Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
New and interesting species of the genera *Galumna* and *Pergalumna* (Acari, Oribatida, Galumnidae) from the Montagne d’Ambre National Park, Madagascar

Sergey G. Ermilov\(^a\), Josef Starý\(^b\)

\(^a\) Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.
\(^b\) Biology Centre v.v.i., Czech Academy of Sciences, Institute of Soil Biology, České Budejovice, Czech Republic.

Original research

ABSTRACT

This work includes taxonomic and faunistic data on galumnid mites (Oribatida, Galumnidae) belonging to the genera *Galumna* and *Pergalumna* collected from the Montagne d’Ambre National Park, North Madagascar. Two new species are described: *Galumna sandormahunkai* n. sp. differs from its closest species, *Galumna sphagni* by the larger body size, the presence of strongly protruding rostrum, lanceolate, pointed apically bothridial setae, the direction of lamellar lines, and the absence of median pore; *Pergalumna janosbaloghi* n. sp. differs from the most similar species, *Pergalumna aegra*, by the smaller body size and the presence of long lamellar setae and elongate, distinctly or slightly triangular porose areas. *Galumna granalata* and *Pergalumna amamiensis* are recorded in the Ethiopian region for the first time; *Pergalumna conspicua* and *Pergalumna frater* are recorded in Madagascar for the first time.

Keywords galumnid mites; systematics; morphology; fauna; Ethiopian region

Zoobank http://zoobank.org/8DDB4D28-C1E9-4A71-94D8-D0FDAD9C20AA

Introduction

This work is based on oribatid mite (Acari, Oribatida) material, which was collected from the Montagne d’Ambre National Park (Madagascar), and includes data on the genera *Galumna* Heyden, 1826 and *Pergalumna* Grandjean, 1936 of the family Galumnidae.

During taxonomic identification, we found eight species; of these, two species are new to science. The primary goal of this paper is to describe these new species and to provide the list of identified species.

Galumna was proposed by Heyden (1826), with *Notaspis alatus* Hermann, 1804 as type species. The nominative subgenus comprises about 190 species having a cosmopolitan distribution collectively (Subías 2019). *Pergalumna* was proposed by Grandjean (1936), with *Oribata nervosa* Berlese, 1914 as type species. The nominative subgenus comprises about 160 species collectively having a cosmopolitan distribution except the Antarctic region (Subías 2019). The subgeneric diagnoses of *Galumna* (*Galumna*) and *Pergalumna* (*Pergalumna*) were presented by Ermilov & Klimov (2017). Identification keys to many species of *Galumna* and *Pergalumna* from different geographical regions are given by Ermilov et al. (2014, 2015a, b; 2018), Ermilov & Starý (2017, 2018), Ermilov & Friedrich (2019).

At present, representatives of *Galumna* and *Pergalumna* are poorly studied in Madagascar; only few species have been recorded (Mahunka 1996, 1997, 2009, 2011a, b).
Material and methods

The studied galumnid mites were collected in the Montagne d’Ambre National Park, North Madagascar, during long-term official cooperation between the Moravian Museum in Brno (Czech Republic) and Université d’Antananarivo (Madagascar) in 2010–2014.

Specimens (all exemplars were studied and measured) were mounted in lactic acid on temporary cavity slides for measurement and illustration. Body length was measured in lateral view, from the tip of the rostrum to the posterior edge of the notogaster. Notogastral width refers to the maximum width of the notogaster in dorsal view (behind pteromorphs). Lengths of body setae were measured in lateral aspect. All body measurements are presented in micrometers. Formulae for leg setation are given in parentheses according to the sequence trochanter-femur-genu-tibia-tarsus (famulus included). Formulae for leg solenidia are given in square brackets according to the sequence genu-tibia-tarsus.

Drawings were made with a camera lucida using a Leica transmission light microscope “Leica DM 2500”.

Morphological terminology used in this paper follows that of F. Grandjean (see Ermilov & Klimov 2017 for review and application).

The following abbreviations are used: L = lamellar line; S = sublamellar line; N = prodorsal leg niche; E, T = lateral ridges of prodorsum; ro, le, in, bx, ex = rostral, lamellar, interlamellar, bothridial and exobothridial setae, respectively; bo = bothridium; Ad = dorsosejugal porose area; D = dorsiophragma; P = pleurophragma; c, la, lm, lp, h, p = notogastral setal alveoli/microsetae; Aa, $A1$, $A2$, $A3$ = notogastral porose areas; ia, im, ip, ih, ips = notogastral lyrifissures; gla = opisthontotal gland opening; a, m, h = subcapitular setae; or = adoral seta; v, l, d, cm, acm, ul, sul, vt, lt = palp setae; $σ$, $φ$ = legsolenidia; $ɛ$ = leg famulus; v, ev, bv, l, d, ft, tc, it, p, u, a, s, pv, pl = leg setae.

Systematics

Superfamily Galumnoidea

Family Galumnidae

Genus Galumna Heyden, 1826

Type species Notaspis alatus Hermann, 1804

Galumna (Galumna) sandormahunkai n. sp.

Zoobank: 98EF2F2-5384-4E4D-BAD8-C6A461864755

(Figures 1–3)

Integument – Body color light brown to brown. Body surface densely microgranulate, granules (less than 1) poorly developed (visible only at high magnification x1000). Antiaxial sides of all leg femora and trochanters III, IV with rounded and elongated tubercles.

Prodorsum (Figs 1a, 2a, 2c) – Rostrum strongly protruding (visible in frontal view), narrowly rounded. Lamellar and sublamellar lines slightly divergent distally, L thickened, directed to lateral sides of prodorsum, S thin, curving backwards. Lateral structures N and ridges E and T well developed. Rostral (49–53) and lamellar (49–53) setae setiform, slightly barbed. Interlamellar setae very short (4–6), setiform, thin, smooth. Bothridial setae (159–168) with long stalk and short, narrowly lanceolate, barbed head. Exobothridial setae represented by alveoli. Dorsosejugal porose areas (24–32 × 4–6) elongate oval, transversely oriented, located posterior or posterolateral to in. Dorsophragmata slightly elongated longitudinally.

Notogaster (Figs 1a, 2a, 2b) – Dorsosejugal suture complete. With 10 pairs of setal alveoli or vestigial setae (up to 1) and four pairs of small porose areas having distinct borders, Aa (22–26 × 10–12) oval, A1, A2 and A3 (10–20) rounded. Porose areas Aa located close to pteromorphal hinges, anterolaterally to la. Median pore absent in females and males. Opisthontotal gland openings and all lyrifissures distinct, gla located anterolateral to A1 and removed from them, im anterior to A1 and slightly removed from them, ip lateral to p1, ih anterior to p3, ips lateral to p3.

Gnathosoma (Figs 2d-f) – Subcapitulum size 196–205 × 180–192. Subcapitular setae (a, 32; m, 32; h, 24) setiform, slightly barbed; a thickest, h thinnest. Adoral setae (24) setiform,
Figure 2 Galumna sandormahunkai n. sp., adult: a – anterior part of body, lateral view (gnathosoma and legs omitted); b – posterior part of body, lateral view; c – anterior part of prodorsum, frontal view; d – subcapitulum, ventral view; e – palp, right, antiaxial view; f – chelicera, left, paraxial view. Scale bar 100 μm (a, b), scale bar 50 μm (c, d, f), scale bar 20 μm (e).

Epimeral and lateral podosomal regions (Figs 1b, 2a) – Anterior margin of epimere I smooth. Epimeral setal formula 1-0-1-2. Epimeral setae setiform, thin, roughened, 3b (30–32) longer than 1b, 4a and 4b (18–20). Pedotecta I broadly rounded, pedotecta II quadringular in ventral view. Discidia triangular. Circumpedal carinae short, thin, directed to acetabula IV.

Anogenital region (Figs 1b, 2b) – Six pairs of genital setae (g1, g2, 26–28; g3–g6, 18–20), one pair of aggenital (18–20), two pairs of anal (18–20) and three pairs of adanal (18–20) setae setiform, thin, roughened. Anterior edge of genital plates with two setae. Aggenital setae located between genital and anal apertures, nearer to genital aperture. Adanal lyrifissures
located close and parallel to anal plates. Adanal setae ad_1 and ad_2 posterior, ad_3 lateral to anal aperture. Distance $ad_1 - ad_2$ slightly shorter than $ad_2 - ad_3$. Unpaired postanal porose area narrowly elongate oval (41 × 49 × 4–6).

Legs (Figs 3a, 3b) – Median claw distinctly thicker than lateral claws, all slightly barbed on dorsal side. Porose area on all femora and on trochanters III, IV well visible. Formulae of leg setation and solenidia 1 (1-4-3-4-20) [1-2-2], II (1-4-3-4-15) [1-1-2], III (1-2-1-3-15) [1-1-0], IV (1-2-2-3-12) [0-1-0]; homology of setae and solenidia indicated in Table 1. Famulus on tarsi I inserted between solenidia ω_1 and ω_2. Solenidion on tibiae IV inserted in anterior part of the segment.

Material examined — Holotype (female) and 13 paratypes (10 females and three males): North Madagascar, Montagne d’Ambre National Park, circuit Ampijoroana, evergreen rain forest, 12°31’28”S, 49°09’52”E, 950 m a.s.l., sifting of leaf litter sample under big unidentified tree, Winkler apparatus extraction, 13.I.2014 (R. Ravebolun and L. Rabotenoson).

Type deposition — The holotype and two paratypes are deposited in the collection of the Senckenberg Institute, Görlitz, Germany. Eleven paratypes are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia. All specimens are preserved in ethanol with drop of glycerol.

Etymology — The new species is named after late Prof. Dr. S. Mahunka, the Hungarian acarologist, for his extensive contributions to our knowledge of oribatid mites.

Remarks — In the presence of long rostral and lamellar setae, short interlamellar setae, long bothridial setae with developed head, complete dorsosejugal suture, and four pairs of rounded notogastral porose areas, *Galumna sandormahunkai* n. sp. is morphologically most similar to *Galumna sphagni* Ermilov, Hugo-Coetzee and Theron, 2018 from South Africa, but differs from the latter by the larger body size (780–996 × 564–780 versus 415–431 × 315–332), the presence of strongly protruding rostrum (versus not protruding), lanceolate, pointed apically bothridial setae (versus unilaterally dilated, rounded apically), the direction of lamellar lines to lateral sides of the prodorsum (versus anterior part of the ventral plate), and the absence of median pore (versus present).

Genus Pergalumna Grandjean, 1936

Oribata nervosa Berlese, 1914

Pergalumna (Pergalumna) janosbaloghi n. sp. (Figures 4–6)

Table 1 Leg setation and solenidia of adult *Galumna sandormahunkai* n. sp. and *Pergalumna janosbaloghi* n. sp.

<table>
<thead>
<tr>
<th>Leg</th>
<th>Tr</th>
<th>Fe</th>
<th>Ge</th>
<th>Ti</th>
<th>Ta</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>v'</td>
<td>d, (l), bv''</td>
<td>(l), v', σ (l), (v), φ_1, φ_2</td>
<td>(fi), (tc), (it), (p), (u), (a), s, (pv), v', (pl), l'', ϵ, ω_1, ω_2</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>v'</td>
<td>d, (l), bv''</td>
<td>(l), v', σ (l), (v), φ</td>
<td>(fi), (tc), (it), (p), (u), (a), s, (pv), ω_1, ω_2</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>v'</td>
<td>d, ev'</td>
<td>l', σ</td>
<td>l', (v), φ</td>
<td>(fi), (tc), (it), (p), (u), (a), s, (pv)</td>
</tr>
<tr>
<td>IV</td>
<td>v'</td>
<td>d, ev'</td>
<td>d, l'</td>
<td>l', (v), φ</td>
<td>fi'', (tc), (p), (u), (a), s, (pv)</td>
</tr>
</tbody>
</table>

Note: Roman letters refer to normal setae, Greek letters to solenidia (except ϵ = famulus). Single prime (') marks setae on anterior and double prime (''') setae on posterior side of the given leg segment. Parentheses refer to a pair of setae.
Figure 3 *Galumna sandomahunkai* n. sp., adult: a – leg I, without trochanter, right, antiaxial view; b – leg IV, left, antiaxial view. Scale bar 50 μm.

Description — Measurements – Small species. Body length 298 (holotype, female), 290–298 (nine paratypes, all females); notogaster width 240 (holotype), 232–249 (nine paratypes).
Integument – Body color light brown to brown. Body surface densely microgranulate, granules (up to 1) well visible even at low magnification × 400. Antiaxial sides of all leg femora and trochanters III, IV with rounded and elongated tubercles.

Prodorsum (Figs 4a, 5a) – Rostrum broadly rounded. Lamellar and sublamellar lines thin, parallel, curving backwards. Lateral structures N and ridges E and T slightly developed. Rostral (20–22) and lamellar (30–32) setae setiform, slightly barbed. Interlamellar setae very short (2–4), setiform, thin, smooth. Bothridial setae (73–86) setiform, shortly ciliate. Exobothridial setae represented by alveoli. Dorsosejugal porose areas (10–12 × 4) elongate oval, transversely oriented, located posterolateral to in. Dorsophragmata distinctly elongated longitudinally.

Notogaster (Figs 4a, 5a, 5b) – Dorsosejugal suture absent. With 10 pairs of setal alveoli three pairs of porose areas having indistinct borders, Aa (36–49 × 8–12) elongate, distinctly or slightly triangular, transversely oriented, A1 (16–24) and A3 (8–12) rounded. Porose areas Aa located close to pteromorphal hinges, anteriorly to la. Median pore absent in females (males not found). Opisthonotal gland openings and all lyrifissures distinct (except ips not observed), gla located lateral to A1 and slightly removed from them, im anterolateral to A1 and removed from them, ip lateral to p1, ih anterior to p3.

Gnathosoma (Fig. 5c) – Similar to G. sandormahunkai n. sp. Subcapitulum size 82–86 × 69–73. Subcapitular setae (a, 12; m, 12; h, 8) setiform, roughened; a thickest, h thinnest. Adoral setae (10) setiform, barbed. Length of palps 57–63. Postpalpal setae (2) spiniform,
smooth. Length of chelicerae 94–98. Cheliceral setae (cha, 16; chb, 10) setiform, barbed. Triângårđh’s organ of chelicerae long, elongate triangular.

Epimeral and lateral podosomal regions (Figs 4b, 5a) — Anterior margin of epimere I smooth. Epimeral setal formula 1-0-1-3. Epimeral setae setiform, thin, smooth, 1b, 3b and 4c (6–8) longer than 4a and 4b (2–4). Pedotecta I broadly rounded, pedotecta II quadrangular in ventral view. Discidia triangular. Circumpedal carinae long, thin, directed to epimere I.

Anogenital region (Figs 4b, 5b) — Six pairs of genital setae (g1, g2, 6–8; g3–g6, 2–4), one pair of aggenital (2–4), two pairs of anal (2–4) and three pairs of adanal (2–4) setae setiform, thin, smooth. Anterior edge of genital plates with two setae. Aggenital setae located between genital and anal apertures, nearer to genital aperture. Adanal lyrifissures located close and parallel to anal plates. Adanal setae ad1 and ad2 posterior, ad3 lateral to anal aperture. Distance ad1–ad2 slightly shorter than ad2–ad3. Postanal porose area absent.

Legs (Figs 6a, 6b) — Median claw distinctly thicker than lateral claws, all slightly barbed on dorsal side. Porose area on all femora and on trochanters III, IV well visible. Formulae of leg setation and solenidia I (1-4-3-4-20) [1-2-2], II (1-4-3-4-15) [1-1-2], III (1-2-1-3-15) [1-1-0], IV (1-2-2-3-12) [0-1-0]; homology of setae and solenidia indicated in Table 1. Famulus on tarsi I inserted between solenidia ω1 and ω2. Solenidion on tibiae IV inserted in anterior part of the segment.

Figure 5 Pergalumna janoshalosghi n. sp., adult: a – anterior part of body, lateral view (gnathosoma and legs omitted); b – posterior part of body, lateral view; c – subcapitulum, ventral view. Scale bar 50 μm (a, b), scale bar 20 μm (c).
Material examined — Holotype (female) and nine paratypes (nine females): North Madagascar, Montagne d’Ambre National Park, circuit Ampijoroana, evergreen rain forest, 12°31’28”S, 49°09’52”E, 950 m a.s.l., sifting of leaf litter sample under big unidentified tree, Winkler apparatus extraction, 13.1.2014 (R. Ravebolun and L. Rabotenoson).

Type deposition — The holotype and two paratypes are deposited in the collection of the Senckenberg Institute, Görlitz, Germany. Seven paratypes are deposited in the collection of the Tyumen State University Museum of Zoology, Tyumen, Russia. All specimens are preserved in ethanol with drop of glycerol.

Etymology — The new species is named after late Prof. Dr. J. Balogh, the Hungarian

Figure 6 Pergalumna janosbaloghi n. sp., adult: a – leg I, without trochanter, right, antiaxial view; b – leg IV, left, antiaxial view. Scale bar 20 μm.
acarologist, for his extensive contributions to our knowledge of oribatid mites.

Remarks — In the presence of short interlamellar setae, setiform bothridial setae, interrupted medially dorsosejugal suture, and three pairs of notogastral porose areas with Aa elongated transversely oriented, *Pergalumna janosbaloghi* n. sp. is morphologically most similar to *Pergalumna aegra* Pérez-Íñigo and Baggio, 1986 from Brazil and India, but differs from the letter by the smaller body size (290–298 × 232–249 versus 468 × 408) and the presence of long lamellar setae (versus short) and triangular porose areas Aa (versus elongate oval).

Other identified species of *Galumna* and *Pergalumna*
(with same locality data as both new species)

Galumnidae

Acknowledgements

We thank to R. Ravebolun and L. Rabotenoson who collected soil and litter samples in Madagascar, and the Moravian Museum in Brno, Czech Republic, which kindly provided material for our study. Also, we would like to thank Dr. Lala Harivelavo Ravaomanarivo Raveloson (University of Antananarivo, Faculty of Sciences, Department of Entomology), Dr. Mamy A. Rakotoarjaona (Directeur des Opérations, Madagascar National Parks, Antananarivo) and Dr. Dimby Raharinjanahary (Chargé des Bases de données de suivi biodiversité et recherche, Madagascar National Parks, Antananarivo) for supporting joint Czech-Madagascan research project (2009–2014) Samples collected in Madagascar were based on collection permit no. 314/13/MEF/SG/DGF/DCB.SAP/SCB by the Moravian Museum in Brno, Czech Republic; sample exportation to Czech Republic was based on permit no. 028N-EA02/MG14; and Dr. Julia Baumann (University of Graz, Graz, Austria) and two anonymous reviewers for valuable comments. The presented research was supported by Czech Academy of Sciences (Research Plan No. RVO: 60077344).

References

