Share this article    

       

       

New records of phytoseiid mites (Acari: Mesostigmata) from Madeira Island

Kreiter, Serge 1 ; Douin, Martial2 and Tixier, Marie Stephane 3

1✉ Institut Agro - Montpellier SupAgro, UMR CBGP INRA/ IRD/ CIRAD/ IA( SupAgro), Université de Montpellier, 755 Avenue du Campus Agropolis (Baillarguet), CS 30016, 34988 Montferrier-sur-Lez cedex, France.
2Institut Agro - Montpellier SupAgro, UMR CBGP INRA/ IRD/ CIRAD/ IA( SupAgro), Université de Montpellier, 755 Avenue du Campus Agropolis (Baillarguet), CS 30016, 34988 Montferrier-sur-Lez cedex, France.
3Institut Agro - Montpellier SupAgro, UMR CBGP INRA/ IRD/ CIRAD/ IA( SupAgro), Université de Montpellier, 755 Avenue du Campus Agropolis (Baillarguet), CS 30016, 34988 Montferrier-sur-Lez cedex, France.

2021 - Volume: 61 Issue: 2 pages: 217-240

https://doi.org/10.24349/acarologia/20214428

Original research

Keywords

survey collection taxonomy systematics predatory mites

Abstract

Madeira is the largest of the four islands constituting Madeira Archipelago in the North Atlantic Ocean. It is located at 400 km from the Northern Canary Islands, at 500 km from Morocco and between 900 and 1000 km from South Portugal and Spain. So far, nineteen species of the mite family Phytoseiidae had been reported from this island. We report in this paper the results of a survey conducted in May 2019 in Madeira Island, in which 15 species have been found, six being new for the Island fauna.


Introduction

Species of the family Phytoseiidae are all predators of phytophagous mites and small insects like thrips and whiteflies, both on crops and wild vegetation. Several species are biological control agents of pest organisms in both open and protected crops all around the world (McMurtry and Croft 1997; McMurtry et al. 2013; Knapp et al. 2018).

This family is widespread around the world, present on all continents except Antarctica, and consists of about 2,500 valid species, dispatched in 94 genera and three subfamilies (Demite et al. 2021).

Biodiversity surveys in poorly investigated areas is still an urgent need and might result in the discovery of additional species potentially useful for biological control as well as in getting more information on the biodiversity of these areas in the context of global climatic changes (Kreiter et al. 2018a, b, c, 2020a, b, c, d, 2021a, b, c; Ferragut and Baumann 2019, 2020, 2021; Döker et al. 2020; Kreiter and Abo-Shnaf 2020a, b; Fang et al. 2020; Demite et al. 2021; Toldi et al. 2021).

In these perspectives, the most interesting areas are probably those with a high level of biodiversity. Macaronesia is renowned for its biodiversity, with extraordinary high levels of species diversity and endemism in both the terrestrial and marine realms and constitutes a biodiversity hotspot (Kondraskov et al. 2015). Those areas, being called hotspots, were defined by Myers (1988) in order to identify the most immediately important areas for biodiversity conservation. The common characteristics of these hotspots are that they hold high endemism levels and have lost at least 70% of their original natural vegetation (Myers et al. 2000).

Located in the Atlantic Ocean at around 500 km away from the western coast of Morocco, about 400 km from the Northern Islands of the Canary Archipelago in the so-called Macaronesia region, Madeira Island is one of the four main islands constituting Madeira Archipelago, with Porto Santo and the two main Desertas Islands, Deserta Grande and Bugio, the largest of the four ones, with more than 740 km² on a total of 801. This Archipelago was a historical crossing point just like Canary Archipelago, with ships stopping at departure towards Africa or South America or ships returning to Europe full of Tropical plants. Both native and imported species are thus expected to be present.

Nineteen phytoseiid species are known from this island (Demite et al. 2021). Carmona (1962) recorded firstly Iphiseius degenerans (Berlese). Then, she recorded additional four species: Amblyseius largoensis (Muma), Euseius hibisci (Chant), Typhlodromus (Anthoseius) rhenanus (Oudemans) and Typhlodromus (Typhlodromus) pyri Scheuten (Carmona, 1973). Papadoulis and Kapaxidi (2011) added five other species, namely: E. stipulatus (Athias-Henriot), Neoseiulella canariensis (Ferragut and Peña-Estévez), Neoseiulus madeirensis Papadoulis and Kapaxidi, T. (A.) rhenanoides Athias-Henriot and T. (T.) phialatus Athias-Henriot. Recently, Ferragut and Baumann (2020) described three new phytoseiid species of the subfamily Amblyseiinae from the Island: N. laetus Ferragut, N. uncinatus Ferragut and Chelaseius longicervix Ferragut, and the unknown male of N. madeirensis. They mentioned also six additional species of Amblyseiinae reported for the first time from the Madeira Archipelago, namely: N. californicus (McGregor), Kampimodromus aberrans (Oudemans), Phytoseiulus persimilis Athias-Henriot, A. herbicolus (Chant), E. machadoi Ferragut and Peña-Estévez and E. scutalis (Athias-Henriot).

Therefore, the number of the recorded species is of 19 for Madeira Island, prior to this study.

The objective of this paper is to report the phytoseiid species found in a survey conducted by the senior author in May 2019 in Madeira Island.

Material and methods

The survey took place in Madeira Island from 13th to 23rd of May, 2019. Plant inhabiting mites were collected from cultivated and wild plants in all parts of the island.

Mites were directly collected from leaves with a fine brush with or without a pocket lens (large leaves and herbaceous plants) or by beating the plants (mainly shrubs and trees with very small or spiny leaves) and collecting the mites in a black plastic rectangular saucer 45 x 30 cm (Ref. STR 45, BHR, 71370 Saint-Germain-du-Plain, France). Collected mites were then transferred into small plastic vials containing 1.5 ml of 70% ethanol by using a fine brush.

A total of 116 Phytoseiidae in 29 samples were collected and the percentage of some species have been calculated by dividing the number for those species by the total number of phytoseiids or the number in which the species is present by the total number of samples.

The mites were then slide-mounted in Hoyer's medium (Walter and Krantz 2009), the slides were dried at 45-50 oC for at least two weeks and then all examined and identified using a phase and interferential contrast microscope (DMLB, Leica Microsystèmes SAS, Nanterre, France). Characters of specimens were measured using a graded eyepiece (Leica, see above).

Chant and McMurtry's (1994, 2007) concepts of the taxonomy of the family Phytoseiidae for identification and the world catalogue database of Demite et al. (2014, 2021) for distribution and information on descriptions and re-descriptions were used.

The setal nomenclature system adopted was that of Lindquist & Evans (1965) and Lindquist (1994) as adapted by Rowell et al. (1978) and Chant & Yoshida-Shaul (1989) for the dorsal surface and by Chant & Yoshida-Shaul (1991) for the ventral surface. Pore (= solenostome) and poroid (= lyrifissure) notations are that of Athias-Henriot (1975). Macrosetal notation (Sge = genual macroseta; Sti = tibial macroseta; St = tarsal macroseta) is that of Muma and Denmark (1970). Types of spermatheca or insemination apparatus are those proposed by Denmark and Evans (2011). Numbers of teeth on the fixed and movable cheliceral digits do not include the respective apical tooth. Setae not referred to in results section should be considered as absent.

All measurements are given in micrometres (µm) and presented with the mean followed by the range in parenthesis (data concerning our specimens are in bold). Classification of plants follows the APG IV classification of 2016 (ex. Byng et al. 2018).

Specimens of each species are deposited in the mite collections of Montpellier SupAgro conserved in UMR CBGP INRAE/IRD/CIRAD/Institut Agro (SupAgro)/University of Montpellier.

The following abbreviations are used in this paper for morphological characters: dsl = dorsal shield length just above j1 to just below J5 in the middle line; dsw = dorsal shield width at the level of s4; Z4 ser., Z5 ser. = Z4, Z5 serrated (if Z4 and Z5 without ser. = not serrated); gensl = genital shield length; gensw st5 = genital shield width at level of setae st5; gensw post. cor. = genital shield width at level of posterior corners; lisl = primary or largest inguinal sigilla (= ''metapodal plate'') length; lisw = primary or largest inguinal sigilla (= ''metapodal plate'') width; sisl = secondary or smallest inguinal sigilla (= ''metapodal plate'') length; vsl = ventrianal shield length; gv3 – gv3 = distance between centers of solenostomes gv3 on the ventrianal shield; vsw ZV2 & vsw anus = ventrianal shield width at ZV2 level and at paranal setae level; scl: calyx total length; scw = calyx widest width; Fdl = fixed digit length; Mdl = movable digit length; Nb teeth Fd = number of teeth on the fixed digit; Nb teeth Md = number of teeth on the movable digit; Shaft = length of the shaft of spermatodactyl; toe = length of the toe; BCA = Biological control agent; aasl = altitude above sea level; imm.: immature.

The following abbreviations are used in this paper for institutions: CBGP = Centre de Biologie pour la Gestion des Populations; CIRAD = Centre International de Recherche Agronomique pour le Développement; IA = Institut Agro; INRAE = Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement; IRD = Institut de Recherche pour le Développement; MSA = Montpellier SupAgro, France; UMR = Unité Mixte de Recherche.

Results and Discussion

A total of fifteen species had been found during this study presented hereafter. Six species are presented with new measurements compared to only few references already available in the literature.

Subfamily Amblyseiinae Muma

Amblyseiinae Muma 1961: 273.

Tribe Neoseiulini Chant & McMurtry

Neoseiulini Chant & McMurtry 2003a: 6.

Genus Neoseiulus Hughes

Neoseiulus Hughes 1948: 141.

Neoseiulus madeirensis Papadoulis & Kapaxidi

Neoseiulus madeirensis Papadoulis & Kapaxidi 2011: 119.

Neoseiulus madeirensis belongs to the cucumeris species group of Neoseiulus, as the dorsocentral setae are not short relatively to dorsolateral setae. It belongs to the cucumeris species subgroup as the spermatheca does not have a stalk between calyx and atrium, the atrium is undifferentiated or nodular and joined directly to calyx (Chant and McMurtry 2003a).

This species was already recorded in Madeira Island as it was collected and described by Papadoulis and Kapaxidi (2011) from specimens collected on Lantana sp. in the Botanical Garden of Funchal in Madeira Island. Its biology is totally unknown.

World distribution: Madeira Island.

Specimens examined: a single specimen (1 ♀) collected during this study. Ribeira Brava, Dazkarizeh Guesthouse (475 m aasl, 32°40'5'' N, 17°2'55'' W), 1 ♀ on Hibisus tiliaceus L. (Malvaceae), 21/V/2019.

Remarks: measurements of morphological characters and traits of the N. madeirensis female specimen from Madeira Island (Table 1) are very close to measurements of specimens considered in the original description by Papadoulis and Kapaxidi (2011). We have added some measurements of some important characters not documented before as it is only the second record of that species from Madeira Island. Our specimen was collected at Ribeira Brava, at only 20 km from the botanical garden of Funchal from where the species has been described.

Table 1. Character measurements of an adult female of Neoseiulus madeirensis collected in this study with those obtained from previous studies (localities followed by the number of specimens measured between brackets).

Neoseiulus teke (Pritchard & Baker)

Amblyseius (Amblyseius) teke Pritchard & Baker 1962: 239.

Amblyseius teke, Meyer & Rodrigues 1966: 30, Moraes et al. 1989a: 83, 1989b: 97.

Neoseiulus teke, Moraes et al. 1986: 98, 2004b: 147, Chant & McMurtry 2003a: 37, 2007: 31.

Amblyseius (Amblyseius) bibens Blommers 1973: 111 (synonymy according to Ueckermann & Loots 1988).

Neoseiulus teke belongs to the barkeri species group and the womersleyi species subgroup (Chant and McMurtry 2003a). This species is reported from sub-Saharan Africa often associated with Mononychellus tanajoa (Bondar), the cassava green mite (CGM) (Mutisya et al. 2017). It has been studied for its potential as BCA against the CGM. Nwilene and Nachman (1996) studied its reproduction characteristics on M. tanajoa. It was more efficient than I. degenerans, but seems not efficient enough in field conditions (Nwilene and Nachman 1996). This is the first report of this species from Madeira Island. The Madeira population might have originated from Ethiopian Region through commercial exchanges. It was collected in the Botanical garden at Funchal, where most of the plants have African origin.

World distribution: Burundi, DR Congo, Ghana, Kenya, Malawi, Mayotte Island, Mohéli Island, Mozambique, La Réunion Island, Rwanda, Sierra Leone, South Africa, Tanzania, Zimbabwe.

Specimens examined: a single specimen (1 ♀) collected during this study. Funchal, Botanical garden (350 m aasl, 32°39'46'' N, 16°53'38'' W), 1 ♀ on Montanoa bipinnatifida (Kunth) Koch (Asteraceae), 14/V/2019.

Remarks: measurements of morphological characters and traits of the N. teke female specimen from Madeira Island are very close to measurements of specimens from La Réunion (Quilici et al. 2000; Kreiter et al. 2020d), Mayotte (Kreiter et al. 2020a), Mohéli (Kreiter et al. 2021b) and Grande Comore (Kreiter et al. submitted) Islands.

Neoseiulus umbraticus (Chant)

Typhlodromus umbraticus Chant 1956: 26.

Typhlodromus (Typhlodromus) umbraticus, Beglyarov 1958: 107.

Amblyseius umbraticus, Athias-Henriot 1959: 138.

Typhlodromus (Amblyseius) umbraticus, Chant 1959: 75.

Amblyseius (Typhlodromopsis) umbraticus, Muma 1961: 287.

Amblyseius (Amblyseius) umbraticus, Wainstein & Vartapetov 1973: 103.

Amblyseius (Neoseiulus) umbraticus, Karg 1991: 23.

Neoseiulus umbraticus, Moraes et al. 1986: 99, 2004: 149, Chant & McMurtry 2003a: 23, 2007: 31.

Similar to the morphological characters already mentioned for N. madeirensis, this species is also belonging to the cucumeris species group of Neoseiulus and to the cucumeris species subgroup (Chant and McMurtry 2003a).

Very few studies exist on its biology. Knisley and Swift (1971) and Kazak et al. (2002) showed its ability to develop feeding on Tetranychus urticae Koch. Sengonca and Dresher (2001) studied the ability of this species to feed and develop on Thrips tabaci Lindeman and concluded that this food alters its biological parameters in comparison to T. urticae. It seems that N. umbraticus able to develop and reproduce also on Panonychus ulmi (Koch), Calvolia lordi (Nesbitt), Aculus schlechtendali (Nalepa), adults of Quadraspidiotus perniciosus (Comstock), and on apple and cherry pollens (Knisley and Swift 1971). Adults of Agistemus fleschneri Summers, and winter eggs of P. ulmi were not fed (Knisley and Swift 1971).

This is the first report of this species from Madeira Island.

World distribution: Armenia, Azerbaijan, Azores, Belarus, Caucasus Region, Denmark, England, France, Georgia, Germany, Hungary, Iran, Italy, Jamaica, Latvia, Mexico, Moldovia, Montenegro, Morocco, Norway, Poland, Russia, Slovakia, Spain, Switzerland, Turkey, Ukraine, USA.

Specimens examined: 13 specimens (9 ♀♀, 2 ♂♂ and 2 imm.) collected during this study. Encumeada (709 m aasl, 32°44'36'' N, 17°1'31'' W), 9 ♀♀, 2 ♂♂ and 2 imm. on an endemic plant of Madeira Island, the so-called Star of Madeira, Echium candicans L. f. (Boraginaceae), 20/V/2019.

Remarks: the description and measurements of morphological characters and traits of the adult females collected agree with those provided by Chant and Yoshida-Shaul. (1982) for specimens from England, by Ferragut et al. (2010) for specimens from Spain and by Tixier et al. (2016) for specimens from Morocco.

Tribe Amblyseiini Muma

Amblyseiinae Muma 1961: 273 and Amblyseiini Muma, Wainstein 1962: 26.

Subtribe Amblyseiina Muma

Amblyseiina Muma, Chant & McMurtry 2004a: 179.

Genus Amblyseius Berlese

Amblyseius Berlese 1914: 143.

Amblyseius herbicolus (Chant)

Typhlodromus (Amblyseius) herbicolus Chant 1959: 84.

Amblyseius (Amblyseius) herbicolus, Muma 1961: 287.

Typhlodromus herbicolus, Hirschmann 1962: 23.

Amblyseius herbicolus, Moraes et al. 1986: 14, 1989a: 79, 2004b: 27, Chant & McMurtry 2004a: 208, 2007: 78.

Amblyseius impactus Chaudhri 1968: 553 (synonymy according to Daneshvar & Denmark 1982).

Typhlodromus (Amblyseius) amitae Bhattacharyya 1968: 677 (synonymy according to Denmark & Muma 1989).

Amblyseius deleoni Muma & Denmark 1970: 68 (synonymy according to Daneshvar & Denmark 1982).

Amblyseius giganticus Gupta 1981: 33 (synonymy according to Gupta 1986).

Amblyseius (Amblyseialus) thermophilus Karg 1991: 12 (synonymy according to El-Banhawy & Knapp 2011).

This species belongs to the largoensis species group as setae J2 and Z1 are present, setae z4 are minute and the ventrianal shield of the female is vase-shaped. It belongs to the largoensis species subgroup as setae Z4 are long, spermatheca has the calyx elongate and the female ventrianal shield is entire (Chant and McMurtry 2004).

Amblyseius herbicolus is widespread in all tropical and subtropical regions of the world. It is the second most abundant phytoseiid mites on Coffea arabica L. in Brazil, associated with Brevipalpus phoenicis (Geijskes), vector of the coffee ring spot virus and it was found to be an efficient predator of that species (Reis et al. 2007). Amblyseius herbicolus is also found associated with the broad mite, Polyphagotarsonemus latus (Banks), in crops such as chili pepper (Capsicum annuum L.) in Brazil and has also be proposed as a good potential for controlling this pest. Rodriguez-Cruz et al. (2013) had studied biological, reproductive and life table parameters of A. herbicolus on three different diets: the broad mite, castor bean pollen (Ricinus communis L.) and sun hemp pollen (Crotalaria juncea L.). The predator was able to develop and reproduce on all these three diets. However, its intrinsic rate of natural increase was the highest on broad mites and castor bean pollen. Feeding on alternative food such as pollen can facilitate the predator's mass rearing and maintains its population on crops when prey is absent or scarce. Many polyphagous generalist phytoseiid mites are important natural enemies because they can feed on plant provided pollen and various prey species, and thus persist in crops even in the absence of target pests (McMurtry et al. 2013). Hence, populations of these predators can be established in a crop by providing alternative food, thus increasing biological control. Alternative food affects P. latus control on chilli pepper plants by predatory mites (Duarte et al. 2015). Amblyseius herbicolus had high oviposition and population growth rates when fed with cattail pollen (Typha latifolia L.), chilli pepper pollen and bee-collected pollen, and a low rate on the alternative prey (Tetranychus urticae Koch). Supplementing pepper plants with pollen resulted in better control of broad mite populations (Duarte et al. 2015). Release of A. herbicolus on young plants with weekly addition of honeybee pollen or cattail pollen until plants produce flowers seems a viable strategy to sustain populations of this predator (Duarte et al. 2015). This is the second report of that species from Madeira Island after the recent record of Ferragut and Baumann (2020).

World distribution: Anjouan Island, Argentina, Australia, Azores, Benin, Brazil, Burundi, Canary Islands, China, Colombia, Grande Comore Island, Costa Rica, Dominican Republic, DR Congo, El Salvador, Ghana, Guadeloupe Island, Guatemala, Hawaii, Honduras, India, Iran, Kenya, Les Saintes, Madagascar Island, Malawi, Malaysia, Martinique Island, Mauritius Island, Mohéli Island, New Caledonia Island, Papua New Guinea, Peru, Philippines, Portugal, Puerto Rico, Réunion Island, Rodrigues Island, Rwanda, Senegal, Singapore, South Africa, Spain, Taiwan, Thailand, Turkey, USA, Venezuela, West Indies.

Specimens examined: 25 specimens (20 ♀♀ and 5 imm.) collected during this study. Funchal, Botanical garden (350 m aasl, 32°39'46'' N, 16°53'38'' W), 1 ♀ on Montanoa bipinnatifida (Kunth) Koch (Asteraceae), 14/V/2019; Monte, Botanical garden of Monte Palace (943 m aasl, 32°40'27'' N, 16°54'10'' W), 1 imm. on Fuchsia boliviana Carrière (Onagraceae) and 1 ♀ on Plectranthus ciliatus Meyer (Lamiaceae), 16/V/2019; Ribeira Brava, Dazkarizeh Guesthouse (475 m aasl, 32°40'5'' N, 17°2'55'' W), 1 ♀ on Gossypium hirsutum L. (Malvaceae), 20/V/2019; Same location, 3 ♀♀ and 1 imm. on Persea indica Sprengel (Lauraceae), 23/V/2019; Portela (670 m aasl, 32°44'50'' N, 16°49'33'' W), 2 ♀♀ and 1 imm. on Ocotea foetens (Aiton) Baillon (Lauraceae), 3 ♀♀ on Laurus azorica (Seubert) Franco (Lauraceae), 5 ♀♀ on Nephrolepsis exaltata (L.) Shott (Dryopteridaceae) and 4 ♀♀ and 2 imm. Erica scoparia L. (Ericaceae), 23/V/2019.

Remarks: morphological and morphometric characters and all measurements fit well with those provided in Kreiter and Abo-Shnaf (2020a, b) and Kreiter et al. (2021a, b) for specimens of the Indian Ocean. Amblyseius herbicolus was previously recorded in many countries of the world and especially in French West Indies (Moraes et al. 2000, Kreiter et al. 2006). It is also reported recently from Vietnam (Kreiter et al. 2020c), Rodrigues and Mauritius Islands (Kreiter and Abo-Shnaf 2020a, b) but only from females, like in Ferragut and Baumann (2020) and this study.

We agree with the opinion of Ferragut and Baumann (2020), as the report of A. largoensis by Carmona (1973) could represent a misidentification. The same conclusion was drawn by Döker et al. (2020) for specimens of both species in Turkey. However, Carmona's specimens were not available for examination by the former authors. Just like the former authors, we found that A. herbicolus was one of the most abundant phytoseiid species (35.3% of all the phytoseiids collected for them and 21% for us) and frequent (19% of samples for them and 31% for us) in material collected in the Madeira archipelago. Moreover, many confusions were made in the literature between A. largoensis and A. herbicolus, these two species being separate by only three characters: the shape of the calyx of spermatheca (McMurtry and Moraes 1984; Döker et al. 2020), the size of atrium compared to the base of calyx and the number of teeth on the movable digit (Döker et al. 2020).

Tribe Euseiini Chant & McMurtry

Euseiini Chant & McMurtry 2005: 191.

Subtribe Euseiina Chant & McMurtry

Euseiina Chant & McMurtry 2005: 209.

Genus Euseius Wainstein

Amblyseius (Amblyseius) section Euseius Wainstein 1962: 15, Euseius De Leon 1966: 86.

Euseius scutalis (Athias-Henriot)

Typhlodromus scutalis Athias-Henriot 1958a: 183.

Amblyseius scutalis Athias-Henriot 1960a: 297.

Amblyseius (Typhlodromalus) scutalis, Muma 1961: 288.

Amblyseius (Amblyseius) scutalis, Ueckermann & Loots 1988: 109.

Euseius scutalis, Moraes et al. 1986: 52, 2004b: 82, Chant & McMurtry 2005: 216, 2007: 123.

The 200 species of the genus Euseius are considered as Type IV species that are pollen feeding generalists predators (McMurtry and Croft 1997; McMurtry et al. 2013). Euseius scutalis can be reared on pollen and was recorded as a predator of Panonychus citri (McGregor) in citrus orchards (McMurtry 1977; Kasap and Sekeroglu 2004); it is also reported as a biological control agent of Bemisia tabaci (Gennadius) (Nomikou et al. 2003). Euseius scutalis was observed in high numbers on olive trees in late spring (Chatti et al. 2017). The biology of E. scutalis, however, remains poorly known. This species was recently recorded from Madeira Island by Ferragut and Baumann (2020). Recorded from Maghreb and South of Spain (Kreiter et al. 2004, Ferragut and Baumann 2020), it was probably introduced in the Madeira Island by commercial exchanges with Morocco.

World distribution: Algeria, Canary Islands, Cape Verde, Ghana, Egypt, Greece, India, Iran, Israel, Italy, Jordan, Lebanon, Morocco, Pakistan, South Africa, Spain, Turkey.

Specimens examined: 4 specimens (2 ♀♀, 1 ♂ and 1 imm.) collected during this study. Punta do Sol, City center (249 m aasl, 32°40'18'' N, 17°4'00'' W), 2 ♀♀, 1 ♂ and 1 imm. on Rosa canina L. (Rosaceae), 18/V/2019.

Remarks: this species is very common in Maghreb and South of Spain (Kreiter and al. 2004, Ferragut and Baumann 2020). It is also widespread in the Tunisian orchards (Kreiter et al. 2010, Sahraoui et al. 2012).

Euseius stipulatus (Athias-Henriot)

Amblyseius stipulatus Athias-Henriot 1960a: 294.

Typhlodromus stipulatus, Hirschmann 1962.

Amblyseius (Amblyseius) stipulatus, Ueckermann & Loots 1988: 110.

Euseius stipulatus (Athias-Henriot), Ferragut et al. 1985: 225, Moraes et al. 1986: 55, 2004: 84, Chant & McMurtry 2005: 216, 2007: 123.

This species was described from Algeria (Athias-Henriot 1960). It is mainly known from the south of the Western Palearctic region. Euseius stipulatus is a common species reported from many plants, including cultivated plants such as peach, avocado and vines. It is especially abundant in citrus orchards (Ragusa 1977, Ferragut et al. 1983, Papaioannou-Souliotis et al. 1994, Ragusa 2006, Kreiter et al. 2010, Sahraoui et al. 2012). Several studies have shown its ability to feed on pollen but also on pests such as T. urticae and P. citri or eriophyid mites (Ferragut et al. 1992, Santaballa et al. 1994, Abad-Moyano et al. 2009, Pina et al. 2012). Euseius stipulatus was already recorded in Madeira Island by Papadoulis and Kapaxidi (2011) and Ferragut and Baumann (2020).

World distribution: Algeria, Azores, Canary Islands, France, Greece, Hungary, Iran, Italy, Madeira Island, Montenegro, Morocco, Peru, Portugal, Spain, Syria, Tunisia, Turkey, USA.

Specimens examined: 26 specimens (12 ♀♀, 8 ♂♂ and 6 imm.) in total. Funchal, Garden São Martinho (141 m aasl, 32°38'57'' N, 16°56'36'' W), 1 ♀ and 1 ♂ on Markhamia lutea (Bentham) Schumann (Bignonaceae), 14/V/2019; Funchal, Botanical garden (350 m aasl, 32°39'46'' N, 16°53'38'' W), 1 ♂ and 1 imm. on Montanoa bipinnatifida (Kunth) Koch (Asteraceae), 2 ♀♀ and 1 imm. on Morus alba L. (Moraceae) and 5 ♀♀, 2 ♂♂ and 2 imm. on Ricinus communis L. (Euphorbiaceae), 14/V/2019; Monte, Tropical garden of Monte Palace (943 m aasl, 32°40'27'' N, 16°54'10'' W), 1 ♂ on Fuchsia boliviana Carrière (Onagraceae), 16/V/2019; Punta do Sol, City center (249 m aasl, 32°40'18'' N, 17°4'00'' W), 1 ♀ on Rosa canina L. (Rosaceae), 18/V/2019; Arco de Calheta, City center (249 m aasl, 32°40'18'' N, 17°4'00'' W), 2 ♀♀, 2 ♂♂ and 2 imm. on Brachychiton acerifolius (Cunningham and Don) Macarthur and Moore (Malvaceae), 18/V/2018; Ribeira Brava, Dazkarizeh Guesthouse (475 m aasl, 32°40'5'' N, 17°2'55'' W), 1 ♂ on Tipuana tipu (Bentham) Kuntze (Fabaceae), 21/V/2019; Quinta da Serra (802 m aasl, 32°40'5'' N, 17°2'55'' W), 1 ♀ on Ocotea foetens (Aiton) Baillon (Lauraceae), 21/V/2019.

Remarks: the features and measurements of the adult female and male specimens collected in this study agree with those provided by Ferragut and Escudero (1997) and by Ferragut et al. (2010) for specimens from Spain. This is the most abundant (22% of the total number of phytoseiids collected) and frequent species (31% of total samples, just like for A. herbicolus which is similarly abundant) herein collected. As emphasized by Ferragut and Baumann (2020), the report of E. hibisci by Carmona (1973) should be considered a misidentification, as already suggested by Papadoulis & Kapaxidi (2011). Ferragut has examined specimens labelled as ''Amblyseius hibisci'' sent by M.M. Carmona and they were, in fact, E. stipulatus. Euseius hibisci must be removed from the species list reported in Madeira.

Genus Iphiseius Berlese

Iphiseius Berlese 1916: 33, Chant & McMurtry 2005a: 217, 2007: 123.

Iphiseius degenerans (Berlese)

Seius degenerans Berlese 1889: 9.

Amblyseius (Iphiseius) degenerans, Muma 1961: 288.

Typhlodromus degenerans, Hirschmann 1962: 2.

Iphiseius (Iphiseius) degenerans, Pritchard & Baker 1962: 299.

Amblyseius degenerans, Zaher 1986: 99, Northcraft 1987: 521, Papadoulis & Emmanouel 1991: 36.

Iphiseius degenerans, Berlese 1921: 95, Evans 1954: 518, Moraes et al. 1986: 61, 2004b: 92, Chant & McMurtry, 2005: 215, 2007: 125.

Iphiseius martigellus El-Badry 1968: 325 (synonymy according to Chant & McMurtry 2005).

The biological characteristics of this Mediterranean species have been well documented because of its use in controlling thrips on various cultivated plants in greenhouses. Iphiseius degenerans is a commercially available biological control agent of thrips and spider mites in greenhouse crops. It is able to feed on a variety of foods, but thrips' larvae and sweet pepper pollen are unfavourable food for immature development. This could compromise the establishment of this biological control agent when used against thrips in sweet pepper crops. According to the classification by McMurtry et al. (2013), I. degenerans is a type-IV polliniphagous predator.

It is one of the most common native phytoseiid mite species on cassava in south Africa (Zannou et al. 2005) and feeds on M. tanajoa (Nwilene and Nachman 1996), a widely distributed neotropical mite pest of cassava in Africa, insect larvae and pollen of many plants (Vantornhout et al. 2005). Another study concluded that I. degenerans can be considered a suitable biological control candidate based on its preference for Eutetranychus orientalis (Klein) in the Mediterranean region (Fantinou et al. 2012). Iphiseius degenerans preys on Oligonychus perseae Tuttle, Baker and Abbatiello. Although I. degenerans contribution to O. perseae biocontrol can be limited, it needs to be assessed, also taking into account the importance of alternative food source (e.g. Castor oil pollen) for predator population growth (Zappala et al. 2015). This species was already known from Madeira Island, first mentioned by Carmona (1962) and then by Ferragut and Baumann (2020).

World distribution: numerous countries in Northern and Southern Africa, in Mediterranean area (Cyprus, Greece, Italy, Portugal), in Near East or Middle East (Egypt, Israel, Lebanon, Saudi Arabia, Syria, Turkey, Yemen), in Europe (Georgia), in South America (Brazil) and in North America (USA in California, Florida, Georgia, New Hampshire). Also Grande Comore Island (Kreiter et al. 2018b and Kreiter et al. submitted).

Specimens examined: 4 specimens (2 ♀♀, 1 ♂ and 1 imm.) collected during this study. Porto da Cruz, Rum distillery (15 m aasl, 32°48'18'' N, 16°49'46'' W), 2 ♀♀, 1 ♂ and 1 imm. on Acalypha wilkesiana Müller Argoviensis (Euphorbiaceae), 18/V/2019.

Remarks: measurements of the 2 ♀♀ and 1 ♂ fit well with measurements of specimens reported in the literature from close countries and with those concerning the specimens previously collected in Grande Comore in Moroni (Kreiter et al. 2018b).

Subfamily Typhlodrominae Wainstein

Typhlodromini Wainstein 1962: 26 and Typhlodrominae Chant & McMurtry 1994: 235.

Tribe Typhlodromini Wainstein

Typhlodromini Wainstein 1962: 26.

Genus Neoseiulella Muma

Neoseiulella Muma 1961: 295.

Neoseiulella canariensis Ferragut & Peña-Estevez

Neoseiulella canariensis Ferragut & Peña-Estevez 2003: 159-161, Moraes et al. 2004: 292, Moraza & Peña-Estevez 2006: 59, Chant & McMurtry 2007: 147.

This species belongs to the tiliarum species group of the genus Neoseiulella as setae JV3 are present and chelicerae have only few teeth. Neoseiulella canariensis was only known from the Macaronesia Region, from the Canary Islands (Ferragut and Peña-Estevez 2003, 2007) from where this species was described on various plants belonging to 15 botanical families and then from Madeira Island (Papadoulis and Kapaxidi 2011). Its biology is totally unknown.

World distribution: Canary Islands, Madeira Island.

Specimens examined: a single specimen (1 ♀) collected during this study. Risco (1040 m aasl, 32°47'56'' N, 17°11'8'' W), 1 ♀ on Persea indica Sprengel (Lauraceae), 23/V/2019.

Remarks: morphological and morphometric characters and all measurements of our specimens (Table 2) fit well with measurements of Ferragut and Peña-Estevez (2003) completed by Kanouh et al. (2012), except for the 20% larger dimensions of the genital shield. We have added in the table 2 measurements of some important characters not documented before as it is only the second record of that species from Madeira Island.

Table 2. Character measurements of an adult female of Neoseiulella canariensis collected in this study compared to those in previous studies (localities followed by the number of specimens measured between brackets).

Genus Typhlodromus Scheuten

Typhlodromus Scheuten 1857: 111.

Subgenus Anthoseius De Leon

Typhlodromus (Anthoseius) De Leon 1959: 258, van der Merwe 1968: 20, Karg 1982: 194, Chant & McMurtry 1994: 250, 2007: 149.

Typhlodromus (Anthoseius) capparidis van der Merwe

Typhlodromus (Anthoseius) capparidis van der Merwe 1968: 26, Ueckermann & Loots 1988: 16, Moraes et al. 2004: 315, Chant & McMurtry 2007: 152, Ueckermann et al. 2008: 25, El-Banhawy & Knapp 2011: 53.

Amblydromella capparidis, Moraes et al. 1986: 157.

Amblydromella (Aphanoseia) capparidis, Denmark & Welbourn 2002: 308.

This species belongs to the bergi species group (Chant and McMurtry 1994). The biology of that species is totally unknown. This is the first report of this species outside the African continent.

World distribution: Kenya, South Africa.

Specimens examined: two specimens (1 ♀ and 1 ♂) collected during this study. Funchal, Botanical garden (350 m aasl, 32°39'46'' N, 16°53'38'' W), 1 ♀ on Thumbergia grandiflora Roxburgh (Acanthaceae), 14/V/2019; Monte, Botanical garden of Monte Palace (943 m aasl, 32°40'27'' N, 16°54'10'' W), 1 ♂ on Fuchsia boliviana Carrière (Onagraceae), 16/V/2019.

Remarks: morphological and morphometric characters and all measurements of our specimens (Table 3) fit well with measurements of the original description and other measurements of the literature, especially with those for specimens of South Africa (van der Merwe 1968, Ueckermann et al. 2008). The male of this species is apparently already known and mentioned in the paper of El-Banhawy et al. (2011) but it was not illustrated. Therefore, we do not describe and only measurements of the male specimen are given here (Table 4).

Table 3. Character measurements of an adult female of Typhlodromus (Anthoseius) capparidis collected in this study (localities followed by the number of specimens measured between brackets).

Table 4. Character measurements of an adult male of Typhlodromus (Anthoseius) capparidis collected in this study (localities followed by the number of specimens measured between brackets).

Typhlodromus (Anthoseius) rhenanoides Athias-Henriot

Typhlodromus rhenanoides Athias-Henriot 1960b: 85.

Neoseiulus rhenanoides, Schuster & Pritchard 1963: 205.

Anthoseius rhenanoides, Charlet & McMurtry 1977: 186.

Amblydromella rhenanoides, Moraes et al. 1986: 174.

Amblydromella (Aphanoseia) rhenanoides, Denmark & Welbourn 2002: 308.

Typhlodromus (Anthoseius) rhenanoides, Moraes et al. 2004: 347, Chant & McMurtry 2007: 155.

This species belongs to the rhenanus species group (Chant and McMurtry 1994).

It is mainly reported from the Mediterranean basin. It has been recorded on many uncultivated plants and sometimes on some orchards such as peach, plum, olive, citrus and vineyards (Ragusa 1977, 2006, Papaioannou – Souliotis et al. 1994, Ragusa and Tsolakis 2001). Its biology is totally unknown and nothing is known with regard to its ability to control pests. This species was reported from Morocco by McMurtry & Bonfour (1989) on Cupressus sp. and then by Tixier et al. (2016). It is also present in Spain (Ferragut et al. 2010) and in Portugal (Espinha 1995) and was already mentioned by Papadoulis and Kapaxidi (2011) from Madeira Island.

Specimens examined: six specimens (3 ♀♀ and 3 imm.) collected during this study. Pico das Urzes, in the bush (1172 m aasl, 32°44'3'' N, 17°3'43'' W), 1 ♀ on Rubus grandifolius Lowe (Rosaceae), 19/V/2019; Risco (1040 m aasl, 32°47'56'' N, 17°11'8'' W), 2 ♀♀ and 1 imm. on Erica madeirensis (Ericaceae) and 2 imm. on Prunus pumila L. (Rosaceae), 23/V/2019.

World distribution: Algeria, Canary Islands, France, Greece, Hawaii, Italy, Les Saintes, Madeira Islands, Morocco, Portugal, Spain, Tunisia, USA.

Remarks: morphological and morphometric characters and all measurements of our specimens fit well measurements of Tixier et al. (2016, 2019).

Typhlodromus (Typhlodromus) exhilaratus Ragusa

Typhlodromus exhilaratus Ragusa 1977: 380.

Typhlodromus exhilaratus exhilarates, Chant & Yoshida-Shaul 1987: 1795.

Typhlodromus exhilaratus americanus, Chant & Yoshida-Shaul 1987: 1795.

Typhlodromus (Typhlodromus) exhilaratus, Mores et al. 2004: 371, Chant & McMurtry 2007: 157.

Typhlodromus (T.) exhilaratus has been wrongly considered as a synonym of T. tiliae Oudemans by Denmark (1992). This species has been mainly reported in the Mediterranean basin. It is quite common in some vineyards in France and Italy (Tixier et al., 2006; Castagnoli et al., 2002). Liguori and Guidi (1990) have shown its ability to feed on the main mite pest in South European vineyards, Eotetranychus carpini (Oudemans). Typhlodromus (T.) exhilaratus is known from Morocco, it was reported by Tixier et al. (2003) from vineyards in the region of Meknes but it is also observed on various plants and locations (Tixier et al. 2016). This is the first record of that species in Madeira Island.

Specimens examined: 20 specimens (19 ♀♀ and 1 ♂) collected during this study.Canical, Quinta do Lorde (20 m aasl, 32°44'36'' N, 16°42'20'' W), 17 ♀♀ and 1 ♂ on Chamaecyparis lawsonia (Murray) Parlatore (Cupressaceae), 17/V/2019; Punta do Sol, City center (249 m aasl, 32°40'18'' N, 17°4'00'' W), 1 ♀ on Rosa canina L. (Rosaceae), 18/V/2019; Portela (670 m aasl, 32°44'50'' N, 16°49'33'' W), 1 ♀ on Laurus azorica (Seubert) Franco (Lauraceae), 23/V/2019.

Previous records: Austria, Cyprus, Egypt (Abo-Shnaf & Moraes, 2014), France, Greece, Hungary, Israel, Italy, Morocco, Tunisia, USA.

Remarks: morphological and morphometric characters and all measurements of our specimens fit well with measurements of the re-description of Chant and Yoshida-Shaul (1987). This species is the third more abundant (17%) after E. stipulatus (22%) and A. herbicolus (21 %) but it is not very frequent (only 10% of the total samples against 31% for E. stipulatus and 31% for A. herbicolus).

Typhlodromus (Typhlodromus) moroccoensis Denmark

Typhlodromus moroccoensis Denmark 1992a: 16.

Typhlodromus (Typhlodromus) moroccoensis, Moraes et al. 2004: 366, Chant & McMurtry 2007: 157, Tixier et al. 2010: 170, Ferragut & Ueckermann 2012: 1742, Tixier et al. 2016: 528.

Typhlodromus (T.) moroccoensis Denmark (reported once from Morocco on Prunus sp.) (Denmark 1992) is the only species with T. (T.) setubali within the sub-genus Typhlodromus (Typhlodromus) bearing six setae on genu II. Nothing is known about the biology of this species. This is the first record of that species in Madeira Island.

World distribution: Morocco.

Specimens examined: a single specimen (1 ♀) collected during this study. Risco (1040 m aasl, 32°47'56'' N, 17°11'8'' W), 1 ♀ on Persea indica Sprengel (Lauraceae), 23/V/2019.

Remarks: the measurements of the adult females collected (Table 5) agree with those provided by Denmark (1992) for specimens from Morocco as reported by Tixier et al. (2016). Typhlodromus (T.) setubali and T. (T.) moroccoensis are morphologically close and Tixier et al. (2016) indicated that further analyses would be required to determine if T. (T.) moroccoensis is valid or synonym. But comparisons provided in tables 5 and 6, show some differences especially the number of teeth on the fixed digit and spermatheca shape.

Table 5. Character measurements of an adult female of Typhlodromus (Typhlodromus) moroccoensis collected in this study (localities followed by the number of specimens measured between brackets).

Typhlodromus (Typhlodromus) phialatus Athias-Henriot

Typhlodromus phialatus Athias-Henriot 1960b: 100.

Typhlodromus (Typhlodromus) phialatus, Moraes et al. 2004: 366, Chant & McMurtry 2007: 157.

This species is mainly known from the Western Palearctic region and is very common in the Mediterranean basin. It has been reported from many plants and some orchards such as vineyards, apple, almond, pear but essentially on citrus (Ferragut et al. 1983; Papaioannou-Souliotis et al. 1994; Espinha et al. 1995; Kreiter et al. 2000; Sahraoui et al. 2012). Some studies have been carried out on the biology of this species (Meszaros et al. 2007) and some publications reported that it could limit the development of mite pests in citrus orchards. This species was reported from Morocco by McMurtry and Bounfour (1989) on citrus, weeds and Argania spinosa (L.) Skeels and is present in Canary Island. It was first mentioned by Papadoulis and Kapaxidi (2011) from Madeira Island. The report here confirms the occurrence of this species in the island.

World distribution: Algeria, Canary Islands, Cyprus, England, France, Greece, Hungary, Israel, Italy, Jordan, Madeira islands, Moldova, Morocco, Norway, Portugal, Russia, Serbia-Montenegro, Spain, Tunisia, Ukraine.

Specimens examined: a single specimen (1 ♀) collected during this study. Risco (1040 m aasl, 32°47'56'' N, 17°11'8'' W), 1 ♀ on the Macaronesian endemic Laurus novocanariensis Martinez, Lousa, Pietro, Dias, Costa and Aguiar (Lauraceae).

Remarks: the measurements of the adult females collected agree with those provided by Ferragut et al. (2010) for specimens from Spain and by Tixier et al. (2019) for specimens from France.

Typhlodromus (Typhlodromus) pyri Scheuten

Typhlodromus pyri Scheuten 1857: 104, Moraes et al. 1986: 246.

Typhlodromus (Typhlodromus) pyri, Chant 1959: 64.

Typhlodromus (Typhlodromus) pyri, Moraes et al. 2004: 367, Chant & McMurtry 2007: 157.

This species is cosmopolitan but it is one of the most common and dominant species in vineyards and orchards in the western part of Europe. It has been introduced in various countries such as Australia, New Zealand and the USA for biological control purposes. It has been reported on a wide range of plants, essentially on cultivated and uncultivated shrubs and trees This species is an efficient predator of red and yellow spider mites, and eriophyid mites mainly in orchards and vineyards as well as the grape thrips Drepanothrips reuteri (Uzel) in France (Serrano et al. 2004).

World distribution: Australia, Austria, Azerbaijan, Belarus, Belgium, Canada, Chile, Croatia, Czechoslovakia, Czech Republic, Denmark, Egypt, England, Finland, France, Germany, Greece, Hungary, Italy, Madeira Island, Moldova, Montenegro, Netherlands, New Zealand, Northern Ireland, Norway, Poland, Portugal, Russia, Saudi Arabia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, USA.

Specimens examined: 13 specimens (11 ♀♀, 2 imm.) collected during this study. Encumeada (709 m aasl, 32°44'36'' N, 17°1'31'' W), 1 ♀ on an endemic plant of Madeira Island, the so-called Star of Madeira, Echium candicans L. f. (Boraginaceae), 20/V/2019; Pico das Urzes, in the bush (1172 m aasl, 32°44'3'' N, 17°3'43'' W), 2 ♀♀ on Rubus grandifolius Lowe (Rosaceae), 19/V/2019; São Paulo, Sacrada familia (705 m aasl, 32°40'11'' N, 17°3'45'' W), 8 ♀♀ and 1 imm. Woodwardia radicans (L.) Smith (Blechnaceae), 21/V/2019; Quinta da Serra (802 m aasl, 32°40'5'' N, 17°2'55'' W), 1 imm. on Ocotea foetens (Aiton) Baillon (Lauraceae), 21/V/2019.

Remarks: The measurements of the adult females collected agree with those provided by Ferragut et al. (2010) for specimens from Spain and by Tixier et al. (2019) for specimens from France. This species is the fourth most abundant (11%) after E. stipulatus (22%), A. herbicolus (21%) and T. (T.) exhilaratus (17%) but it is slightly more frequent than the later species [14 % of the total samples against only 10% for T. (T.) exhilaratus].

Typhlodromus (Typhlodromus) setubali Dosse

Typhlodromus setubali Dosse 1961: 313.

Typhlodromus (Typhlodromus) setubali, Moraes et al. 2004: 369, Chant & McMurtry 2007: 157.

Typhlodromus laurentii Ragusa & Swirski 1978: 213 (synonymy according to Chant & Yoshida-Shaul 1987).

This species is mainly known from the South of the Mediterranean basin, and it is not very common. It has been reported in Portugal and Spain by Dosse (1961) and in Moroccan crops by Tixier et al. (2003, 2016) and Kreiter specifically from Oulmès region (unpub. data). Its biology has been recently studied (Ouassat and Allam 2020 and Allam et al. unpub. data) with specimens collected on apple in Oulmès region of Morocco (Ouassat 2017, Ouassat and Allam 2019). It seems an efficient predator of P. ulmi. It was already observed in Morocco by McMurtry & Bounfour (1989) on Olea europea L., Cupressus sp. and Cynodon dactylon Richard. This is the first record of that species in Madeira Island.

Specimens examined: a single specimen (1 ♀) collected during this study. Risco (1040 m aasl, 32°47'56'' N, 17°11'8'' W), 1 ♀ on Erica madeirensis (Ericaceae) and 1 ♀ on Persea indica Sprengel (Lauraceae), 23/V/2019.

Previous records: Azerbaijan, Cyprus, Egypt, France, Greece, Iran, Israel, Jordan, Syria, Turkey.

Remarks: morphological and morphometric characters and all measurements of our specimens (Table 6) fit well with measurements of the re-description of Chant and Yoshida-Shaul (1987) for specimens from Portugal and measurement of specimens from Morocco (Tixier et al. 2016).

Table 6. Character measurements of an adult female of Typhlodromus (Typhlodromus) setubali collected in this study (localities followed by the number of specimens measured between brackets).

Conclusion

The results of a survey, made in May 2019 in Madeira Island are presented in this paper. Fifteen species are documented here: 7 Amblyseiinae and 8 Typhlodrominae, have been collected, namely: Neoseiulus madeirensis, N. teke, N. umbraticus, Amblyseius herbicolus, Euseius scutalis, E. stipulatus, Iphiseius degenerans, Neoseiulella canariensis, Typhlodromus (Anthoseius) capparidis, T. (A.) rhenanoides, T. (Typhlodromus) exhilaratus, T. (T.) moroccoensis, T. (T.) phialatus, T. (T.) pyri and T. (T.) setubali. This is interesting to mention that Papadoulis and Kapaxidi (2011) recorded two species of Amblyseiinae and three species of Typhlodrominae and Ferragut and Baummann (2020) recorded 12 species all belonging to the subfamily Amblyseiinae. No Phytoseiinae has been found until now, and the presence of any members of Phytoseiinae in Madeira remain as mystery.

Six species, namely: Neoseiulus teke, N. umbraticus, Typhlodromus (Anthoseius) capparidis, T. (Typhlodromus) exhilaratus, T. (T.) moroccoensis and T. (T.) setubali are reported for the first time from Madeira Island. So the number of species recorded after this study is now of 24.

Three species previously reported by Carmona (1973) were not found in subsequent studies by Papadoulis and Kapaxidi (2011) and Ferragut and Baumann (2020) as well as in this study. Those species are, Amblyseius largoensis, Euseius hibisci and T. (A.) rhenanus. Similar to the conclusion by Ferragut and Baumann (2020), we think that the report of A. largoensis by Carmona (1973) represents probably a misidentification, though those specimens were not available for study. Just like the former authors, A. herbicolus was the most abundant (18% of all the phytoseiids collected) and frequent (31% of samples) in our material from the Madeira archipelago. As reported in the literature (Döker et al. 2020, Ferragut and Baumann 2020), confusions between A. largoensis and A. herbicolus might be the reason. Three characters allow to distinguish the two species as highlighted by Döker et al. (2020):

  • calyx of spermatheca trumpet-shaped for A. herbicolus vs. calyx of the spermatheca tubular for A. largoensis;
  • atrium of spermatheca wider than the base of calyx for A. herbicolus vs. atrium of spermatheca as wide as the basis of calyx for A. largoensis;
  • movable digit of chelicera with four teeth in A. herbicolus vs. movable digit of chelicera with three teeth in A. largoensis.

Döker et al. (2020) stated the possible misidentification of A. herbicolus as A. largoensis and Ferragut and Baumann (2020) highlighted the same hypothesis for specimens from Madeira. The species A. largoensis was not listed in Carmona (1962 and 1973), Papadoulis and Kapaxidi (2011), Ferragut and Baumann (2020) and in the present paper. We thus assumed that specimens of A. herbicolus might also get misidentified as belonging to the species A. largoensis by Carmona (1973) and that the occurrence of the species A. largoensis have to be confirmed.

Concerning E. hibisci, Carmona (1973) reported E. hibisci in Madeira Islands, a species usually reported from the American continent. Just like Papadoulis and Kapaxidi (2011), we think that as E. hibisci closely resembles to E. stipulatus, it is possible that the above-mentioned record was not E. hibisci but actually E. stipulatus, which is the main Euseius species in Mediterranean region.

And finally, T. (A.) rhenanus which is very close to several species of Typhlodromus (Anthoseius), was often misidentified, and a misidentification might have been also happened in Madeira reports.

On three surveys conducted after the two of Carmona (1962, 1973), none of these three species were recovered.

The Phytoseiidae fauna of Madeira is essentially composed of West Palearctic species with some African species.

Among the 15 species recorded in this study, at least seven species [N. teke, A. herbicolus, E. stipulatus, I. degenerans, T. (T.) exhilaratus, T. (T.) setubali and T. (T.) pyri] are already known as biological control agents (BCAs), some having been experimented and some others sold in several places of the world.

In addition to the intrinsic value of phytoseiid mite biodiversity in such environments, demonstration of the natural occurrence of efficient BCAs in an isolated island such as Madeira Island is of great agricultural, commercial and strategic interests for the country.

Acknowledgements

Thanks are due to the wife of the senior author, Marie Kreiter, for material helps and patience during this study. Many thanks also to our colleagues and friends, Professor Francisco ''Paco'' Ferragut from University of Valencia, and Eric Pierre from INRAE CBGP for valuable discussion concerning Madeira Island biodiversity and taxonomic topic on species found.



References

  1. Abad-Moyano R., Pina T., Dembilio O., Ferragut F., Urbaneja A. 2009. Survey of natural enemies of spider mites (Acari: Tetranychidae), in citrus orchards in eastern Spain. Exp. Appl. Acarol., 47(1): 49-61. doi:10.1007/s10493-008-9193-3

  2. Abo-Shnaf R.I.A., Moraes G.J. de. 2014. Phytoseiid mites (Acari: Phytoseiidae) from Egypt, with new records, descriptions of new species, and a key species. Zootaxa, 3865: 1-71. doi:10.11646/zootaxa.3865.1.1

  3. Athias-Henriot C. 1958. Contribution à la connaissance du genre Typhlodromus Scheuten (Acariens Parasitiformes, Phytoseiidae). Description de deux espèces nouvelles d'Algérie et clé des espèces du groupe finlandicus. Rev. Pathol. Vég. Entomol. Agric. France, 37(2): 179-186.

  4. Athias-Henriot C. 1959. Acariens planticoles d'Algérie. I. 5e contribution au genre Amblyseius Berlese (Phytoseiidae). II. Première liste d'Actinochitinosi (Cheyletidae, Caligonellidae, Hemisarcoptidae). Bull. Acad. Roy. Belg., Sciences, (Ser. 5), 45: 130-153.

  5. Athias-Henriot C. 1960a. Nouveaux Amblyseius d'Algérie (Parasitiformes, Phytoseiidae). Acarologia, 2, 288-299.

  6. Athias-Henriot C. 1960b. Phytoseiidae et Aceosejidae (Acarina: Gamasina) d'Algérie. IV. Genre Typhlodromus Scheuten, 1857. Bull. Soc. Hist. Nat. Afr. Nord, 51: 62-107.

  7. Athias-Henriot C. 1975. Nouvelles notes sur les Amblyseiini. II. Le relevé organotaxique de la face dorsale adulte (Gamasides protoadéniques, Phytoseiidae). Acarologia, 17(1): 20-29.

  8. Barbar Z., Al-Kushki S., Al-Jamli F. 2012. Recording of Typhlodromus (Typhlodromus) athiasae Porath and Swirski in some vineyards of Homs governorate, Syria. Arab J. Pl. Prot., 30 (2): 231-238.

  9. Beglyarov G.A. 1958. Species of Phytoseiidae (Parasititormes: Gamasoidea) predatory upon tetranychid mites in orchards of the Krasnodar region. Trud. Vses. Inst. Zashc. Rast., 10: 98-124 [in Russian].

  10. Berlese A. 1889. Acari, Myriopoda et Scorpiones hucusque in Italia reperta. Tipografia Del Seminario, 6(54): 7-9.

  11. Berlese A. 1914. Acari nuovi. Manipulus IX. Redia, 10: 113-150.

  12. Berlese A. 1916. Centuria prima di Acari nuovi. Redia, 12: 19-66.

  13. Berlese A. 1921. Acari, Myriopoda et Pseudoscorpiones hucusque in Italia reperta. I. Índice sinonimico dei generi e delle specie illustrate nei fascicoli 1 a 101. Redia, 14(1/2): 77-105.

  14. Bhattacharyya S.K. 1968. Two new phytoseiid mites from eastern India (Acarina: Phytoseiidae). J. Bombay Nat. Hist. Soc., 65(3): 677-680.

  15. Blommers L. 1973. Five new species of phytoseiid mites (Acarina: Phytoseiidae) from southwest Madagascar. Bull. Zool. Mus. Univ. Amsterdam, 3(16): 109-117.

  16. Byng J.W., Smets E.F., van Vugt R., Bidault E., Davidson C., Kenicer G., Chase M.W., Christenhusz M.J.M. 2018. The phylogeny of angiosperms poster: a visual summary of APG IV family relationships and floral diversity. The Global Flora, 4-7.

  17. Carmona M.M. 1962. Contribuicao para o conhecimento dos acaros das plantas cultivadas em Portugal. II. Agron. Lusit., 24: 5-20.

  18. Carmona M.M. 1973. Acaros fitofagos e predadores da Ilha da Madeira. Agron. Lusit., 34: 255-281.

  19. Castagnoli M., Liguori M., Simoni S. 2002. Inter-specific predation and cannibalism in four phytoseiid species of the Mediterranean area (Acari: Phytoseiidae). In: Bernini F., Nannelli R., Nuzzaci G., de Lillo E. (eds) Acarid Phylogeny and Evolution: Adaptation in mites and ticks. Kluwer Academic Publishers, The Netherlands: 341-349. doi:10.1007/978-94-017-0611-7_35

  20. Chant D.A. 1956. Some mites of the subfamily Phytoseiinae (Acarina: Laelaptidae) from southeastern England, with descriptions of new species. Can. Entomol., 88: 26-37. doi:10.4039/Ent8826-1

  21. Chant D.A. 1959. Phytoseiid mites (Acarina: Phytoseiidae). Part I. Bionomics of seven species in southeastern England. Part II. A taxonomic review of the family Phytoseiidae, with descriptions of thirty-eight new species. Can. Entomol., 61(12): 1-166. doi:10.4039/entm9112fv

  22. Chant D.A., McMurtry J.A. 1994. A review of the subfamilies Phytoseiinae and Typhlodrominae (Acari: Phytoseiidae). Intern. J. Acarol., 20(4): 223-310. doi:10.1080/01647959408684022

  23. Chant D.A., McMurtry J.A. 2003a. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part I. Neoseiulini new tribe. Intern. J. Acarol., 29(1): 3-46. doi:10.1080/01647950308684319

  24. Chant D.A., McMurtry J.A. 2003b. A review of the subfamily Amblyseiinae Muma: Part II. The tribe Kampimodromini Kolodochka. Intern. J. Acarol., 29(3): 179-224. doi:10.1080/01647950308684331

  25. Chant D.A., McMurtry J.A. 2004. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae): Part III. The tribe Amblyseiini Wainstein, subtribe Amblyseiina n. subtribe. Intern. J. Acarol., 30(3): 171-228. doi:10.1080/01647950408684388

  26. Chant D.A., McMurtry J.A. 2005. A review of the subfamily Amblyseiinae Muma (Acari: Phytoseiidae) Part VI. The tribe Euseiini n. tribe, subtribes Typhlodromalina n. subtribe, Euseiina n. subtribe, and Ricoseiina n. subtribe. Intern. J. Acarol., 31(3): 187-224. doi:10.1080/01647950508684424

  27. Chant D.A., McMurtry J.A. 2007. Illustrated keys and diagnoses for the genera and subgenera of the Phytoseiidae of the world (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, 219 pp.

  28. Chant D.A., Yoshida-Shaul E. 1982. On the identity of Amblyseius umbraticus (Chant) (Acarina: Phytoseiidae). Can. J. Zool., 60(8): 1998-2005. doi:10.1139/z82-257

  29. Chant D.A., Yoshida-Shaul E. 1987. A world review of the pyri species group in the genus Typhlodromus Scheuten (Acari: Phytoseiidae). Can. J. Zool., 65(7): 1770-1804. doi:10.1139/z87-272

  30. Chant D.A., Yoshida-Shaul E. 1989. A world review of the tiliarum species group in the genus Typhlodromus Scheuten (Acari: Phytoseiidae). Can. J. Zool., 67(4): 1006-1046. doi.org/10.1139/z89-144 doi:10.1139/z89-144

  31. Chant D.A., Yoshida-Shaul E. 1991. Adult ventral setal patterns in the family Phytoseiidae (Acari: Gamasina). Intern. J. Acarol., 17(3): 187-199. doi:10.1080/01647959108683906

  32. Charlet L.D., McMurtry J.A. 1977. Systematics and bionomics of predaceous and phytophagous mites associated with pine foliage in California. Hilgardia, 45(7): 173-236. doi:10.3733/hilg.v45n07p173

  33. Chatti W.M., Kreiter S., Lebdi-Grissa K., Ksantini M. 2017. Phytophagous and predatory mites on olive trees in Tunisia. Catalogue, descriptions of one new species and key for identification (Acari, Eriophyidae, Tetranychidae, Tenuipalpidae and Phytoseiidae). Acarologia, 57(2), 233-254. doi:10.1051/acarologia/20164152

  34. Chaudhri W.M. 1968. Six new species of mites of the genus Amblyseius (Phytoseiidae) from Pakistan. Acarologia, 10: 550-562.

  35. Daneshvar H., Denmark H.A. 1982. Phytoseiids of Iran (Acarina: Phytoseiidae). Intern. J. Acarol., 8(1): 3-14. doi:10.1080/01647958208683272

  36. De Leon D. 1959. Two new genera of phytoseiid mites with a note on Proprioseius meridionalis Chant (Acarina: Phytoseiidae). Entomol. News, 70(10): 257-262.

  37. De Leon D. 1966. Phytoseiidae of British Guyana with keys to species (Acarina: Mesostigmata). Stud. Fauna Suriname and other Guyanas, 8: 81-102.

  38. Demite P.R., McMurtry J.A., Moraes G.J. de. 2014. Phytoseiidae Database: a website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa, 3795 (5): 571-577. doi:10.11646/zootaxa.3795.5.6

  39. Demite P.R., Moraes G.J. de, McMurtry J.A., Denmark H.A., Castilho R.C. 2021. Phytoseiidae Database. Available from: www.lea.esalq.usp.br/phytoseiidae (last access 25/III/2021).

  40. Denmark H.A. 1992. A revision of the genus Typhlodromus Scheuten (Acari: Phytoseiidae). Occas. Pap. Fla St. Coll. Arthr., 7: 1-43.

  41. Denmark H.A., Evans G.A. 2011. Phytoseiidae of North America and Hawaii (Acari: Mesostigmata). Indira Publishing House, West Bloomfield, USA, 451 pp.

  42. Denmark H.A., Muma M.H. 1989. A revision of the genus Amblyseius Berlese, 1914 (Acari: Phytoseiidae). Occas. Pap. Fla State Coll. Arthropods, USA, 4, 149 pp.

  43. Denmark H.A., Welbourn W.C. 2002. Revision of the genera Amblydromella Muma and Anthoseius De Leon (Acari: Phytoseiidae). Intern. J. Acarol., 28(4): 291-316. doi:10.1080/01647950208684308

  44. Döker I., Kazak C., Karut K. 2020. The genus Amblyseius Berlese (Acari: Phytoseiidae) in Turkey with discussion on the identity of Amblyseius meridionalis. Syst. Appl. Acarol., 25(8): 1395-1420. doi:10.11158/saa.25.8.4

  45. Dosse G. 1961. Zur Klarung der Artenfrage von Typhlodromus (Typhlodromus) pyri Scheuten, 1857 (= T. tiliae Oud. 1929) und Typhlodromus (Typhlodromus) sebutali n. sp. (Acari: Phytoseiidae). Zeit. Angew. Zool., 48: 313-323.

  46. Duarte M.V.A, Venzon M., Bittencourt M.C.de S., Rodriguez-Cruz F.A., Pallini A., Janssen A. 2015. Alternative food promotes broad mite control on chilli pepper plants. BioControl, 60: 817-825. doi:10.1007/s10526-015-9688-x

  47. El-Badry E.A. 1968. Three new species of phytoseiid mites from western Sudan. Rev. Zool. Bot. Afric., 77: 321-328.

  48. El-Banhawy E.M., Knapp M. 2011. Mites of the family Phytoseiidae Berlese from Kenya (Acari: Mesostigmata). Zootaxa, 2945: 1-176. doi:10.11646/zootaxa.2945.1.1

  49. Espinha I.G., Costa-Comelles J., Torres L.M., Ferragut F. 1995. Contribuição para o conhecimento dos ácaros fitoseideos associados à macieira no norte interior de Portugal. Bol. Sanid. Veget. - Plagas, 21: 223-230.

  50. Evans G.O. 1954. The genus Iphiseius Berl. (Acarina: Laelaptidae). Proceed. Zool. Soc., 124: 517-526. doi:10.1111/j.1469-7998.1954.tb07793.x

  51. Fang X., Nguyen V.-L., Ouyang G.-C., Wu W.-N. 2020. Survey of phytoseiid mites (Acari: Mesostigmata, Phytoseiidae) in citrus orchards and a key for Amblyseiinae in Vietnam. Acarologia 60(2): 254-267. doi:10.24349/acarologia/20204366

  52. Fantinou A.A., Baxevani A., Drizou F., Labropoulos P., Perdikis D., Papadoulis G. 2012. Consumption rate, functional response and preference of the predaceous mite Iphiseius degenerans to Tetranychus urticae and Eutetranychus orientalis. Exp. Appl. Acarol., 58: 133-144. doi:10.1007/s10493-012-9557-6

  53. Ferragut F., Baumann J. 2019. New phytoseiid mites (Mesostigmata: Phytoseiidae) of Mauritius, with the description of two new species. Syst. Appl. Acarol., 24(5), 825-856. doi:10.11158/saa.24.5.8

  54. Ferragut F., Baumann J. 2020. Hidden biodiversity in the Atlantic Islands. Amblyseiinae (Acari: Phytoseiidae) from Madeira archipelago. Syst. Appl. Acarol., 25(6): 1113-1138. doi:10.11158/saa.25.6.14

  55. Ferragut F., Baumann J. 2021. New species and new records of phytoseiid mites (Acari: Phytoseiidae) from Cape Verde archipelago. Syst. Appl. Acarol., 26(2), 395-426. doi:10.11158/saa.26.2.6

  56. Ferragut F., Costa-Comelles J., Gomez-Bernardo E., Garcia-Marí F. 1985. Contribución al conocimiento de los ácaros fitoseidos (Gamasida: Phytoseiidae) de los cultivos españoles. Actas do II Congr. Ibérico de Entomol. Lisboa, Junio 1985, 2: 223-231.

  57. Ferragut F., Escudero A. 1997. Taxonomia y distribucion de los acaros depredadores del gênero Euseius Wainstein 1962, en Espana (Acari: Phytoseiidae). Bol. Sanid. Veg. Plagas, 23(2): 227-235.

  58. Ferragut F., Garcia-Mari F., Marzal M.C. 1983. Determinacion y abundancia de los fitoseidos (Acari: Phytoseiidae) en los agrios espanoles. I. Congreso Nacional de la Sociedad Espanola de Ciencias Horticolas, Valencia, 28 Noviembre a 1 Diciembre de 1983: 299-308.

  59. Ferragut F., Laborda Cenjor R., Costa Comelles J., Garcia Marí F. 1992. Feeding behavior of Euseius stipulatus and Typhlodromus phialatus on the Citrus Red Mite Panonychus citri (Acari: Phytoseiidae, Tetranychidae). Entomophaga, 37(4):537-543. doi:10.1007/BF02372323

  60. Ferragut F., Peña-Estévez M.A. 2003. Phytoseiid mites of the Canary Islands (Acari: Phytoseiidae): 1. Gran Canaria Island. Intern. J. Acarol., 29(2): 149-170. doi:10.1080/01647950308683654

  61. Ferragut F., Peña-Estévez M.A. 2007. Phytoseiid mites of the Canary Islands (Acari, Phytoseiidae). II. Tenerife and La Gomera Islands. Graellsia, 63(2): 349-358. doi:10.3989/graellsia.2007.v63.i2.102

  62. Ferragut F., Pérez Moreno I., Iraola V., Escudero A. 2010. Ácaros depredadores em las plantas cultivadas. Família Phytoseiidae. Ediciones Agrotécnicas, Madrid, 202 pp.

  63. Ferragut F., Ueckermann E.A. 2012. A new species and new records of the subgenus Typhlodromus Scheuten from Spain, with a key to the world species (Acari: Phytoseiidae). J. Natur. Hist., 46(27-28): 1731-1745. doi:10.1080/00222933.2012.681318

  64. Gupta S.K. 1981. On a collection of Phytoseiidae (Acari: Mesostigmata) from Himachal Pradesh (India), with descriptions of two new species. Indian J. Acarol., 5: 32-36.

  65. Gupta S.K. 1986. Fauna of India. Family Phytoseiidae. Zoological Survey of India, Calcutta, India, 350 pp.

  66. Hirschmann W. 1962. Gangystematik der Parasitiformes. Acarologie Schriftenreihe fur Vergleichende Milbenkunde, Hirschmann-Verlag, Furth/Bay, 5(5-6): 80 pp.+ 32 plates.

  67. Hughes A.M. 1948. The mites associated with stored food products. Ministry of Agriculture and Fisheries, H. M. Stationary Office, London, 168 pp.

  68. Kanouh M., Kreiter S., Douin M., Tixier M.-S. 2012. Revision of the genus Neoseiulella Muma (Acari: Phytoseiidae): re-description of species, synonymy assessment, biogeography, plant supports and key to adult females. Acarologia, 52(3): 259-348. doi:10.1051/acarologia/20122048

  69. Karg W. 1982. Diagnostic and systematics of predatory mites of the family Phytoseiidae Berlese in orchards. Zool. Jahrb. Syst., 109: 188-210.

  70. Karg W. 1991. Die Raubmilbenarten der Phytoseiidae Berlese (Acarina) Mitteleuropas sowie angrenzender Gebiete. Zool. Jahrb. Syst., 118(1): 1-64.

  71. Kasap I., Ekerog E.S. 2004. Life history of Euseius scutalis feeding on citrus red mite Panonychus citri at various temperatures. BioControl, 49: 645-654. doi:10.1023/B:BICO.0000046733.53887.2b

  72. Kazak C., Yildiz S., Sekeroglu E. 2002. Biological characteristics and life tables of Neoseiulus umbraticus Chant (Acari, Phytoseiidae) at three constant temperatures. J. Pest Sc., 75: 118-121. doi:10.1046/j.1472-8206.2002.02034.x

  73. Knapp M., Van Houten Y., Van Baal E., Groot T. 2018. Use of predatory mites in commercial biocontrol: current status and future prospects. Acarologia, 58 (Suppl):72-82. doi:10.24349/acarologia/20184275

  74. Knisley C.B., Swift F.C. 1971. Biological studies of Amblyseius umbraticus (Acarina: Phytoseiidae). Ann. Entomol. Soc. Am., 64: 813-822. doi:10.1093/aesa/64.4.813

  75. Kondraskov P. Schütz N., Schüßler C., Menezes de Sequeira M., Santos Guerra A., Caujapé-Castells J., Jaén-Molina R., Marrero-Rodríguez A., Koch M.A., Linder P., Kovar-Eder J., Thiv M. 2015. Biogeography of Mediterranean Hotspot Biodiversity: Re-Evaluating the 'Tertiary Relict' Hypothesis of Macaronesian Laurel Forests. PLoS ONE 10(7): e0132091. doi:10.1371/journal.pone.0132091

  76. Kreiter S., Abo-Shnaf R.I.A. 2020a. Phytoseiid mites of Rodrigues Island. Acarologia, 60(2): 449-468. doi:10.24349/acarologia/20204376

  77. Kreiter S., Abo-Shnaf R.I.A. 2020b. New records of phytoseiid mites from Mauritius Island (Acari: Mesostigmata). Acarologia 60(3): 520-545. doi:10.24349/acarologia/20204382

  78. Kreiter S., Abo-Shnaf R.I.A., Payet R.-M. 2020a. Phytoseiid mites of Mayotte Island (Acari: Mesostigmata). Acarologia, 60(3): 622-642. doi:10.24349/acarologia/20204391

  79. Kreiter S., Amiri K., Douin M., Bohinc T., Trdan S., Tixier M.-S. 2020b. Phytoseiid mites of Slovenia (Acari: Mesostigmata): new records and first description of the male of Amblyseius microorientalis. Acarologia, 60(2): 203-242. doi:10.24349/acarologia/20204364

  80. Kreiter S., Bopp M.-C., Douin M., Nguyen D.T., Wyckhuys K. 2020c. Phytoseiidae of Vietnam with description of a new species. Acarologia, 60(1): 75-110. doi:10.24349/acarologia/20204362

  81. Kreiter S., Fontaine O., Payet R.-M. 2018a. New records of Phytoseiidae (Acari: Mesostigmata) from Mauritius. Acarologia, 58(4): 773-785. doi:10.24349/acarologia/20184273

  82. Kreiter S., Payet R.-M., Douin M., Fontaine O., Fillâtre J., Le Bellec F. 2020d. Phytoseiidae of La Réunion Island (Acari: Mesostigmata): three new species and two males described, new synonymies, and new records. Acarologia, 60(1): 111-195. doi:10.24349/acarologia/20204361

  83. Kreiter S., Payet R.-M., Abdou Azali H. 2021a. Phytoseiid mites of Anjouan Island (Acari: Mesostigmata). Acarologia, 61(1): 62-83. doi:10.24349/acarologia/20214418

  84. Kreiter S., Payet R.-M., Abdou Azali H. 2021b. Phytoseiid mites of Mohéli Island (Acari: Mesostigmata). Acarologia, 61(1): 94-114. doi:10.24349/acarologia/20214419

  85. Kreiter S., Payet R.-M., Mouigni H., Douin M., Tixier M.-S., Abdou Azali H. New records of phytoseiid mites (Acari: Mesostigmata) from Grande Comore Island (Comoros Archipelago). Acarologia, 61(2): 241-273. doi:10.24349/acarologia/20214429

  86. Kreiter S., Payet R.-M., Fillâtre J., Abdou Azali H. 2018b. First records of Phytoseiidae from one island of the Comoros Archipelago. Acarologia, 58(3): 529-545. doi:10.24349/acarologia/20184256

  87. Kreiter S., Tixier M.-S., Auger P., Muckensturm N., Sentenac G., Doublet B., Weber M. 2000. Phytoseiid mites of vineyards in France (Acari: Phytoseiidae). Acarologia, 41(1-2): 77-96.

  88. Kreiter S., Tixier M.-S., Etienne J. 2006. New records of phytoseiid mites from the French Antilles, with description of Neoseiulus cecileae sp. nov. Zootaxa, 1294: 1-27. doi:10.11646/zootaxa.1294.1.1

  89. Kreiter S., Tixier M.-S., Ferragut F., Allam L., Lebdi K.G. 2004. Preliminary observations of the diversity of phytoseiid mites in the Maghreb and comparasons to the fauna of Gran Canaria. Phytophaga, 14: 477-484.

  90. Kreiter S., Tixier M.-S., Sahraoui H., Lebdi-Grissa K. Chabaan S.B., Chatti A., Chermiti B., Khoualdia O., Ksantini M. 2010. Phytoseiid mites (Acari: Mesostigmata) from Tunisia: catalogue, biogeography, and key for identification. Tunis. J. Plant Prot., 5(2): 151-178.

  91. Kreiter S., Zriki Z., Ryckewaert P., Pancarte C., Douin M., Tixier M.-S. 2018c. New phytoseiid mites of Martinique, with redescription of four species and new records. Acarologia, 58 (2): 366-407. doi:10.24349/acarologia/20184248

  92. Liguori M., Guidi S. 1990. Influenza del condizionamento alimentare di Typhlodromus exhilaratus Ragusa (Acari: Phytoseiidae) sul suo consumo di preda. Redia, 73: 201-211.

  93. Lindquist E.E. 1994. Some observations on the chaetotaxy of the caudal body region of gamasine mites (Acari: Mesostigmata), with a modified notation for some ventrolateral body setae. Acarologia, 35: 323-326.

  94. Lindquist E.E., Evans G.W. 1965. Taxonomic concepts in the Ascidae, with a modified setal nomenclature for the idiosoma of the Gamasina. Mem. Entomol. Soc. Canada, 47: 1-64. doi:10.4039/entm9747fv

  95. McMurtry J.A. 1977. Some predaceous mites (Phytoseiidae) on citrus in the Mediterranean region. Entomophaga, 22: 19-30. doi:10.1007/BF02372986

  96. McMurtry J.A., Bounfour M. 1989. Phytoseiid mites of Morocco, with descriptions of two new species and notes on the genera Kuzinellus, Typhloctonus and Typhlodromus (Acari: Phytoseiidae). Acarologia, 30(1): 13-24.

  97. McMurtry J.A., Croft B.A. 1997. Life-styles of phytoseiid mites and their roles in biological control. Ann. Rev. Entomol., 42: 291-321. doi:10.1146/annurev.ento.42.1.291

  98. McMurtry J.A., Moraes G.J. de. 1984. Some phytoseiid mites from the South Pacific, with descriptions of new species and a definition of the Amblyseius largoensis species group. Intern. J. Acarol., 10: 27-37. doi:10.1080/01647958408683347

  99. McMurtry J.A., Moraes G.J. de, Sourassou N.F. 2013. Revision of the life styles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol., 18: 297-320. doi:10.11158/saa.18.4.1

  100. Meszaros A, Tixier MS, Cheval B, Barbar Z, Kreiter S. 2007. Cannibalism and intraguild predation in Typhlodromus exhilaratus and Typhlodromus phialatus (Acari: Phytoseiidae) under laboratory conditions. Exp. Appl. Acarol., 41: 37-43. doi:10.1007/s10493-006-9046-x

  101. Meyer M.K.P., Rodrigues M. da C. 1966. Acari associated with Cotton in Southern Africa. References to other plants. Garcia de Orta, Rev. Junta Investig., 13: 27-31.

  102. Moraes G.J. de, Kreiter S., Lofego A.C. 2000. Plant mites (Acari) of the French Antilles. 3. Phytoseiidae (Gamasida). Acarologia, 40(3): 237-264.

  103. Moraes G.J. de, McMurtry J.A., Denmark H.A. 1986. A catalog of the mite family Phytoseiidae. References to taxonomy, synonymy, distribution and habitat. EMBRAPA - DDT, Brasilia, Brazil, 353 pp.

  104. Moraes G.J. de, McMurtry J.A., Denmark H.A., Campos C.B. 2004b. A revised catalog of the mite family Phytoseiidae. Zootaxa, 434: 1-494. doi:10.11646/zootaxa.434.1.1

  105. Moraes G.J. de, McMurtry J.A., van den Berg H., Yaninek J.S. 1989a. Phytoseiid mites (Acari: Phytoseiidae) of Kenya, with descriptions of five new species and complementary descriptions of eight species. Intern. J. Acarol., 15(2): 79-93. doi:10.1080/01647958908683829

  106. Moraes G.J. de, McMurtry J.A., Yaninek, J.S. 1989b. Some phytoseiid mites (Acari, Phytoseiidae) from tropical Africa with description of a new species. Intern. J. Acarol., 15(2): 95-102. doi:10.1080/01647958908683830

  107. Moraza M.L., Peña Estévez M.A. 2006. A new species of Neoseiulella (Acari: Phytoseiidae) from the Macaronesian Region, Canary Islands. Zootaxa, 1366, 55-59. doi:10.11646/zootaxa.1366.1.3

  108. Muma M.H. 1961. Subfamilies, genera, and species of Phytoseiidae. Fla St. Mus. Bull., 5(7): 267-302.

  109. Muma M.H., Denmark H.A. 1970. Phytoseiidae of Florida. Arthropods of Florida and neighboring land areas, 6. Florida Department of Agriculture and Consumer Services, Division of Plant Industry, Gainesville, USA, 150 pp.

  110. Mutisya D.L., El-Banhawy E.M., Santos V.V. dos, Kariuki C.W., Khamala C.P.M., Tixier M.-S. 2017. Predatory phytoseiid mites associated with cassava in Kenya, identification key and molecular diagnosis (Acari: Phytoseiidae). Acarologia, 57(3), 541-554.

  111. Myers N. 1988. Threatened biotas: hotspots in tropical forests. Environmentalist, 8: 187-208. doi:10.1007/BF02240252

  112. Myers N., Mittermeier R.A., Mittermeier C.G., Da Fonseca G.A., Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853-858. doi:10.1038/35002501

  113. Nomikou M., Janssen A., Sabelis M.W. 2003. Phytoseiid predators of whiteflies feed and reproduce on non-prey food sources. Exp. Appl. Acarol., 31: 15-26. doi:10.1023/B:APPA.0000005142.31959.e8

  114. Northcraft P.D. 1987. First record of three indigenous predacious mites in Zimbabwe. J. Entomol. Soc. S. Afr., 50(2): 521-522.

  115. Nwilene F.E., Nachman G. 1996. Functional responses of Iphiseius degenerans and Neoseiulus teke (Acari: Phytoseiidae) to changes in the density of the cassava green mite, Mononychellus tanajoa (Acari: Tetranychidae). Exp. Appl. Acarol., 20: 259-271. doi:10.1007/BF00052876

  116. Ouassat S., Allam L. 2017. Binomial sampling plan using nachman function for Panonychus ulmi (Koch) (Acari, Tetranychidae) and its Predator Typhlodromus setubali (Dosse, 1961). Rev. Maroc. Prot. Plant., 11: 33-39.

  117. Ouassat S., Allam L. 2019. Toxicity of Three Pesticides to The European red mite Panonychus ulmi and its predator, Typhlodromus (T.) setubali (Acari: Phytoseiidae, Tetranychidae). Adv. Agric. Horti. Entomol.: AAHE-106.

  118. Ouassat S., Allam L. 2020. Laboratory measurement of the functional and numerical responses of the predaceous mite, Typhlodromus (T.) setubali to Panonychus ulmi (Phytoseiidae: Tetranychidae). Research square: preprint. doi:10.21203/rs.3.rs-37488/v1

  119. Papadoulis G.Th., Emmanouel N.G. 1991. The genus Amblyseius (Acari: Phytoseiidae) in Greece, with the description of a new species. Entomol. Hellen., 9: 35-62. doi:10.12681/eh.13990

  120. Papadoulis G.Th., Kapaxidi E.V. 2011. Phytoseiid mites of the Madeira Islands (Acari: Phytoseiidae). Intern. J. Acarol., 37(2): 116-121. doi:10.1080/01647954.2010.499372

  121. Papaioannou-Souliotis P., Ragusa S., Tsolakis P. 1994. Phytophagous mites and their predators observed on cultivated plants in Greece during 1975-1990. Ann. Instit. Phytopathol. Benaki, 17: 35-87.

  122. Palevsky E., Gal S., Ueckermann E.A. 2009. Phytoseiidae from date palm in Israel with descriptions of two new taxa and a key to the species found on date palms worldwide (Acari: Mesostigmata). J. Natur. Hist., 43(27-28): 1715-1747. doi:10.1080/00222930902969484

  123. Pina T., Argolo P.S., Urbaneja A., Jacas J.A. 2012. Effect of pollen quality on the efficacy of two different life-style predatory mites against Tetranychus urticae in citrus. Biological Control, 61: 176-183. doi:10.1016/j.biocontrol.2012.02.003

  124. Pritchard A.E., Baker E.W. 1962. Mites of the family Phytoseiidae from Central Africa, with remarks on the genera of the world. Hilgardia, 33(7): 205-309. doi:10.3733/hilg.v33n07p205

  125. Quilici S., Ueckermann E. A., Kreiter S., Vayssières J.-F. 2000. Phytoseiidae (Acari) of La Réunion Island. Acarologia, 41(1-2): 97-108.

  126. Ragusa S. 1977. Notes on phytoseiid mites in Sicily with a description of a new species of Typhlodromus (Acarina: Mesostigmata). Acarologia, 18: 379-392.

  127. Ragusa S. 2006. Phytoseiid mites (Parasitiformes Phytoseiidae) of some Epitanissan Islands (Greece). Redia, 89: 1-7.

  128. Ragusa S., Swirski E. 1978. Description of three new species of Typhlodromus Scheuten from Italy with redescription of Typhlodromus baccettii Lombardini (Acari: Phytoseiidae). Intern. J. Acarol., 4, 211-220. doi:10.1080/01647957808683118

  129. Ragusa Di Chiara S., Tsolakis H. 2001. Phytoseiid faunas of natural and agricultural ecosystems in Sicily. In: Halliday R.B., Walter D.E., Proctor H.C., Norton R.A., Colloff M.J. (Eds.), Proceedings of the Tenth Internacional Congress of Acarology, Canberrra, 1998. CSIRO Publishing, Melbourne, Australia: 522-529.

  130. Reis P.R., Teodoro A.V., Pedro Neto M., Da Silva E.A. 2007. Life history of Amblyseius herbicolus (Chant) (Acari: Phytoseiidae) on coffee plants. Neotrop. Entomol., 36(2): 282-287. doi:10.1590/S1519-566X2007000200016

  131. Rodriguez-Cruz F.A., Venzon M., Pinto C.M.F. 2013. Performance of Amblyseius herbicolus on broad mites and on castor bean and sunnhemp pollen. Exp. Appl. Acarol., 60: 497-507. doi:10.1007/s10493-013-9665-y

  132. Rowell H.J., Chant D.A., Hansell R.I.C. 1978. The determination of setal homologies and setal patterns on the dorsal shield in the family Phytoseiidae. Can. Entomol., 110: 859-876. doi:10.4039/Ent110859-8

  133. Santaballa E., Roca M., Laborda R. 1994. Comportamiento de clofentecin frente al acaro rojo Panonychus citri (McGregor) (Acari: Tetranychidae) y su predador Euseius stipulatus (Athias-Henriot) (Acari: Phytoseiidae) en los agrios espanoles. Bol. Sanid. Veg., Plagas, 20: 419-428.

  134. Scheuten A. 1857. Einiges uber Milben. Archiv für Naturgeschichte, 23: 104-112.

  135. Schuster R.O., Pritchard A.E. 1963. Phytoseiid mites of California. Hilgardia, 34, 191-285. doi:10.3733/hilg.v34n07p191

  136. Sengonca C., Drescher K. 2001. Laboratory studies on the suitability of Thrips tabaci Lindeman (Thysanoptera, Thripidae) as prey for the development, longevity, reproduction and predation of four predatory mite species of the genus Amblyseius (Acari, Phytoseiidae). J. Plant. Dis. Prot. 108: 66-76.

  137. Serrano E., Vigues V., Merendet V. 2004. Etude de la prédation du thrips Drepanothrips reuteri par Typhlodromus pyri. Proceedings of the Colloque Mondiaviti, Bordeaux, 1 & 2 December, 2004: 1-11.

  138. Tixier M.-S., Allam L., Douin M., Kreiter S. 2016. Phytoseiidae (Acari: Mesostigmata) of Morocco: new records, descritpions of five new species, re-descriptions of two species, and key for identification. Zootaxa, 4067(5): 501-551. doi:10.11646/zootaxa.4067.5.1

  139. Tixier M.-S., Dennj P., Douin M., Kreiter S., H. Tsolaks. 2019. Mites of the genus Typhlodromus (Acari: Phytoseiidae) from Southern France: combined morphological and molecular approaches for species identification. Zootaxa 4604: 242-280. doi:10.11646/zootaxa.4604.2.2

  140. Tixier M.-S., Klaric V., Kreiter S., Duso C. 2010. Phytoseiid mite species from Croatia, with description of a new species of the genus Typhlodromus (Typhlodromus). Ann. Entomol. Soc. Amer., 103(2): 165-180. doi:10.1603/AN09092

  141. Tixier M.-S., Kreiter S., Allam L., Ouahbi A., Hmimina M.H. 2003. Phytoseiid and tetranychid mites (Acari: Mesostigmata, Prostigmata) of some Moroccan crops. Acarologia, 43(1): 87-96.

  142. Tixier M.-S., Kreiter S., Barrault J.-N., Cheval B., Lecareux C. 2006. Phytoseiid communities in southern France on vine cultivars and in uncultivated surrounding areas. Acarologia 46 (3-4): 157-168.

  143. Toldi M., Freitas E.M. de, Silva V.L. da, Caumo M., Ferla J.J., Orlandi C.R., Costa T. Da, Johann L., Ferla N. J. 2021. Communities of predatory mites (Phytoseiidae and Stigmaeidae) in different environments of the Brazilian Pampa. Acarologia 61(1): 20¬30. https:/doi.org/10.24349/acarologia/20214413

  144. Ueckermann E.A., Loots G.C. 1988. The African species of the subgenera Anthoseius De Leon and Amblyseius Berlese (Acari: Phytoseiidae). Entomol. Mem., Dep. Agric. Water Supply, Rep. South Africa 73, 168 pp.

  145. Ueckermann E.A., Zannou I.D., Moraes G.J. de, Oliveira A.R. de, Hanna R., Yaninek J.S. 2008. Phytoseiid mites of the tribe Typhlodromini (Acari: Phytoseiidae) from sub-Saharan Africa. Zootaxa, 1901: 1-122. doi:10.11646/zootaxa.1901.1.1

  146. van der Merwe G.G. 1968. A taxonomic study of the family Phytoseiidae (Acari) in South Africa with contributions to the biology of two species. Entomol. Mem. South Africa Dep. Agric. Techn. Serv., 18: 1-198.

  147. Vantornhout I., Minnaert H.L., Tirry L., De Clercq P. 2005. Influence of diet on life table parameters of Iphiseius degenerans. Exp. Appl. Acarol., 35: 183-195. doi:10.1007/s10493-004-3940-x

  148. Wainstein B.A. 1962. Révision du genre Typhlodromus Scheuten, 1857 et systématique de la famille des Phytoseiidae (Berlese 1916) (Acarina: Parasitiformes). Acarologia, 4: 5-30.

  149. Wainstein B.A., Vartapetov S.G. 1973. Predatory mites of the family Phytoseiidae (Parasitiformes) of Adzharskaya ASSR. Akad. Nauk Arm. SSR, Biolog. Zh. Arm., 26(2): 102-105 [in Russian].

  150. Walter D.E., Krantz G.W. 2009. Collecting, rearing and preparing specimens. In: Krantz G.W., Walter D.E. (eds) A manual of acarology, 3rd ed. Texas Tech University Press, Lubbock. 807 pp.

  151. Zaher M.A. 1986. Predaceous and non-phytophagous mites (Nile Valley and Delta). Text. Survey and ecological studies on phytophagous, predaceous and soil mites in Egypt. PL 480 Programme USA, Project EG_ARS_30, Grant No. FG_EG_139, Egypt, 567 pp.

  152. Zannou I.D., Hanna R., Moraes G.J. de, Kreiter S., Phiri G., Jone A. 2005. Mites of cassava (Manihot esculenta Crantz) habitats in Southern Africa. Intern. J. Acarol., 31 (2): 149-164. doi:10.1080/01647950508683667

  153. Zannou I.D., Moraes G.J. de, Ueckermann E.A., Oliveira A.R., Yaninek J.S., Hanna R. 2006. Phytoseiid mites of the genus Neoseiulus Hughes (Acari: Phytoseiidae) from sub-Saharan Africa. Intern. J. Acarol., 32 (3): 241-276.

  154. Zappalà L., Kreiter S., Russo A., Garzia G.T., Auger P. 2015. First record of the Persea Mite Oligonychus perseae (Acari: Tetranychidae) in Italy with a review of the literature. Intern. J. Acarol., 41(2): 97-99. doi:10.1080/01647954.2015.1014415



Comments
Please read and follow the instructions to post any comment or correction.

Article editorial history
Date received:
2021-03-05
Date accepted:
2021-03-30
Date published:
2021-04-01

Edited by:
Faraji, Farid

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License
2021 Kreiter, Serge; Douin, Martial and Tixier, Marie Stephane
Downloads
 Download article

Download the citation
RIS with abstract 
(Zotero, Endnote, Reference Manager, ProCite, RefWorks, Mendeley)
RIS without abstract 
BIB 
(Zotero, BibTeX)
TXT 
(PubMed, Txt)
Article metrics
Number of distinct pdf views
231

Dimensions

Cited by: view citations with

Search via ReFindit