Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2016): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ARGASIDAE (ACARI : IXODIDA)
PARASITES OF WILD AND DOMESTIC ANIMALS IN SENEGAL:
2 — ARBOVIRUSES ISOLATION AND EPIDEMIOLOGICAL IMPLICATIONS.

BY MASSAMBA SYLLA ¹ AND JOCELYN THONNON ²

(Accepted January 2004)

Summary: Argasid ticks (2870 ticks divided into 226 pools) collected mainly from nests, chicken houses and burrows have been tested for viruses (155 Ornithodoros (Ornithodoros) savignyi, 1422 Alectorobius (Alectorobius) capensis, 567 Alectorobius (Theriodoros) sonrai, 16 Argas (Persicargas) arboreus, 150 Argas (Persicargas) persicus and 560 Argas (Persicargas) near walkerae). Two tick-borne viruses were isolated: 20 strains of Soldado from A. (A.) capensis, 12 strains of Bandia from A. (T.) sonrai. No strain of arbovirus was obtained from A. (P.) arboreus, A. (P.) persicus, A. (P.) near walkerae and O. (O.) savignyi. Soldado virus was obtained from numerous A. capensis of Langue de Barbarie National Park (PNLB) where it has caused, with its vector, nesting failure and non-egg hatching in terns' colonies. At the same time several A. capensis from which no arbovirus was obtained, have been involved in a desertion of pelican nesting site in Djoudj National Park of birds (PNOD). The Bandia virus was obtained from A. sonrai in Bandia.

¹. UR 034 Maladies Virales Emergentes et Systèmes d’Informations Institut de Recherche pour le Développement, B. P. 1386, Dakar, Sénégal.

INTRODUCTION

Despite the importance of soft ticks in transmission of different affections (RODHAJ & PEREZ, 1985) studies in tick-borne viruses in Senegal primarily focused on Amblyomminae (CAMICAS et al., 1986; 1990). Only few investigations on arboviruses associated with Argasidae have been undertaken: CAMICAS et al. (1978) have shown that Alectorobius (The- riodoros) sonrai (Sautet & Witkowski, 1943) was not involved in the ecology of the Chikungunya virus (CHIK); Crimean-Congo Hemorrhagic Fever (CCHF), Bandia (BDA) and Dugbe (DUG) viruses have been isolated from A. sonrai (AME, 1998). The Soldado virus has been also isolated from Alectorobius (Alectorobius) capensis (Neumann, 1901) of Langue de Barbarie National Park (PNLB) (MAIN et al., 1980).

A part of monitoring programs led by the Institut de Recherche pour le Développement and the Pasteur Institute concerns West Nile (WN), Yellow Fever (YF) and Rift Valley Fever (RVF) viruses which have been repeatedly isolated from mosquitoes in Sénégal (FONTEVILLE et al., 1993; ANONYME, 1998). It is known that West Nile virus can be hosted by Argas ticks when mosquitoes’ peak decreases (MOREL, 1976). Furthermore, A. capensis could also play a role as reservoir of that virus CAMICAS (1980). Thus, we searched for WN in Argas ticks, in the ecological areas where this arbovirus has been isolated from and in ticks associated with migratory birds. RVF virus has been also isolated from Aedes mosquitoes in northern Senegal (FONTEILLE et al., 1993). As PRETORIUS et al. (1997) suggested to check it with ticks associated with rodent burrows, we have investigated an eventual role of A. sonrai in the ecology of this arbovirus.

MATERIALS AND METHODS

Tick collections: Argas (Persicargas) persicus (Oken, 1818) Fischer & von Waldeheim, 1823 and A. (P.) near walkerae Kaiser & Hoogstraal, 1969 parasite of domestic fowl were thoroughly searched for in the hen house. A. (P.) arboreus Kaiser, Hoogstraal & Kohls, 1964 and A. capensis infesting marine and continental wild birds have been recovered from nests. The endophilic argasid tick, A. sonrai, has been recovered from rodent burrows using a motorized aspirator type Echo-Power Blower P.B. 210 E and the geophilous species Ornithodoros (Ornithodoros) savignyi (Audoin, 1827) has been collected from sandy soil a few minutes after presence of an host. Then ticks have been rinsed in tap water, and dried with blotting or filter paper, stored in Borel vials closed with gauze or Nalgen jars with screw-cap lids first opened in the centre and covered with fine gauze mesh.

Methods for arboviruses isolations: Inoculation method to newborn mice was used for arbovirus research. Identified and sorted ticks were pooled by sex and developmental stage; each triturated with a small pestle into its own montar containing Hank’s albumin media. After centrifugation at 2000 tr/mn for 5 minutes, the supernatant was kept. 0,02 ml of each inoculum was then injected by intracerebral route to newborn mice and to two continuous cell lines: Vero and A. P. 61 from Aedes pseudoscutellaris. Each inoculum was allotted to a litter of newborn mice who were placed into boxes with their mother. The brains of ill newborn mice were then collected for control. Detection of arboviruses growing in cell cultures was performed by indirect immunofluorescent analysis of reference mouse immune ascitic fluid pools previously described by DIGOUTTE et al. (1992). Identification of the viruses isolated on cell cultures and/or suckling mice was made using the complement fixation (CF) technique and confirmation was done using a seroneutralisation test (LENETTE et al., 1979). Tests were performed at the World Health Organisation Collaborating Centre for References and Research on Arboviruses (CRORA) at the Pasteur Institute in Dakar.

RESULTS

Identification of arboviruses: A total of 2870 argasids divided into 226 monospecific pools were used to inoculate two days old new-born mice (TABLE 1). 138 pools of A. capensis collected in Langue de Barbarie National Park (PNLB) (15°50N, 16°30W) and sorted
<table>
<thead>
<tr>
<th>Date</th>
<th>Species and developmental stage</th>
<th>Number of pools</th>
<th>Locality</th>
<th>Number of ticks</th>
<th>Viruses isolated</th>
<th>Number of strains</th>
</tr>
</thead>
<tbody>
<tr>
<td>27/05/95</td>
<td>Ornithodoros savignyi ♂</td>
<td>1</td>
<td>Yang Yang</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ornithodoros savignyi ♀</td>
<td>1</td>
<td>(in soil)</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ornithodoros savignyi N</td>
<td>1</td>
<td></td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>27/05/95</td>
<td>Argas persicus ♂</td>
<td>1</td>
<td>Mboula</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas persicus ♀</td>
<td>1</td>
<td>(Hen house)</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas persicus N</td>
<td>1</td>
<td></td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>09/09/96</td>
<td>Alectorobius capensis ♂</td>
<td>25</td>
<td>PNLB</td>
<td>250</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alectorobius capensis ♀</td>
<td>1</td>
<td>(Terns’ nests)</td>
<td>15</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alectorobius capensis N</td>
<td>1</td>
<td></td>
<td>4</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>20/09/96</td>
<td>Ornithodoros savignyi ♂</td>
<td>1</td>
<td>Yang Yang</td>
<td>20</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ornithodoros savignyi ♀</td>
<td>1</td>
<td>(in soil)</td>
<td>20</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ornithodoros savignyi N</td>
<td>1</td>
<td></td>
<td>11</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>19/11/96</td>
<td>Alectorobius capensis ♂</td>
<td>59</td>
<td>PNLB</td>
<td>590</td>
<td>Soldado</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Alectorobius capensis ♀</td>
<td>44</td>
<td>(Terns’ nests)</td>
<td>440</td>
<td>Soldado</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Alectorobius capensis N</td>
<td>3</td>
<td></td>
<td>30</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>19/11/96</td>
<td>Argas arbores ♂</td>
<td>1</td>
<td>PNLB</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas arbores ♀</td>
<td>1</td>
<td>(Egrets’ nests)</td>
<td>6</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>19/11/96</td>
<td>Alectorobius capensis ♂</td>
<td>3</td>
<td>PNOD</td>
<td>60</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alectorobius capensis ♀</td>
<td>2</td>
<td>(Pelicans’ nests)</td>
<td>33</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>23/11/96</td>
<td>Ornithodoros savignyi ♂</td>
<td>1</td>
<td>Yang Yang</td>
<td>3</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Ornithodoros savignyi ♀</td>
<td>6</td>
<td>(in soil)</td>
<td>71</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>19/11/1997</td>
<td>Argas persicus ♂</td>
<td>4</td>
<td>Pakéba</td>
<td>40</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas persicus ♀</td>
<td>4</td>
<td>(Hen house)</td>
<td>40</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas persicus N</td>
<td>4</td>
<td></td>
<td>40</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>10/12/97</td>
<td>Alectorobius sonrai ♂</td>
<td>9</td>
<td>Bandia: Burrow of A. niloticus</td>
<td>180</td>
<td>Bandia</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Alectorobius sonrai ♀</td>
<td>12</td>
<td></td>
<td>240</td>
<td>Bandia</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Alectorobius sonrai N</td>
<td>6</td>
<td></td>
<td>120</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>28/03/98</td>
<td>Alectorobius sonrai ♂</td>
<td>1</td>
<td>R. Toll: Burrow of X. erythropus</td>
<td>10</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alectorobius sonrai ♀</td>
<td>1</td>
<td></td>
<td>2</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Alectorobius sonrai N</td>
<td>1</td>
<td></td>
<td>15</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>00/10/1998</td>
<td>Argas near walkerae ♂</td>
<td>6</td>
<td>PK7</td>
<td>120</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas near walkerae ♀</td>
<td>12</td>
<td>(Hen house)</td>
<td>240</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Argas near walkerae N</td>
<td>10</td>
<td></td>
<td>200</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>226</td>
<td></td>
<td>2870</td>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Table 1: Argasid pools and arboviruses isolated.

into males, nymphs and females were constituted, 20 strains of Soldado virus were isolated from 103 pools (Table 1). The Soldado virus strains were obtained from males and females collected in November 1996, while those of September from PNLB as those of the Djoudj National Park of Birds (PNOD) (16°25N, 16°18W) tested negative.

— 540 A. sonrai sorted into 30 pools of nymphs, males and females were also inoculated. Twelve strains of Bandia virus were isolated from 21 pools of A. sonrai collected in Bandia (14°35N, 16°59W) from a burrow of Arvicanthis niloticus in December, 10th, 1997.

— No arbovirus was isolated from 2 pools of 6 females and 10 males of A. arbores collected from a nest of Egretta garzetta in PNLB as from 155 O. savignyi collected between May and October 1996 and divided into 13 pools. 15 pools of A. persicus coming from different ecological areas in Senegal and 28 pools of A. near walkerae collected in Pk7 (12°36N, 12°13W), from Kédougou to Dakar, en route were also negative for arbovirus research.
Discussion: epidemiological implications

The Soldado virus, belonging to the Nairovirus genus, Bunyaviridae family and Hughes group, was isolated for the first time from nymphal A. capensis and/or A. denmarki. These ticks were collected from nests of a noody tern (Anous stolidus) on Soldado Rock Island (10°4N, 62°1W), Trinidad in the Caribbean (Jonkers et al., 1993). Since this initial finding of the Soldado virus which is the prototype of a group of closely related arboviruses (Soldado and Soldado-Like), isolation of strains of this virus continue to be obtained in several parts of the world. CONVERSE et al. (1975) isolated it from A. capensis collected on the Seychelles in the Indian Ocean; Hoogstraal et al. (1976) reported its isolation from specimens collected in lake Shalla (Ethiopia); King et al. (1977a) obtained it from a breeding island of terns near Aransas National Wildlife Refuge, in Texas (USA). Keirans et al. (1976) isolated a related virus (Soldado-Like) in Ireland; Converse et al. (1976) recovered this virus from A. maritimus found on Puffin Island, Chastel et al. (1979) isolated it from A. maritimus in France. Soldado virus has been also isolated from a serum of a marine bird, Rissa tridactyla, in France (Chastel, 1990).

In Senegal, Soldado virus was isolated for the first time from 223 A. capensis collected in nests of sterns in PNLB on January and February 1977 (Main et al., 1980). It was isolated again, 19 years after, in November 1996, from 1030 A. capensis collected from the same site and sorted into 103 pools. In Northern Senegal, three parks of birds are located (PNLB, PNOD, Park of Gueumbeul). The PNLB is the breeding site of gray-headed gulls (Larus cirrocephalus), several species of terns: caspian terns (Hydropogne caspia), royal terns (Sterna maxima albidorsalis), gull-billed tern (Sterna nilotica) and egrets (Egretta garzetta and Demigretta gularis); the PNOD is the nidification site of cormorants (Phalacrocorax africanus), pelicans (Pelecanus onocrotalus) and ducks (Plectropterus gambensis) and the Park of Gueumbeul is recently known to be breeding site of the pink flamingo Phoenicopterus roseus. Ticks have been found in PNLB since 1977 but these are their first records from the PNOD. Numerous argasid ticks have been collected on both parks every year from 1996 to 1998 (Table 1).

Lower densities of the stern colonies, abnormal development of young birds and non egg hatching have previously been reported by the services of the National Parks in Senegal and they hypothesize that the development of some creeping plants (Ipomea asarifolia) on the breeding zone was the main cause. Further prospecting done on the island revealed that argasid ticks of the capensis group (A. maritimus and A. capensis) heavily infested the breeding site. Enquiries led in PNOD on September and November 1996 have allowed us to identify A. maritimus and A. capensis from tern’s nests, A. arboreus from nests of Demigretta gularis and Egretta garzetta. Detailed arboviral research carried out in the Pasteur Institute in Dakar revealed 20 strains of Soldado virus obtained from A. capensis in PNLB.

In the PNOD, desertion of a nesting site of pelicans and cormorants was observed for the first time in 1996. Birds left their first breeding site where few pelicans were only found breeding on soil in May, 1997. Another small island located in the backwater of Khar (16°24N, 16°15W), in the same area, was then occupied for breeding. From the deserted nesting site, numerous A. capensis from which no strain of arbovirus was obtained, were collected, when it was not possible to record ticks from the new site.

The heavy infestation of argasid ticks is the only cause of breeding site desertion in PNOD, non hatched eggs and abnormal development of young birds in PNLB. Parents must probably desert the nest to escape the ticks themselves.

Similar cases of nest desertion and non hatched eggs have been reported from other parts of the world:

— a nesting colony of brown pelicans (Pelecanus occidentalis) has deserted a breeding island, Bird Key Stono, located in South Carolina, because of an infestation of A. capensis (Keirans et al., 1992);
— King et al. (1977a) also reported nest desertion of a seabird colony of brown pelicans in Aransas Bay, a lethal arbovirus being suspected causing death of young birds. Soldado and Aransas Bay viruses were also isolated from A. capensis infesting this colony (Yunker et al., 1979).
Converse et al. (1975), Feare (1976) reported nest desertion caused by A. capensis infected by Soldado virus in Sooty terns, Sterna fuscata colonies in the Seychelles.

— Another case of nest desertion, due to A. denmarki has been observed by King et al. (1977b) on the islands in the Gulf of California, Baja California, Mexico.

As from Converse et al. (1975), Feare (1976), Keirans et al. (1992), King et al. (1977a; 1977b), we can conclude that the heavy infestation of breeding sites with argasid ticks (A. capensis, A. maritimus and other Argas ticks) and transmitted virus are responsible for nesting failure. The Soldado virus presents the peculiarity of a wide geographic distribution and the migration of their host (marine birds, namely terns) assume the transport (Robin et al., 1978). Clifford (1979) speculates about ticks and related arbovirus exchange between Africa and Pacific regions. This virus is a cause of birds’ mortality (Converse et al., 1975) and may be involved in human prurit complaint (Converse et al., 1975). The Bandia virus has been also isolated from A. sonrai collected from Arvicanthis niloticus’ burrow in December, 10th, 1997. This argasid is a proved vector of that virus (Brès et al., 1967). Dugbe virus responsible of prolonged thrombocytopenia with febrile illness to humans (Burt et al., 1996) has been isolated from A. sonrai in Senegal; Congo, Chikungunya and Koutango viruses were also isolated from the same tick in Senegal (Anonymous, 1998). Experimental vector incompetence for CCHF virus has been demonstrated with A. sonrai (Durden et al., 1993); the argasid tick was not also capable of replicating Chikungunya virus under laboratory conditions (Camicas et al., 1978).

No strain of arbovirus has been so far obtained from O. savignyi (Karabatsos, 1985).

Acknowledgments

We thank Claude Chastel for providing Soldado strains

REFERENCES

Keirans (J. E.), Yunker (C. E.), Clifford (C. M.), Thomas (L. A.), Walton (G. A.) & Kelly (T. C.), 1976. — Isolation of a Soldado-Like virus (Hughes group) from Ornithodoros maritimus ticks in Irlande. — *Experientia,* 32: 453.

King (K. A.), Keith (J. O.), Mitchell (C. A.), Keirans (J. E.), 1977b. — Ticks as a factor in nest desertion of California brown pelicans. — *Condor* 79: 507-509.

Robin (Y), Camicas (J. L.), Jan (C.), Heme (G.), Cornet (M.) & Valade (M.), 1978 — Ecology of tick arboviruses in arid areas of Senegal. Transcontinental Connections of Migrating Birds and their Role in Distribution of Arboviruses (Cherepanov, AI ed.) — Papers of the Symposium 1976, Novosibirsk (Akademgorodok), *Publishing house “Nauka”,* Siberian branch, Novosibirsk, pp. 209-211.
