂ collected during this study, between 06/IV/2017 and 18/III/2018 in Yamoussoukro, Ngattakro (aasl 158 m, Lat 6°49′39.443″N; Long 5°17′21.635″W) on Carica papaya L

World distribution — Benin, Cameroon, Cape Verde, Ghana, Sierra Leone, Sudan, Yemen.

Remarks — The measurements of specimens from the Ivory Coast (Tables 17 and 18) are very close to those of specimens from other regions.

Table 17. Comparison of character measurements of adult females of Euseius nyalensis collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (7) (this study) Cape Verde (6) Senegal (3) Sudan (1) Holotype Other African Countries (24) Yemen (3)
dsl 347 (324–393) 343 (330–355) 339 (332–340) 330 339 (307– 387) 324–378
dsw s4 246 (225–258) 214 (205–227) 226 (215–235) 145 229 (208– 249) 211–221
dsw R1 230 (218–235)
j1 37 (35–39) 39 (37–42) 35 (33–35) 37 38 (34– 48) 33–35
j3 45 (43–48) 52 (48–57) 43 (38–48) 45 47 (38– 58) 46–47
j4 24 (18–28) 37 (32–46) 43 (38–50) 37 32 (16– 46) 28–35
j5 27 (25–28) 45 (40–52) 45 (43–48) 45 38 (16– 56) 38–41
j6 59 (56–63) 67 (64–71) 62 (62–65) 62 58 (43– 67) 54–59
J2 59 (53–63) 62 (59–67) 63 (62–65) 60 58 (43– 70) 54–57
J5 4 (4–5) 4 (4–6) 7 (5–8) 5 (3– 8) 4
r3 25 (24–26) 34 (32–38) 27 (25–29) 27 (16– 35) 22–24
R1 20 (18–21) 21 (20–23) 18 (17–20) 19 (14– 24) 19
s4 81 (80–83) 86 (81–90) 74 (62–85) 75 81 (69– 91) 71–72
S2 62 (48–65) 62 (56–67) 59 (48–65) 60 59 (46– 72) 54–58
S4 49 (46–50) 49 (46–53) 49 (45–55) 47 46 (35– 59) 38–44
S5 48 (45–50) 52 (50–55) 49 (47–50) 42 46(48– 59) 38–41
z2 37 (35–39) 42 (40–46) 37 (35–41) 37 39 (30– 48) 38
z4 56 (55–59) 63 (60–69) 55 (53–60) 52 56 (46– 67) 52–54
z5 14 (13–15) 63 (60–69) 18 (14–23) 17 17 (10– 35) 13–14
Z1 58 (55–60) 63 (61–68) 60 (55–64) 55 55 (35– 64) 54–55
Z4 58 (56–60) 57 (55–61) 61 (58–65) 57 57 (48– 67) 47–57
Z5 85 (78–90) 79 (76–81) 82 (80–83) 75 80 (70-91) 71–72
st1– st1 61 (60–61)
st2– st2 66 (63–70) 70 (67–75) 70 (62– 80) 91–101
st3– st3 86 (83–88)
st1– st3 66 (65–68) 65 (64–67) 63 (56– 70) 211–221
st4– st4 97 (93–105)
gensl 128 (125–133)
gensw st5 86 (83–90) 83 (81–87) 83 (72– 94) 88–98
gensw post. corn. 106 (103–113)
Lisl 23 (20–28)
Lisw 2 (2–3)
Sisl 10
Sisw < 1
vsl 104 (90–113) 106 (102–110) 107 (96– 123) 95–l13
vsw post. corn. 52 (50–55) 64 (63–65) 53 (46– 64)
vsw anus 80 (76–83) 74 (72–76) 74 (62– 86) 69–79
gv3–gv3 31 (30–33)
JV5 48 (45–50) 41–47
scl 30 (25–35) 22 (20–22) 23 (20–25) 21 (11– 32)
scw 2 (1–2)
SgeI 35 (30–38) 31 (30–32) 30 33 (30– 37) 32-33
SgeII 32 (31–35) 33 (32–35) 32 (30–33) 27 31 (26– 32) 30-32
SgeIII 44 (40–47) 42 (40–44) 41 (40–42) 35 42 (38– 46) 41
StiIII 31 (30–33) 30 (29–30) 27 (25–28) 30 29 (24– 32) 28–30
SgeIV 61 (60–63) 63 (63–64) 59 (57–60) 60 (50– 69) 59–60
StiIV 41 (40–42) 44 (43–45) 36 (35–37) 45 40 (34– 48) 38–39
StIV 79 (76–80) 75 (74–76) 71 (70–73) 65 67 (48– 77) 66–67
fdl, No teeth 26 (25–28) –, 5
mdl, No teeth 24 (23–25) –, 1

Sources of measurementsCape Verde: Ferragut & Baumann (2021); Senegal: Kade et al. (2011); Sudan Holotype: El-Badry (1968) in Ueckermann & Loots (1988); Yemen: Ueckermann & Loots (1988); Other African Countries (Benin: 13♀♀, Cameroon: 5♀♀, Ghana: 1♀, Sierra Leone: 5♀♀): Moraes et al. (2001); –: not provided.

Table 18. Comparisons of character measurements of male specimens of Euseius nyalensis collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Cape Verde (6) Sudan (1) Yemen (1)
dsl 250 239–262 263 261
dsw s4 175 139–165 165 180
dsw R1 200
j1 30 39–43 28
j3 35 39–43 38
j4 10 15–23 23
j5 13 23–26 26
j6 33 39–43 41
J2 28 32–34 38
J5 3 5–6 3
r3 20 23–26 21
R1 10 9–15 13
s4 55 55
S2 40 39–42 45
S4 28 28–30 27
S5 28 31–39 28
z2 28 35–37 30
z4 28 46–54 43
z5 9 12–15 11
Z1 28 39–40 41
Z4 28 31–39 38
Z5 55 54–57 50
st1–st1 54
st2–st2 65 82 110
st3–st3 65
st4–st4 55
st5–st5 40
st1–st5 123 131 128
vsl 93 92 98
vsw ant. corn. 163 146 161
Vsw anus 63
gv3-gv3 24
JV5 30 31
SgeI 30 32
SgeII 25 28–31 30
SgeIII 30 34–39 37
StiIII 28 26–28 25
SgeIV 50 48–54 50
StiIV 38 39–40 33
StIV 58 48–54 60
fdl, teeth 23
mdl, teeth 20
shaft 23
Branch 5

Sources of measurementsCape Verde: Ueckermann (1992) but identified as E. neotutsi; Sudan: El-Badry (1968); Yemen: Ueckermann (1996); –: not reported.

Euseius ovaloides (Blommers)

Amblyseius (Amblyseius) ovaloides Blommers 1974: 147.

Euseius ovaloides, Moraes et al. 1986: 51, 2004b: 78, Chant & McMurtry 2005b: 215, 2007:121.

Euseius ovaloides was described by Blommers (1974) from specimens collected on Citrus hystrix de Candolle (Rutaceae) and Persea americana Miller (Lauraceae) on Madagascar. Like all Euseius species, this species belongs to the type IV (pollinophagous generalist predators) of McMurtry and Croft (1997) and McMurtry et al. (2013). The species has been occasionally recorded from Madagascar (Blommers 1974), Papua-New Guinea (Schicha and Gutierrez 1985), Seychelles (Schicha 1987), La Réunion Island, (Quilici et al. 1997, 2000, Kreiter et al. 2020c), Guadeloupe, Martinique and Marie-Galante (Moraes et al. 2000; Kreiter et al. 2006) on various plants. Although its biology remains unknown, it is suspected to be a poor predator of tetranychid mites (Gutierrez and Etienne 1986) but can be considered as a potential predator of thrips and whiteflies. It is one of the most common species on La Réunion Island (Kreiter et al. 2020c). This is the first record of this species from the Ivory Coast.

Specimens examined — a single specimen (1 ♂) collected during this study between 14/III/2017 and 10/III/2018 in Abidjan, Anyama Ahoue (aasl 42 m, Lat 5°26′00.87″N; Long 3°55′00.60″W) on Carica papaya L.

World distribution — Guadeloupe Island (France), Madagascar Island, Marie-Galante Island (France), Martinique Island (France), Mauritius Island, Mayotte Island (France), Papua New Guinea, La Réunion Island (France), Rodrigues Island (Mauritius), Seychelles Archipelago, Vietnam.

Remarks — The measurements of specimens from the Ivory Coast (table 19) are very close to those of specimens from other regions, with slightly longer dimensions, especially for the macrosetae, except for setae j1, which are shorter. The morphological and morphometric characters, as well as all measurements of our single male specimen fit well with measurements reported by Kreiter et al. (2020c).

This species was recently reported from Rodrigues and Mauritius Islands (Kreiter and Abo-Shnaf 2020a, b), Mayotte Island (Kreiter et al. 2020a), Vietnam (Kreiter et al. 2020b), and Grande Comore (Kreiter et al. 2021), all located in the Indian Ocean. But, E. ovaloides seems not reported from other African countries. This species was the second most collected species in a study conducted in Mauritius, compared to A. herbicolus (Kreiter & Abo-Shnaf 2020b) and it was also very common on La Réunion (Kreiter et al. 2020c) but less common in Mayotte and Grande Comore Islands (Kreiter et al. 2020a, 2021). In our study, only one specimen was collected.

Table 19. Comparison of character measurements of an adult male of Euseius ovaloides collected in different locations (localities followed by the number of specimens measured).

Download as CSV


Characters Ivory Coast (1) (this study) Guadeloupe (2) La Réunion (4) Papua-New Guinea (3)
dsl 250 254–259 243–268 247
dsw s4 167 186–189 190–214 157
dsw R1 175
j1 23 30–31 25–32 27
j3 10 8–9 9 8–9
j4 10 5–6 6 6–8
j5 8 5–6 6 6–8
j6 10 6 6 6–8
J2 10 6 6–8 6–8
J5 5 5 5–6 4
r3 12 9–11 9 9
R1 10 6 2024-08-06 7
s4 18 11–12 11–13 12
S2 10 6–8 6 7–8
S4 10 6 6 7–8
S5 9 6 6 7–8
z2 10 7–9 2024-09-06 8–9
z4 10 6–8 6 8–9
z5 8 4–6 6 6
Z1 10 6 6 7–8
Z4 11 6 6 6
Z5 45 40 35–41 38
st1–st1 50
st2–st2 60
st3–st3 55
st4–st4 45
st5–st5 33
st1–st5 105
vsl 90 88–90 85–101 90
vsw ant. corn. 143 130–136 126–154 150
vsw anus 53
gv3-gv3 18 19
JV5 15
SgeI 20 13–19
SgeII 20 13–14
SgeIII 25 22–24 22
StiIII 25 17
SgeIV 40 32–33 29
StiIV 33 30–31 27
StIV 53 47–50 44
fdl, No teeth 20
mdl, No teeth 20
shaft 23 22–25 18
branch 13

Sources of measurementsGuadeloupe: Moraes et al. (2000); La Réunion: Kreiter et al. (2020c); Papua-New-Guinea: Schicha & Gutierrez (1985); –: not provided.

Conclusion

Before this paper, the fauna of Phytoseiidae of Ivory Coast was limited to five recorded species all belonging to the subfamily Amblyseiinae.

This paper reports on the results of a survey conducted recently (2017-2018) and adds 11 newly recorded species. The total number of Phytopseiidae species for the Ivory Coast now reaches to 16, all belonging to the subfamily Amblyseiinae.

Among these 16 species, several are already well-known as biological control agents (BCA). This must be underlined when new regulations on the importation of macro-organisms are proposed. The knowledge of the biodiversity, especially regarding efficient biological control agents, is of considerable importance not only for fundamental knowledge or conversation purposes but also for agricultural and economic reasons.

Acknowledgements

We thank the authorities of Nangui Abrogoua University headed by Professor Tano Yao, for the good management of our project. Thanks also to the entire team of the Plant Health Unit of Nangui Abrogoua University, for their great help to the completion of this work.

We also thank the papaya producers and agricultural cooperatives for facilitating the sampling of mites in papaya orchards.

We are also very grateful to Drs Edward A. Ueckermann and Ismaïl Döker for the review of an early version of this manuscript and very valuable comments, inducing great improvements. And to Dr Haralabos Tsolakis for the editing process of this paper.



References

  1. Abo-Shnaf R.I.A., Moraes G.J. de 2014. Phytoseiid mites (Acari: Phytoseiidae) from Egypt, with new records, descriptions of new species, and a key species. Zootaxa, 3865: 1-71. https://doi.org/10.11646/zootaxa.3865.1.1
  2. Abo-Shnaf R.I.A., Sánchez L., Moraes G.J. de 2016. Plant inhabiting Gamasina mites (Acari: Mesostig- mata) from the Dominican Republic, with description of four new species of Lasioseius (Blatti- sociidae) and complementary description of other species. Syst. Appl. Acarol., 21(5): 607-646. https://doi.org/10.11158/saa.21.5.5
  3. Athias-Henriot C. 1957. Phytoseiidae et Aceosejidae (Acarina, Gamasina) d'Algérie. I. Genres Blattisocius Keegan, Iphiseius Berlese, Amblyseius Berlese, Phytoseius Ribaga, Phytoseiulus Evans. Bull. Soc. Hist. Nat. Afr. Nord, 48: 319-352.
  4. Athias-Henriot C. 1962. Amblyseius swirskii, un nouveau phytoseiide voisin d'A. andersoni (Acariensvanactinotriches). Ann. Ecole Nat. Agric. Alger, 3: 1-7.
  5. Athias-Henriot C. 1975. Nouvelles notes sur les Amblyseiini. II. Le relevé organotaxique de la face dorsale adulte (Gamasides protoadéniques, Phytoseiidae). Acarologia, 17(1): 20-29.
  6. Athias-Henriot C. 1977. Nouvelles notes sur les Amblyseiini. III. Sur le genre Cydnodromus: Redéfinition, composition (Parasitiformes, Phytoseiidae). Entomophaga, 22: 61-73. https://doi.org/10.1007/BF02372991
  7. Barbar Z. 2013. Survey of phytoseiid mite species (Acari: Phytoseiidae) in citrus orchards in Lattakia governorate, Syria. Acarologia, 53: 247-261. https://doi.org/10.1051/acarologia/20132098
  8. Basha A.E., Yousef A.A., Ibrahim M.H., Mostafa E.M. 2001. Five new phytoseiids from Egypt (Acari: Gamasida: Phytoseiidae). Al-Azhar J. Agricult. Res. 33: 371-386.
  9. Berlese A. 1889. Acari, Myriopoda et Scorpiones hucusque in Italia reperta. Tipografia Del Seminario, 6(54): 7¬9.
  10. Berlese A. 1914. Acari nuovi. Manipulus IX. Redia, 10: 113¬150.
  11. Berlese A. 1916. Centuria prima di Acari nuovi. Redia, 12: 19¬66.
  12. Berlese A. 1921. Acari, Myriopoda et Pseudoscorpiones hucusque in Italia reperta. I. Índice sinonimico dei generi e delle specie illustrate nei fascicoli 1 a 101. Redia, 14(1/2): 77¬105.
  13. Buitenhuis R., Murphy G., Shipp L. and Scott-Dupree C. 2015. Amblyseius swirskii in greenhouse production systems: a floricultural perspective. Exp. Appl. Acarol. 65(4): 451-464. https://doi.org/10.1007/s10493-014-9869-9
  14. Blommers L. 1973. Five new species of phytoseiid mites (Acarina: Phytoseiidae) from southwest Madagascar. Bull. Zool. Mus. Univ. Amsterdam, 3(16): 109-117.
  15. Blommers L. 1974. Species of the genus Amblyseius Berlese, 1914, from Tamatave, east Madagascar (Acarina: Phytoseiidae). Bul. Zool. Mus. Univ. Amster., 3: 143-155.
  16. Blommers L. 1976. Some Phytoseiidae (Acarina: Mesostigmata) from Madagascar, with descrip- tions of eight new species and notes on their biology. Bijd. Dierk., 46(1): 80-106. https://doi.org/10.1163/26660644-04601005
  17. Blommers L., Chazeau J. 1974. Two new species of predator mites of the genus Amblyseius Berlese (Acarina: Phytoseiidae) from Madagascar. Zeit. Angew. Entomol., 75: 308-315. https://doi.org/10.1111/j.1439-0418.1974.tb01856.x
  18. Bruce-Oliver S.J., Hoy M.A., Yaninek J.S. 1996. Effect of some food sources associated with cassava in Africa on the development, fecundity and longevity of Euseius fustis (Pritchard and Baker) (Acari: Phytoseiidae). Exp. Appl. Acarol., 20(2): 73-85. https://doi.org/10.1007/BF00051154
  19. Byng J.W., Smets E.F., van Vugt R., Bidault E., Davidson C., Kenicer G., Chase M.W., Christenhusz M.J.M. 2018. The phylogeny of angiosperms poster: a visual summary of APG IV family relationships and floral diversity. The Global Flora: 4-7.
  20. Calvo F.J., Knapp M., van Houten Y.M., Hoogerbrugge H., Belda J.E. 2015. Amblyseius swirskii: what made this predatory mite such a successful biocontrol agent? Exp. Appl. Acarol. 65(4): 419-433. https://doi.org/10.1007/s10493-014-9873-0
  21. Cavalcante A.C.C., Demite P.R, Amaral F.S.R., Lofego A.C., Moraes G.J. de 2017. Complementary description of Neoseiulus tunus (De Leon) (Acari: Mesostigmata: Phytoseiidae) and observation on its reproductive strategy. Acarologia, 57(3): 591-599. https://doi.org/10.24349/acarologia/20174178
  22. Chant D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of thirty-eight new species. Can. Entomol., 61(12): 1-166. https://doi.org/10.4039/entm9112fv
  23. Chant D.A., Hansell R.I.C. 1971. The genus Amblyseius (Acarina: Phytoseiidae) in Canada and Alaska. Can. J. Zool., 49(5): 703-758. https://doi.org/10.1139/z71-110
  24. Chant D.A., McMurtry J.A. 1994. A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Intern. J. Acarol., 20(4): 223-310. https://doi.org/10.1080/01647959408684022
  25. Chant D.A., McMurtry J.A. 2003a. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part I. Neoseiulini new tribe. Intern. J. Acarol., 29(1): 3-46. https://doi.org/10.1080/01647950308684319
  26. Chant D.A., McMurtry J.A. 2004. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina n. subtribe. Intern. J. Acarol., 30(3): 171-228. https://doi.org/10.1080/01647950408684388
  27. Chant D.A., McMurtry J.A. 2005a. A review of the subfamily Amblyseiina Muma (Acari: Phytoseiidae): Part V. Tribe Amblyseiini, subtribe Proprioseiopsina Chant and McMurtry. Intern. J. Acarol., 31(1): 3-22. https://doi.org/10.1080/01647950508684412
  28. Chant D.A., McMurtry J.A. 2005b. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini n. tribe, subtribes Typhlodromalina n. subtribe, Euseiina n. subtribe, and Ricoseiina n. subtribe. Intern. J. Acarol., 31(3): 187-224. https://doi.org/10.1080/01647950508684424
  29. Chant D.A., McMurtry J.A. 2007. Illustrated keys and diognoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, 219 pp.
  30. Chant D.A., Yoshida-Shaul E. 1989. Adult dorsal setal patterns in the family Phytoseiidae (Acari: Gamasina). Intern. J. Acarol., 15: 219-223. https://doi.org/10.1080/01647958908683852
  31. Chant D.A., Yoshida-Shaul E. 1991. Adult ventral setal patterns in the family Phytoseiidae (Acari: Gamasina). Intern. J. Acarol., 17(3): 187-199. https://doi.org/10.1080/01647959108683906
  32. Congdon B.D. 2002. The family Phytoseiidae (Acari) in western Washington State with descriptions of three new species. Intern. J. Acarol., 28(1): 3-27. https://doi.org/10.1080/01647950208684275
  33. Corpuz L.A., Rimando L. 1966. Some Philippine Amblyseiinae (Phytoseiidae: Acarina). Philip. Agric., 50: 114-136.
  34. De Leon D. 1967. Some mites of the Caribbean Area. Part I. Acarina on plants in Trinidad, West Indies. Allen Press Inc., Lawrence, Kansas, USA: 1-66.
  35. Demite P.R., Moraes G.J. de, McMurtry J.A., Denmark H.A., Castilho R.C. 2024. Phytoseiidae Database. Available from: \textless www.lea.esalq.usp.br/phytoseiidae> (last access 01/X/2024).
  36. Denmark H.A., Evans G.A. 2011. Phytoseiidae of North America and Hawaii (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, USA, 451 pp.
  37. Denmark H.A., Muma M.H. 1967. Six new Phytoseiidae from Florida (Acarina: Phytoseiidae). Fla Entomol., 50: 169-180. https://doi.org/10.2307/3493298
  38. Denmark H.A., Muma M.H. 1973. Phytoseiid mites of Brazil (Acarina: Phytoseiidae). Rev. Bras. Biol., 33(2): 235-276.
  39. Denmark H.A., Muma M.H. 1989. A revision of the genus Amblyseius Berlese, 1914 (Acari: Phytoseiidae). Occas. Pap. Fla State Coll. Arthropods, USA, 4, 149 pp.
  40. Döker İ., Kazak C., Karaca M.M., Karut K. 2018. Re-discovery and identification of Iphiseius degenerans (Acari: Phytoseiidae) in Turkey, based on morphological and molecular data. Türk. Biyo. Mücadele Derg., 9 (2): 110-123. https://doi.org/10.31019/tbmd.463913
  41. Döker İ., Kazak C., Karut K. 2020. The genus Amblyseius Berlese (Acari: Phytoseiidae) in Turkey with discussion on the identity of Amblyseius meridionalis. Syst. Appl. Acarol., 25(8): 1395-1420. https://doi.org/10.11158/saa.25.8.4
  42. Döker I., Revynthi A.M., Kazak C., Carrillo D. 2021. Interactions among exotic and native phytoseiids (Acari: Phytoseiidae) affect biocontrol of two-spotted spider mite on papaya. Biological Control 163: 104758. https://doi.org/10.1016/j.biocontrol.2021.104758
  43. Ehara S. 1958. Three predatory mites of the genus Typhlodromus from Japan (Phytoseiidae). Annot. Zool. Japon., 31: 53-57.
  44. Ehara S. 2002. Some phytoseiid mites (Arachnida: Acari: Phytoseiidae) from west Malaysia. Species Div., 7: 29-46. https://doi.org/10.12782/specdiv.7.29
  45. Ehara S., Amano H. 2002. Some Japanese phytoseiid mites (Acari: Phytoseiidae) mostly from Ishigaki and Taketomi Islands. Entomol. Sc., 5(3): 321-329.
  46. Ehara S., Amano H. 2004. Checklist and keys to Japanese Amblyseiinae (Acari: Gamasina: Phytoseiidae). J. Acarol. Soc. Japan, 13(1): 1-30. https://doi.org/10.2300/acari.13.1
  47. El-Badry E.A. 1967. Five new phytoseiid mites from U.A.R., with collection notes on three other species (Acarina: Phytoseiidae). lndian J. Entomol., 29: 177-184.
  48. El-Badry E.A. 1968. Three new species of phytoseiid mites from western Sudan. Rev. Zool. Bot. Afric., 77: 321-328.
  49. El-Banhawy E.M., Abou-Awad B.A. 1990. Records of the genus Amblyseius Berlese from Tanzania with a description of a new species (Acari: Mesostigmata). Insect Sci. Applic., 2 (6): 899-901. https://doi.org/10.1017/S174275840001081X
  50. El-Banhawy E.M., Knapp M. 2011. Mites of the family Phytoseiidae Berlese from Kenya (Acari: Mesostigmata). Zootaxa, 2945: 1-176. https://doi.org/10.11646/zootaxa.2945.1.1
  51. Evans G.O. 1952. A new typhlodromid mite predaceous on Tetranychus bimaculatus Harvey in Indonesia. Ann. Mag. Nat. Hist., 5: 413-416. https://doi.org/10.1080/00222935208654311
  52. Evans G.O. 1953. On some mites of the genus Typhlodromus Scheuten, 1857, from S. E. Asia. Ann. Mag. Nat. Hist., 6: 449-467. https://doi.org/10.1080/00222935308654444
  53. Evans G.O. 1954. The genus Iphiseius Berl. (Acarina: Laelaptidae). Proceed. Zool. Soc., 124: 517-526. https://doi.org/10.1111/j.1469-7998.1954.tb07793.x
  54. Fadamiro H.Y., Xiao Y., Hargroder T., Nesbitt M., Childers C.C. 2009. Diversity and seasonal abundance of predacious mites in Alabama Satsuma citrus. Ann. Entomol. Soc. Am., 102 (4): 617-628. https://doi.org/10.1603/008.102.0406
  55. Fantinou A.A., Baxevani A., Drizou F., Labropoulos P., Perdikis D., Papadoulis G. 2012. Consumption rate, functional response and preference of the predaceous mite Iphiseius degenerans to Tetranychus urticae and Eutetranychus orientalis. Exp. Appl. Acarol., 58: 133-144. https://doi.org/10.1007/s10493-012-9557-6
  56. Ferragut F., Baumann J. 2021. Hidden biodiversity in the Atlantic Islands. Amblyseiinae (Acari: Phytoseiidae) from Madeira archipelago. Syst. Appl. Acarol., 25, 1113-1138. https://doi.org/10.11158/saa.25.6.14
  57. Ferragut F., Pérez Moreno I., Iraola V., Escudero A. 2010. Ácaros depredadores em las plantas cultivadas. Família Phytoseiidae. Ediciones Agrotécnicas, Madrid, 202 pp.
  58. Furtado I.P., Moraes G.J. de, Kreiter S., Flechtmann C.H.W., Tixier M.-S., Knapp M. 2014. Plant inhabiting phytoseiid predators of Midwestern Brazil, with emphasis on those associated with the tomato red spider mite, Tetranychus evansi (Acari: Phytoseiidae, Tetranychidae). Acarologia, 54(4): 425-431. https://doi.org/10.1051/acarologia/20142138
  59. Garman P. 1958. New species belonging to the genera Amblyseius and Amblyseiopsis with keys to Amblyseius, Amblyseiopsis, and Phytoseiulus. Ann. Entomol. Soc. Amer., 51: 69-79. https://doi.org/10.1093/aesa/51.1.69
  60. Gnago J.A., Danho M., Agneroh T.A. 2010. Efficacité des extraits de neem (Azadirachta indica) et de papayer (Carica papaya) dans la lutte contre les insectes ravageurs du gombo (Abelmoschus esculentus) et du chou (Brassica oleracea) en Ivory Coast. Intern. J. Biol. Chemic. Sc., 4: 953-966. https://doi.org/10.4314/ijbcs.v4i4.63035
  61. Gutierrez J., Etienne J. 1986. Les Tetranychidae de I′île de la Réunion et quelques-uns de leurs prédateurs. L'Agronomie Tropicale, 41(1): 84-91.
  62. Hirschmann W. 1962. Gangystematik der Parasitiformes. Acarologie Schriftenreihe fur Vergleichende Milbenkunde, Hirschmann-Verlag, Furth/Bay, 5(5-6), 80 pp.+ 32 plates.
  63. Hughes A.M. 1948. The mites associated with stored food products. Ministry of Agriculture and Fisheries, H. M. Stationary Office, London, 168 pp.
  64. Huyen L.T., Tung N.D., Lan D.H., Chi C.V., De Clercq P., Dinh N.V. 2017. Life table parameters and development of Neoseiulus longispinosus (Acari: Phytoseiidae) reared on citrus red mite, Panonychus citri (Acari: Tetranychidae) at different temperatures. Syst. Appl. Acarol., 22(9): 1316-1326. https://doi.org/10.11158/saa.22.9.3
  65. Kade N., Gueye-Ndiaye A., Duverney C., Moraes G.J. de 2011. Phytoseiid mites (Acari: Phytoseiidae) from Senegal. Acarologia, 51(1): 133-138. https://doi.org/10.1051/acarologia/20112001
  66. Karg W. 1989. Neue Raubmilbenarten der Gattuig Proprioseiopsis Muma, 1961 (Acarina, Parasitiformes) mit Bestimmungsschlusseln. Zool. Jahrb. Syst., 116(2): 199-216.
  67. Knapp M., Van Houten Y., Van Baal E., Groot T. 2018. Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia, 58 (Suppl.):72-82. https://doi.org/10.24349/acarologia/20184275
  68. Kreiter S., Abo-Shnaf R.I.A. 2020a. Phytoseiid mites of Rodrigues Island. Acarologia, 60(2): 449-468. https://doi.org/10.24349/acarologia/20204376
  69. Kreiter S., Abo-Shnaf R.I.A. 2020b. New records of phytoseiid mites from Mauritius Island (Acari: Mesostigmata). Acarologia 60(3): 520-545. https://doi.org/10.24349/acarologia/20204382
  70. Kreiter S., Abo¬Shnaf R.I.A., Payet R.¬M. 2020a. Phytoseiid mites of Mayotte Island (Acari: Mesostigmata). Acarologia, 60(3): 622¬642. https://doi.org/10.24349/acarologia/20204391
  71. Kreiter S., Bopp M.-C, Douin M., Nguyen D.T., Wyckhuys K. 2020b. Phytoseiidae of Vietnam (Acari: Mesostigmata) with description of anew species. Acarologia 60(1): 75-110. https://doi.org/10.24349/acarologia/20204362
  72. Kreiter S., Fontaine O., Payet R.-M. 2018a. New records of Phytoseiidae (Acari: Mesostigmata) from Mauritius. Acarologia, 58(4): 773-785. https://doi.org/10.24349/acarologia/20184273
  73. Kreiter S., Mailloux J., Tixier M.-S., Le Bellec F., Douin M., Guichou S., Etienne J. 2013. New phytoseiid mites of the French West Indies, with description of a new species, and new records (Acari: Mesostigmata). Acarologia, 53(3): 285-303. https://doi.org/10.1051/acarologia/20132095
  74. Kreiter S., Moraes G.J.de 1997. Phytoseiidae mites (Acari: Phytoseiidae) from Guadeloupe and Martinique. Fla Entomol., 80(3): 376-382. https://doi.org/10.2307/3495770
  75. Kreiter S., Payet R.-M., Douin M., Fontaine O., Fillâtre J., Le Bellec F. 2020c. Phytoseiidae of La Réunion Island (Acari: Mesostigmata): three new species and two males described, new synonymies, and new records. Acarologia, 60(1): 111-195. https://doi.org/10.24349/acarologia/20204361
  76. Kreiter S., Payet R.-M., Hadji M., Abdou Azali H. 2021. Phytoseiid mites of Grande Comore Island (Acari: Mesostigmata). Acarologia, 61(2): 241-273. https://doi.org/10.24349/acarologia/20214429
  77. Kreiter S., Payet R.-M., Fillâtre J., Abdou Azali H. 2018b. First records of Phytoseiidae from one island of the Comoros Archipelago. Acarologia, 58(3): 529-545. https://doi.org/10.24349/acarologia/20184256
  78. Kreiter S., Tixier M.-S., Etienne J. 2006. New records of phytoseiid mites (Acari: Mesostigmata) from the French Antilles, with description of Neoseiulus cecileae sp. nov. Zootaxa, 1294: 1-27. https://doi.org/10.11646/zootaxa.1294.1.1
  79. Kreiter S., Vicente V., Tixier M.-S., Fontaine O. 2016a. An unexpected occurrence of Amblyseius swirskii Athias-Henriot in La Reunion Island (Acari: Phytoseiidae). Acarologia, 56(2): 175-181. https://doi.org/10.1051/acarologia/20162254
  80. Kreiter S., Vicente V., Tixier M.-S., Fontaine O., Avril I., Cottineau J.-S., Fillâtre J. 2016b. Présence inattendue d'Amblyseius swirskii Athias-Henriot à l′Île de La Réunion. Phytoma-La santé des végétaux, 695: 38-42.
  81. Kreiter S., Zriki Z., Ryckewaert P., Pancarte C., Douin M., Tixier M.-S. 2018c. New phytoseiid mites of Martinique, with redescription of four species and new records. Acarologia, 58(2): 366-407. https://doi.org/10.24349/acarologia/20184248
  82. Lindquist E.E. 1994. Some observations on the chaetotaxy of the caudal body region of gamasine mites (Acari: Mesostigmata), with a modified notation for some ventrolateral body setae. Acarologia, 35: 323-326.
  83. Lindquist E.E., Evans G.W. 1965. Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina (Acarina: Mesostigmata). Mem. Entomol. Soc. Canada, 47: 1-64. https://doi.org/10.4039/entm9747fv
  84. Lofego A.C., Demite P.R., Moraes G.J., Kishimoto R.G. 2009. Phytoseiid mites on grasses in Brazil (Acari: Phytoseiidae). Zootaxa, 2240: 41-59. https://doi.org/10.11646/zootaxa.2240.1.3
  85. Luong T.H., Nguyen D.T., Dang H.L., Cao V.C., De Clercq P., Nguyen V.D. 2017. Life table parameters and development of Neoseiulus longispinosus (Acari: Phytoseiidae) reared on citrus red mite, Panonychus citri (Acari: Tetranychidae) at different temperatures. Syst. Appl. Acarol., 22(9): 1316-1326. https://doi.org/10.11158/saa.22.9.3
  86. Magalhaes S., Bakker F. M. 2002. Plant feeding by a predatory mite inhabiting cassava. Exp. Appl. Acarol., 27(1-2): 27-37. https://doi.org/10.1023/A:1021508620436
  87. Mailloux J., Le Bellec F., Kreiter S., Tixier M.-S., Dubois P. 2010. Influence of ground cover management on diversity and density of phytoseiid mites (Acari: Phytoseiidae) in Guadeloupean citrus orchards. Exp. Appl. Acarol., 52: 275-290. https://doi.org/10.1007/s10493-010-9367-7
  88. Massaro M., Montrazi M., Melo J. W. S., Moraes G. J. de. 2021. Small-scale production of Amblyseius tamatavensis with Thyreophagus cracentiseta (Acari: Phytoseiidae, Acaridae). Insects, 12(10): 848. https://doi.org/10.3390/insects12100848
  89. Massaro M. Moraes G.J. de. 2019. Predation and oviposition potential of Brazilian populations of the predatory mite Amblyseius tamatavensis (Acari: Phytoseiidae) on eggs of Bemisia tabaci (Insecta: Hemiptera). Acarologia, 59(1): 120-128. https://doi.org/10.24349/acarologia/20194314
  90. Matthysse J.G., Denmark H.A. 1981. Some phytoseiids of Nigeria (Acarina: Mesostigmata). Fla Entomol., 64: 340-357. https://doi.org/10.2307/3494585
  91. McMurtry J.A., Croft B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Ann. Rev. Entomol., 42: 291-321. https://doi.org/10.1146/annurev.ento.42.1.291
  92. McMurtry J.A., Moraes G.J. de, Sourassou N.F. 2013. Revision of the life styles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297-320. https://doi.org/10.11158/saa.18.4.1
  93. McMurtry J.A., Sourassou N.F., Demite P.R. 2015. The Phytoseiidae (Acari: Mesostigmata) as Biological Control Agents. Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms: 133-149. https://doi.org/10.1007/978-3-319-15042-0_5
  94. Mégevand B., Klay A., Gnanvossou D., Paraiso G. 1993. Maintenance and mass rearing of phytoseiid predators of the cassava green mite. Exp. Appl. Acarol., 17: 115-128. https://doi.org/10.1007/BF00156948
  95. Meyer M.K.P., Rodrigues M. da C. 1966. Acari associated with Cotton in Southern Africa. References to other plants. Garcia de Orta, Rev. Junta Investig., 13: 27-31.
  96. Moraes G.J. de, Kreiter S., Lofego A.C. 2000. Plant mites (Acari) of the French Antilles. 3. Phytoseiidae (Gamasida). Acarologia, 40(3): 237-264.
  97. Moraes G.J. de, Lopes P.C., Fernando C.P. 2004a. Phytoseiid mite (Acari: Phytoseiidae) of coconut growing areas in Sri Lanka, with descriptions of three new species. J. Acarol. Soc. Japan, 13(2): 141-160. https://doi.org/10.2300/acari.13.141
  98. Moraes G.J. de, McMurtry J.A. 1983. Phytoseiid mites (Acarina) of northeastern Brazil with descriptions of four new species. Intern. J. Acarol., 9(3): 131-148. https://doi.org/10.1080/01647958308683326
  99. Moraes, G.J. de, McMurtry J.A. 1988. Some phytoseiid mites from Kenya, with description of three new species. Acarologia, 29(1): 13-18.
  100. Moraes G.J. de, McMurtry J.A., Denmark H.A. 1986. A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA - DDT, Brasilia, Brazil, 353 pp.
  101. Moraes G.J. de, McMurtry J.A., Denmark H.A., Campos C.B. 2004b. A revised catalog of the mite family Phytoseiidae. Zootaxa, 434: 1-494. https://doi.org/10.11646/zootaxa.434.1.1
  102. Moraes G.J. de, McMurtry J.A., van den Berg H., Yaninek J.S. 1989a. Phytoseiid mites (Acari: Phytoseiidae) of Kenya, with descriptions of five new species and complementary descriptions of eight species. Intern. J. Acarol., 15(2): 79-93. https://doi.org/10.1080/01647958908683829
  103. Moraes G.J. de, McMurtry J.A., Yaninek, J.S. 1989b. Some phytoseiid mites (Acari, Phytoseiidae) from tropical Africa with description of a new species. Intern. J. Acarol., 15(2): 95-102. https://doi.org/10.1080/01647958908683830
  104. Moraes G.J. de, Ueckermann E.A., Oliveira A.R., Yaninek J.S. 2001. Phytoseiidae mites of the genus Euseius (Acari: Phytoseiidae) from Sub-Saharan Africa. Zootaxa, 3: 1-70. https://doi.org/10.11646/zootaxa.3.1.1
  105. Moraes G.J. de, Zannou I.D., Ueckermann E.A., Oliveira A.R., Hanna R., Yaninek J.S. 2007. Species of the subtribes Arrenoseiina and Proprioseiopsina (Tribe Amblyseiini) and the tribe Typhlodromipsini (Acari: Phytoseiidae) from sub-Saharan Africa. Zootaxa, 1448: 1-39. https://doi.org/10.11646/zootaxa.1448.1.1
  106. Muma M.H. 1961. Subfamiles, genera, and species of Phytoseiidae (Acarina: Mesostigmata). Fla St. Mus. Bull., 5(7): 267-302. https://doi.org/10.58782/flmnh.tqpo4380
  107. Muma M.H. 1962. New Phytoseiidae (Acarina: Mesostigmata) from Florida. Fla Entomol., 45: 1-10. https://doi.org/10.2307/3492897
  108. Muma M.H., Denmark H.A. 1970. Phytoseiidae of Florida. Arthropods of Florida and neighboring land areas, 6. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, USA, 150 pp.
  109. Myers N. 1988. Threatened biotas: hostspots in tropical forests. Environmentalist, 8: 187-208. https://doi.org/10.1007/BF02240252
  110. Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. https://doi.org/10.1038/35002501
  111. Northcraft P.D. 1987. First record of three indigenous predacious mites in Zimbabwe. J. Entomol. Soc. S. Afr., 50(2): 521-522.
  112. Nusartlert N., Vichitbandha P., Baker G., Chandrapatya A. 2011. Pesticide-induced mortality and preydependent life history of the predatory mite Neoseiulus longispinosus (Acari: Phytoseiidae). Trends in Acarology: 495-498. https://doi.org/10.1007/978-90-481-9837-5_83
  113. Nwilene F.E., Nachman G. 1996. Functional responses of Iphiseius degenerans and Neoseiulus teke (Acari: Phytoseiidae) to changes in the density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Exp. Appl. Acarol., 20: 259-271. https://doi.org/10.1007/BF00052876
  114. Oliveira D.C., Charanasri V., Kongchuensin M., Konvipasruang P., Chandrapatya A., Moraes G.J. de 2012. Phytoseiidae of Thailand (Acari: Mesostigmata), with a key for their identification. Zootaxa, 3453: 1-24. https://doi.org/10.11646/zootaxa.3453.1.1
  115. Papadoulis G.Th., Emmanouel N.G. 1991. The genus Amblyseius (Acari: Phytoseiidae) in Greece, with the description of a new species. Entomol. Hellen., 9: 35-62. https://doi.org/10.12681/eh.13990
  116. Pritchard A.E., Baker E.W. 1962. Mites of the family Phytoseiidae from Central Africa, with remarks on the genera of the world. Hilgardia, 33(7): 205-309. https://doi.org/10.3733/hilg.v33n07p205
  117. Quilici S., Kreiter S., Ueckermann E. A., Vincenot D. 1997. Predatory mites (Acari) from various crops on Réunion Island. Intern. J. Acarol., 23(4): 283-291. https://doi.org/10.1080/01647959708683578
  118. Quilici S., Ueckermann E. A., Kreiter S., Vayssières J.-F. 2000. Phytoseiidae of La Réunion Island. Acarologia, 41(1-2): 97-108.
  119. Ragusa S., Athias-Henriot C. 1983. Observations on the genus Neoseiulus Hughes (Parasitiformes, Phytoseiidae). Redefinition. Composition. Geography. Description of two new species. Rev. Suisse Zool. 90(3): 657-678. https://doi.org/10.5962/bhl.part.82005
  120. Rowell H.J., Chant D.A., Hansell R.I.C. 1978. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae (Acarina: Mesostigmata). Can. Entomol., 110: 859-876. https://doi.org/10.4039/Ent110859-8
  121. Schicha E. 1975. A new predacious species of Amblyseius Berlese from strawberry in Australia, and A. longispinosus (Evans) redescribed (Acari: Phytoseiidae). J. Austral. Entomol. Soc., 14: 101-106. https://doi.org/10.1111/j.1440-6055.1975.tb02010.x
  122. Schicha E. 1987. Phytoseiidae of Australia and neighboring areas. Indira Publishing House, West Bloomfield, USA, 187 pp.
  123. Schicha E., Gutierrez J. 1985. Phytoseiidae of Papua New Guinea, with three new species, and new records of Tetranychidae (Acari). Intern. J. Acarol., 11(3): 173¬181. https://doi.org/10.1080/01647958508683412
  124. Souza I.V. de, Argolo P.S., Gondim Jr. M.G.C., Moraes G.J. de, Bittencourt M.A.L., Oliveira A.R. 2015. Phytoseiid mites from tropical fruit trees in Bahia State, Brazil (Acari, Phytoseiidae). Zookeys, 533: 99-131. https://doi.org/10.3897/zookeys.533.5981
  125. Swirski E., Ragusa S. 1978. Three new species of phytoseiid mites from Kenya (Mesostigmata: Phytoseiidae). Zool. J. Linn. Soc., 63: 397-409. https://doi.org/10.1111/j.1096-3642.1978.tb02101.x
  126. Swirski E., Ragusa di Chiara S., Tsolakis H. 1998. Keys to the phytoseiid mites of Israel. Phytophaga, 8: 85-154.
  127. Tseng Y.H. 1976. Systematics of the mite family Phytoseiidae from Taiwan, with a revised key to genera of the world (II). J. Agric. Ass. China New Series, 94: 85-128.
  128. Tseng Y.H. 1983. Further study on phytoseiid mites from Taiwan (Acarina: Mesostigmata). Chin. J. Entomol., 3: 33-74.
  129. Ueckermann E.A. 1992. Notes on the genus Platyseilella Muma (Acari: Phytoseiidae) with a description of a new species, P. eliahui, from South Africa. Isr. J. Entomol., 25-26: 19-22.
  130. Ueckermann E.A. 1996. Some Phytoseiidae of Yemen (Acari: Mesostigmata). Fauna of Saudi Arabia, 15: 20-36.
  131. Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Anthoseius De Leon and Amblyseius Berlese (Acari: Phytoseiidae). Entomol. Mem., Dep. Agric. Water Supply, Rep. South Africa 73, 1-168.
  132. van der Merwe G.G. 1965. South African Phytoseiidae (Acarina). I. Nine new species of the genus Amblyseius Berlese. J. Entomol. Soc. South Afr., 28: 57-76.
  133. van der Merwe G.G. 1968. A taxonomic study of the family Phytoseiidae (Acari) in South Africa with contributions to the biology of two species. Entomol. Mem. South Africa Dep. Agric. Techn. Serv., 18: 1-198.
  134. Vantornhout, I., Minnaert, H., Tirry, L., De De Clercq P. 2004. Effect of pollen, natural prey and factitious prey on the development of Iphiseius degenerans. BioControl 49: 627-644. https://doi.org/10.1007/s10526-004-5280-5
  135. Vantornhout I., Minnaert H.L., Tirry L., De Clercq P. 2005. Influence of diet on life table parameters of Iphiseius degenerans. Exp. Appl. Acarol., 35: 183-195. https://doi.org/10.1007/s10493-004-3940-x
  136. Wainstein B.A. 1962. Révision du genre Typhlodromus Scheuten, 1857 et systématique de la famille des Phytoseiidae (Berlese 1916) (Acarina: Parasitiformes). Acarologia, 4: 5-30.
  137. Walter D.E., Krantz G.W. 2009. Collecting, rearing and preparing specimens. In: Krantz G.W., Walter D.E. (eds) A manual of acarology, 3rd ed. Texas Tech University Press, Lubbock. 807 pp.
  138. Womersley H. 1954. Species of the subfamily Phytoseiinae (Acarina: Laelaptidae) from Australia-Austral. J. Zool. 2: 169-191. https://doi.org/10.1071/ZO9540169
  139. Wu W.N., Chou F.W. 1981. A new species of Amblyseius (Acarina: Phytoseiidae) from Guangdong Province. Zool. Res., 2: 273-274 [in Chinese].
  140. Zack R.E. 1969. Seven new species and records of phytoseiid mites from Missouri (Acarina: Phtyoseiidae). J. Kansas Entomol. Soc., 42(1): 68-80.
  141. Zaher M.A. 1986. Predaceous and non-phytophagous mites (Nile Valley and Delta). Text. Survey and ecological studies on phytophagous, predaceous and soil mites in Egypt. PL 480 Programme USA, Project EG_ARS_30, Grant No. FG_EG_139, Egypt, 567 pp.
  142. Zannou I.D., Hanna R. 2011. Clarifying the identity of Amblyseius swirskii and Amblyseius rykei (Acari: Phytoseiidae): are they two distinct species or two populations of one species? Exp. Appl. Acarol. 53: 339-347. https://doi.org/10.1007/s10493-010-9412-6
  143. Zannou I.D., Hanna R., Moraes G.J. de, Kreiter S., Phiri G., Jone A. 2005. Mites of cassava (Manihot esculenta Crantz) habitats in Southern Africa. Intern. J. Acarol., 31 (2): 149-164. https://doi.org/10.1080/01647950508683667
  144. Zannou I.D., Moraes G.J. de, Ueckermann E.A., Oliveira A.R., Yaninek J.S., Hanna R. 2006. Phytoseiid mites of the genus Neoseiulus Hughes (Acari: Phytoseiidae) from sub¬Saharan Africa. Intern. J. Acarol., 32 (3): 241-276. https://doi.org/10.1080/01647950608684467
  145. Zannou I.D., Moraes G.J. de, Ueckermann E.A., Oliveira A.R., Yaninek J.S., Hanna R. 2007. Phytoseiid mites of the subtribe Amblyseiina from sub¬Saharan Africa. Zootaxa, 1550: 1-47. https://doi.org/10.11646/zootaxa.1550.1.1
  146. Zappalà L., Kreiter S., Russo A., Garzia G.T., Auger P. 2015. First record of the Persea Mite Oligonychus perseae (Acari: Tetranychidae) in Italy with a review of the literature. Intern. J. Acarol., 41(2): 97-99. https://doi.org/10.1080/01647954.2015.1014415


Comments
Please read and follow the instructions to post any comment or correction.

Article editorial history
Date received:
2024-10-16
Date accepted:
2024-12-18
Date published:
2025-01-17

Edited by:
Tsolakis, Haralabos

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
2025 Touré, Moustapha; Kwadjo, Koffi Eric; Doumbia, Mamadou and Kreiter, Serge
Downloads
 Download article

Download the citation
RIS with abstract 
(Zotero, Endnote, Reference Manager, ProCite, RefWorks, Mendeley)
RIS without abstract 
BIB 
(Zotero, BibTeX)
TXT 
(PubMed, Txt)
Article metrics

Dimensions

Cited by: view citations with

Search via ReFindit