Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
The superfamily Phytoseioidea (Acari: Mesostigmata) from Saudi Arabia: a new species, new records and a key to the reported species

Fahad J. ALATAWI, Jamal BASAHIH and Muhammed KAMRAN

(Received 13 June 2016; accepted 08 September 2016; published online 14 March 2017; edited by Serge KREITER)

ABSTRACT — Twenty two phytoseiid species belonging to three families Blattisociidae Garman, Otopheidomidae Treat, and Phytoseiidae Berlese (Acari: Phytoseioidea), collected from Baha, Bisha, Jazan, Madinah, Makkah, Riyadh and Tabuk province of Saudi Arabia (SA), are reported in this paper. Among these, a new species Phytoseius tabukensis Alatawi, Basahih and Kamran, n. sp. is described and illustrated for both females and males, collected from the leaf galls of toothbrush trees, Savadora persica (Salvadoraceae), in association with eriophyid mites (Acari: Eriophyidae). Three genera Amblyseius Berlese, Iphiseius Berlese and Kuzinellus Wainstein and ten species of the family Phytoseiidae, and three species belonging to family Blattisociidae, are reported for the first time from SA. New distribution and host records of eight phytoseiid species previously reported are given. A key to females of Phytoseioidea from Saudi Arabia is presented. Also a key to the horridus species group of the genus Phytoseius Ribaga (Acari: Phytoseiidae) is provided.

KEYWORDS — Phytoseioid; Phytoseius tabukensis; Kuzinellus; Iphiseius; Cheiroseius

INTRODUCTION

The superfamily Phytoseioidea Berlese (Acari: Mesostigmata) includes four families: Blattisocidae Garman, Otopheidomidae Treat, Phytoseiidae Berlese, and Podocinidae Berlese. The family Phytoseiidae is the most diverse group of mites with approximately more than 2452 species belonging to 91 genera (Demite et al. 2016). Mites of the family Phytoseiidae are mostly present on plant surface and are predators of phytophagous mites and other small insect pests of various agricultural crops worldwide (Gerson et al. 2003; Chant and McMurtry 2007).

The family Blattisocidae is the second most diverse family in the superfamily Phytoseioidea, including 12 genera and more than 329 nominal species, among these more than 200 species belong to the genus Lasioseius Berlese (Moraes et al. 2016). Most species of this family have been reported from litter, while some species have been found on rodent and in bird nests as well as from aerial plant parts (Moraes et al. 2016). Some species of the genus Lasioseius have been reported feeding on phytophagous mites, small insects, springtails and nematodes while some others have also been observed to feed on fungi (Walter and Lindquist 1989; Christian and Karg 2006; Britto et al. 2012).
The families Otopheidomenidae and Podocinidae include 30 and 32 species respectively worldwide (Halliday 1994; Menon et al. 2012; Yan et al. 2012). The phytoseioid mite fauna of SA is poorly known. Previously, 23 species including in eight genera of Phytoseiidae (Dabbour and Abdel-Aziz 1982; Fouly and Al-Rehiayani 2011; Alatawi 2011a, b; Negm et al. 2012 a, b; Basahih et al. 2015; Alatawi et al. 2016), one species each of families Blattisociidae and Otopheidomenidae have been reported from SA (Alatawi 2011a; Negm and Alatawi 2013).

MATERIALS AND METHODS

Different provinces of SA (Baha, Bisha, Jazan, Madinah, Makkah, Riyadh, and Tabuk) were surveyed for the collection of phytoseioid mites. Mites were collected either shaking the different plant parts i.e. leaves, flowers and twigs etc. over a white piece of paper and were transferred into 70 % ethanol using camel hair brush or different plant parts, soil and leaf debris were taken to the laboratory and were processed through Tullgren funnels to extract mites. The mite specimens, after mounting on slides in Hoyer’s medium, were examined under a phase-contrast microscope (DM2500, Leica®, Germany) and were identified using literature and diagnostic keys. Template illustrations of different mite body parts of specimens were either pictured with an Auto-montage Software System (SYNCROSCOPY®, Cambridge, UK) attached to the microscope or were drawn with pencil by using a drawing tube (U-DA, Olympus®, Japan) attached to the microscope. Final processing of drawings were made in Adobe Illustrator (Adobe Systems Incorporated, USA). The terminology used in this study follows that of Chant and McMurtry (2007). The apical tooth is not included in the number of teeth of the cheliceral digits. All measurements are given in micrometers.

Type specimens of the new species have been deposited at Acarology Research Laboratory, Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University.

RESULTS AND DISCUSSION

A total of 22 phytoseiid species belonging to three families Blattisociidae (four species), Otopheidomenidae (one species) and Phytoseiidae (18 species) (Acari: Phytoseioidea) are reported in this study (Table 1). Also, distribution along with collection data and field association of the reported species are presented in table 1. Among these, three genera Amblyseius Berlese, Iphiseius Berlese and Kuzinellus Wainstein and 11 species including new species, *Phytoseius tabukensis* n. sp., belonging to family Phytoseiidae and three species of the family Blattisociidae are new to the mite fauna of SA.

New distribution and collection data of eight phytoseioid species previously reported are also given in table 1.

Among all phytoseiid species, two generalist predators *i.e.* *Cydnoseius negevi* (Swirski and Amitai) and *Neoseiulus barkeri* Hughes (Acari: Phytoseiidae) were found most abundant and well distributed in all surveyed provinces (Table 1). Previously, 23 phytoseiid species within eight genera have been reported from SA. Among these, 12 species have been found in date palm agroecosystem (Al-Shammery 2010; Alatawi 2011 a, b; Fouly and Al-Rehiayani, 2011; Negm et al. 2012 a, b; Basahih et al. 2015; Alatawi et al. 2016). *Cydnoseius negevi* (Swirski and Amitai) and *Neoseiulus barkeri* Hughes naturally occur in date palm orchards in different regions of SA and are the most abundant species found even on date palm trees (Negm et al. 2014).

A biological study of *C. negevi* and *N. barkeri*, collected from date palm orchards, was conducted in SA against date palm mite pest, *Oligonychus australis* (McGregor) at (25, 35 °C and 35 ± 10 % RH). This study showed that the *C. negevi* could be considered as a valuable predator for the control of spider mite pests especially date palm mite at comparatively low RH levels (Negm et al. 2014).
Table 1: Phytoseioid mites (Acari: Phytoseioidae) collected in the current study from Saudi Arabia.

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoseiidae</td>
<td>N. imbricatus</td>
<td>Corpuz-Raros and Rimando</td>
<td>(Sabaya) Jazan, (Dariah) Riyadh</td>
<td>Unidentified plants (Poaceae), Cynodon dactylon L. (Poaceae)</td>
<td>Apr., Sept. 2014</td>
</tr>
<tr>
<td>Amblyseinae</td>
<td>N. takisi</td>
<td>(El-Borolossy)</td>
<td>Tabuk city, (Dariah) Riyadh</td>
<td>Pulicaria nifibeata, L. (L.) (Asteraceae), Convolvulus sp. (Convolvulaceae)</td>
<td>Mar., Oct. 2015</td>
</tr>
<tr>
<td>Tetranychidae</td>
<td>P. jamaris</td>
<td>Amitai and Grinberg</td>
<td>(Deesa valley) Tabuk</td>
<td>Tamarix sp. (Tamaricaceae)</td>
<td>Oct. 2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amblyeuus Berlese</td>
<td>A. largoensis (Muma)</td>
<td>(Sabaya) Jazan</td>
<td>Unidentified plants (Poaceae)</td>
<td>Apr. 2014</td>
<td>Thrips sp.</td>
</tr>
<tr>
<td>Euseius Wainstein</td>
<td>E. africana (Evans)</td>
<td>(Baljurashi) Baha</td>
<td>Unidentified plants (Moraceae)</td>
<td>June 2014</td>
<td>-</td>
</tr>
<tr>
<td>Iphiseius Berlese</td>
<td>I. degenerans Berlese</td>
<td>(Deesa valley) Tabuk</td>
<td>Ziziphus sp. (Rhamnaceae)</td>
<td>Oct. 2015</td>
<td>Thrips sp.</td>
</tr>
<tr>
<td>Phytoseius Ribaga</td>
<td>P. tubulemus n. sp. Alatawi, Basahi and Kamtane</td>
<td>(Duba) Tabuk</td>
<td>Salodora persica L. (Salvadoraceae)</td>
<td>Oct. 2015</td>
<td>Eriophyid species (Eriophyidae)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typhlodromus Scheuten</td>
<td>T. (A) persians McMurtry</td>
<td>(Wadi Turab, Atalghaha, Almikhwal) Baha, (Sabya, Bin Malek) Jazan</td>
<td>Tamarix sp., Juniperus procera Hochst. (Cupressaceae), Salodora sp. (Salvadoraceae), P. crispa (Forsk.) (Asteraceae), Olor sp. (Oleaceae)</td>
<td>Apr. 2013, May, June 2014</td>
<td>Thrips sp.</td>
</tr>
<tr>
<td>Typhlodromus Scheuten</td>
<td>T. (A) tamaris (Kokshodshka)</td>
<td>(Wade Turab, Wadi Fqo, Wadi Shora, Atalghaha) Baha, (Duba) Tabuk</td>
<td>P. undulatus, Acacia sp. (Fabaceae), J. procera, Lavandula sp., Alulis sp. (Rozaceae), Tamarix sp.</td>
<td>Apr. 2013, June 2014, Oct. 2015</td>
<td>Tetranychus sp. and Thrips sp.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blattisocidae Garman</td>
<td>L. queenslandicus (Womersk)</td>
<td>Wadi Dawsir, Riyadh</td>
<td>Soil debris under date palm trees</td>
<td>Feb., Dec. 2010</td>
<td>-</td>
</tr>
<tr>
<td>Blattisocidae Garman</td>
<td>L. nambirinae Krantz</td>
<td>Riyadh</td>
<td>Soil debris under date palm trees</td>
<td>Jan. 2011</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family/Subfamily, Genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platysceinae</td>
<td>C. roseus</td>
<td>(Oudemans)</td>
<td>Hessa</td>
<td>Soil debris under date palms</td>
<td>Mar. 2012</td>
</tr>
</tbody>
</table>
TABLE 1: Continued.

<table>
<thead>
<tr>
<th>Family/Subfamily, genus</th>
<th>Species</th>
<th>Province/Locality</th>
<th>Host/Habitat</th>
<th>Collection time</th>
<th>Field association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phytoseiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propriopseiopsis Muma</td>
<td>P. asetus (Chant)</td>
<td>(Baljurashi) Baha</td>
<td>Malus sp. (Rosaceae)</td>
<td>June 2014</td>
<td>-</td>
</tr>
<tr>
<td>Paragigagnathus Amitai and Grinberg</td>
<td>P. insuetus (Livshitz and Kuznetsoy)</td>
<td>(Wadi e Turbah), Bah</td>
<td>Tamarix sp.</td>
<td>Apr. 2013</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>P. ovatus (Carman)</td>
<td>Tabuk city, Baha, (Alharem) Bisha</td>
<td>C. dactylon, soil debris and unidentified plant species under Acacia trees, unidentified plants (Fabaceae)</td>
<td>Apr. 2014, Oct. 2015</td>
<td>-</td>
</tr>
<tr>
<td>Lasioseius Berkele</td>
<td>N. arficus Negm and Alatawi</td>
<td>Riyadh, Makkah</td>
<td>Holotrichopus baciferum Forsk. (Boraginaceae)</td>
<td>Apr. 2014, 2016</td>
<td>Aegyptphosis sp. (Tenuipalpidae)</td>
</tr>
</tbody>
</table>
Moreover, co-occurrence of *C. negevi* along with date palm mite on different grasses (Poaceae) and its abundance and distribution in different provinces of SA as compared to other phytoseiid predators support the previous studies that it can be used as an effective predator against date palm mite under high temperature and low humidity levels. However, it needs further biological studies on this predator at different field conditions to find its potential use against date palm mite.

Another phytoseiid species, *Euseius scutalis* (Athias-Henriot) generally feed on plant pollens, was found abundantly in five provinces, Baha, Jazan, Madinah, Tabuk and Riyadh of SA (Table 1). Previously, *E. scutalis* was observed feeding on different phytophagous mites, scale insects and whiteflies in Hail, SA. (AlShammery 2010).

A blattisociid species *Lasioseius parberlesei* Bhattacharyya was reported from Jazan, Madinah, Makkah and Riyadh. It has been considered potentially effective as biological control agent of pest mites of the family Tarsonemidae (Moraes et al. 2015).

Nabiseius arabicus Negm and Alatawi (Otophiedomeneidae) was recorded in high numbers on *H. bacciferum* Forssk. (Boraginaceae) in association with *Aegyptobia* sp. (Tenuipalpidae) from Riyadh and Makkah provinces (Table 1). Before, it was recorded on *C. dactylon* from Riyadh (Negm and Alatawi 2013).

Superfamily Phytoseioidea Berlese, 1916
Family Phytoseiidae Berlese, 1916
Subfamily Phytoseiinae Berlese, 1913
Genus Phytoseius Ribaga, 1904
Species group horridus Denmark, 1966
Phytoseius tabukensis Alatawi, Basahih and Kamran n. sp.

Zoobank: 7DDC5CB3-F38A-4F6B-A98C-D30B8D8EAFD0

Description — **Female** (n = 3) (Figs. 1-2) — Measurements of holotype female followed by two female paratypes in parenthesis.

Dorsum (Fig. 1) — Dorsal shield 278 (273 – 283) long, 156 (154 – 157) wide, with 15 pairs of setae. Setae r3 on the shield, setae J2 and R1 absent. Length of dorsal setae j1 21 (21 – 22), j3 18 (18 – 19), j4 6, j5 6 (6 – 7), j6 6, J5 10 (9 – 11), z2 18 (17 – 19), z3 32 (31 – 33), z4 13 (11 – 14), z5 9 (5 – 12), Z4 64 (63 – 65), Z5 53 (50 – 58), s4 55 (53 – 57), s6 73 (70 – 75), and lateral setae r3 28 (26 – 29). All dorsal setae serrate except j4, j5, j6, z4 and z5 smooth. Setae s6 and Z4 finely serrated only on 1/3 distal part, setae Z5, Z4, s4, s6, z3 set on tubercles. Peritremes extending up to setae j1.

Venter (Fig. 2A) — Sternal shield not clear. Distances between ST1-ST1 45 (44 – 45), ST2-ST2 61 (58 – 63), ST3-ST3 76 (72 – 79), ST4-ST4 81 (77 – 100). Genital shield smooth; distance between ST5-ST5 68 (66 – 70); membranous fold between genital and ventrianal shields absent. Ventrianal shield elongate, slightly rounded anteriorly, 74 (73 – 76) long, 46 (44 – 47) wide at the level of para-anal setae, with one pair of pre-anal setae. Four pairs of setae present on the soft cuticle around the ventrianal shield. Lyrifissures not clear. All ventral setae simple except JV5 thick and serrated. Metapodal platelets not clear in all specimens.

Spermatotheca (Fig. 2B) — Calyx of spermatotheca bell-shaped, 5 long; 4 wide, atrium adjacent to the calyx. Major duct long tube like and minor duct small.

Chelicerae (Fig. 2C) — Fixed digit 19 – 21 long, with two subapical teeth and a pilus dentilis, movable digit 17 (16 – 18) long, with one tooth.

Legs (Fig. 2D) — Macrosetae absent on leg IV, all setae simple.

Male (n= 3) (Figs. 3-4)

Dorsum (Fig. 3) — Dorsal shield 229 (226 – 232) long, and 137 (132 – 141) wide, with 15 pairs of setae. Length of dorsal setae: j1 15 – 16, j3 17 – 18, j4=j5 5 – 6, j6 6, J5 7 – 8, z2 14 – 16, z3 28 – 32, Z4 9 – 12, z5 7 – 9, Z4 44 – 46, Z5 39 – 42, s4 44 – 53, s6 47 – 55, and lateral setae r3 21 – 25. All dorsal setae serrate except j4, j5, j6, z4 and z5 which are simple, setae Z5, Z4, s4, s6, z3 and r3 set on tubercles. Peritremes extending to the level between setae j3 and j1.

Venter (Fig. 4A) — Sternogenital shield smooth, 114 long and 63 wide with 5 pairs setae, distances between ST1-ST1 35 – 38, ST2-ST2 44 – 49, ST3-ST3 54 – 58, ST4-ST4 52 – 54; ST5-ST5 43 – 47. Ventrianal
Figure 1: *Phytoseius tabakensis* n. sp., Female, Dorsal shield
FIGURE 2: *Phytoseius tabakensis* n. sp., Female: A – Venter; B – Spermatheca; C – Chelicera; D – Leg IV
FIGURE 3: *Phytoseius tabukensis* n. sp., Male, Dorsal shield
FIGURE 4: *Phytoseius tabukensis* n. sp., Male: A – Venter; B – Chelicera
shield wider than long, 83 – 84 long, 104 – 109 wide at the level of ZV2, four pairs of preanal setae, two para-anal and one postanal setae.

Chelicerae (Fig. 4B) — Fixed digit 16 – 17 long, with 3 – 4 subapical teeth and a pilus dentilis; movable digit 15 – 16 long, with one tooth. Spermatodactyl V-shaped distally.

Legs — As in female.

Material Examined — Holotype female and five paratypes (two females and three males), *Salvadora persica* L. (Salvadoraceae), 30 km Sherma road, Duba, Tabuk, 18 Oct. 2015, coll. M. Kamran and J.H. Mirza.

Etymology — The name of new species is derived from province "Tabuk" where the type specimens were collected.

Remarks — *Phytoseius tabukensis* n. sp. belongs to the *horridus* species group of the genus *Phytoseius* due to absence of setae J2 and R1. Within the *horridus* species group Chant and McMurtry 1994, 14 species including new species (mentioned in the diagnostic key #1) in which macrosetae on tibia IV is absent. The new species closely resembles *P. brigalow* Walter and Beard. However, it is different from *P. brigalow* by having one pair preanal setae on the ventrianal shield vs. two pairs, dorsal shield setae z3, s4, s6, and Z4 serrated vs. smooth in *P. brigalow*. The new species is different from other 12 species by the presence of only one pair of preanal setae on the ventrianal shield and four pairs of setae present on the soft cuticle surrounding the ventrianal shield. The other 12 species have 2 or 3 pairs of preanal setae present on the ventrianal shield and 3 pairs of setae on the soft cuticle surrounding the ventrianal shield.

Key to the species of *horridus* species group of the genus *Phytoseius* Ribaga (Acari: Phytoseiidae) with macro setae absent on leg IV tibia

1. Macrosetae on leg IV basi- and disti-tarsus with hyaline knobbed tips … *P. oreillyi* Walter and Beard
 — Macrosetae on leg IV tarsus absent, if present short, without hyaline knobbed tips ………………… 2

2. One pair of preanal setae present on ventrianal shield ………………… *P. tabukensis* n. sp.
 — Two or three pairs of preanal setae present on ventrianal shield …………………………… 3

3. Two pairs of preanal setae present on ventrianal shield, ZV1 off the shield, on the soft cuticle……………… *P. brigalow* Walter and Beard
 — Three pairs of preanal setae present on ventrianal shield ……………………………………… 4

4. Setae ZV3 absent, two pairs of setae present on soft cuticle around the ventrianal shield .. *P. darwin* Walter and Beard
 — Setae ZV3 present, three pairs of setae present on soft cuticle around the ventrianal shield ………5

5. Setae Z4 equal in length as Z5 ……… *P. mancus* Afzal et al.
 — Setae Z4 distinctly longer than Z5 ……… 6

6. Setae s6 ≥ Z5 …………………………… 7
 — Setae s6 distinctly shorter than Z5 ……… *P. gleba* Afzal et al.

7. Setae Z4 serrated …………………………… 8
 — Setae Z4 smooth …………………………… 12

8. Setae j3 reaching the basis of j4 ……… *P. glyptos* Afzal et al.
 — Setae j3 well behind to the basis of j4 ……… 9

9. Setae s6 = Z5 ……… *P. mantoni* Walter and Beard
 — Setae s6 distinctly longer than Z5 ……… 10

10. Setae z3 smooth, s4 longer than s6……………… *P. litchfieldensis* Walter and Beard
 — Setae z3 serrated, s4 shorter than s6 ……… 11

11. Setae s4, crossing the basis of setae s6, s4 55, s6 72-74, setae s4 almost at the level of r3 ……… *P. intermedius* Evans and Macfarlane
 — Setae s4, just reaching the basis of setae s6, s4
43, s6 52, setae s4 well posterior to the level of

r3. P. douglasensis Schicha

12. Setae s4, s6 smooth. P. acacia
Walter and Beard
— Setae s4, s6 serrated 13

13. Setae Z2, JV5 smooth, setae s4 subequal to
s6. .. P. longchuanensis Wu
— Setae Z2, JV5 serrated, setae s4 shorter than
s6. P. ruidus Wu and Li

NEW RECORDS

FAMILY PHYTOSEIIDAE BERLESE, 1916

Subfamily Amblyseiinae Muma, 1961
Tribe Neoseiulini Chant and McMurtry, 2003

Genus Neoseiulus Hughes, 1948

Neoseiulus imbricatus Corpuz-Raros and
Rimando

Amblyseius (A.) imbricatus Corpuz and Rimando
1966: 127.
Neoseiulus oryzacolus Daneshvar 1987: 18; Faraji et
al. 2007: 233.

Field association — This species was found in association with Thrips sp. (Thripidae).

Remarks — Morphology and setal measurements of specimens from SA are similar to those of original description (Corpuz and Rimando 1966) and reported by Ehara and Bhandhuflalck (1977) from Thailand.

World distribution — Philippines, Thailand, India, Azerbaijan, China, Philippines and Iran (Moraes et al. 2004; Faraji et al. 2007).

Neoseiulus zaheri (El-Borolossy)

Field association — The specimens of this species were collected in association with Thrips sp. and Tetranychus urticae (Tetranychidae).

World distribution — Egypt (Abo-Shnaf et al. 2014).

Genus Paragigagnathus Amitai and Grinberg, 1971

Paragigagnathus tamaricis Amitai and Grinberg 1971: 327.

Field association — The specimens of this species were collected along with another predatory mite Spinibdella cronini (Baker and Balock) (Prostigmata: Bdellidae) and tamarix leafhopper (Hemiptera: Cicadellidae).

World distribution — Egypt, Iran, Israel, Jordan, (Moraes et al. 2004; Hajizadeh et al. 2010).

Tribe Amblyseiini Muma, 1961
Genus Amblyseius Berlese, 1914

Amblyseius largoensis (Muma)

Amblyseioptus largoensis Muma, 1955:266.

Field association — The specimen of A. largoensis were collected together with Thrips sp.
Tribe Euseiini Chant and McMurtry, 2005

Genus *Euseius* Wainstein, 1962

Euseius africanus (Evans)

Typhlodromus africanus Evans 1954: 524.

Euseius africanus (Evans) Moraes and McMurtry 1988: 15.

World distribution — Kenya (Moraes et al. 2001).

Euseius yousefi (El-Borolossy)

Amblyseius yousefi El-Borolossy in Nasr and Abou-Awad 1985: 246.

Euseius yousefi (El-Borolossy) Moraes et al. 2004: 86.

World distribution — Egypt (Nasr and Abou-Awad 1985).

Genus *Iphiseius* Berlese, 1916

Iphiseius degenerans Berlese

Iphiseius degenerans Berlese 1921: 95.

Field association — This species was collected along with *Oligonychus* sp. (Tetranychidae), *Spinibdella* sp. and *Thrips* sp.

World distribution — Egypt (El-Badry 1967a; Moraes et al. 2004).

Subfamily Typhlodrominae Wainstein, 1962

Tribe Typhlodromini Wainstein, 1962

Genus *Typhlodromus* Scheuten, 1857

Subgenus *Anthoseius* De Leon, 1959

_Typhlodromus* (Anthoseius) *egypticus* El-Badry

_Typhlodromus* *egypticus* El-Badry 1967a: 180

Field association — This species was collected along with *Oligonychus* sp. (Tetranychidae), *Spinibdella* sp. and *Thrips* sp.

World distribution — Egypt (El-Badry 1967a; Moraes et al. 2004).

_Typhlodromus* (Anthoseius) *persianus* McMurtry

_Typhlodromus* *persianus* McMurtry 1977: 563.

Field association — Specimens of *T. (A.) persianus* were found in association with *Thrips* sp.

World distribution — Oman, Iran, Cape Verde, South Africa and Yemen (Moraes *et al.* 2004; Ueckermann *et al.* 2008).

Typhlodromus (Anthoseius) tamaricus (Kolodocha, 1982)

Anthoseius (Amblydromellus) tamaricus Kolodocha 1982: 11.

Field association — The specimens of this species were found in association with *Tetranychus* sp.

World distribution — Sudan and Egypt (El-Badry 1967b; El-Badry 1970).

Family Blattisocidae Garman, 1948

Subfamily Blattisocinae Garman, 1948

Genus Lasioseius Berlese, 1916

Lasioseius queenslandicus (Womersley)

World distribution — Australia and Egypt (Nawar and Nasr 1991; Moraes *et al.* 2016).

Lasioseius nambirimae Krantz

Material examined — One female, soil debris under date palm trees, King Saud University, Riyadh, 24°43’336N, 46°37’611E, 01 Jan. 2011, coll. W. Negm.

World distribution — Democratic Republic of the Congo, Africa (Moraes *et al.* 2016).

Subfamily Platyseiinae, 1957

Genus Cheiroseius Berlese, 1916

Cheiroseius neocorniger (Oudemans)

Hypoaspis neocorniger Oudemans

Type locality and depository — Unknown.

287
NEW DISTRIBUTION AND HOST DATA OF SOME PREVIOUSLY REPORTED PYTOSEIOID SPECIES FROM SA

FAMILY PHYTOSEIIDAE

Genus Cydnoseius Muma, 1967

Cydnoseius negevi (Swirski and Amitai, 1961)

Field association — This species was found with Tetranychus sp. and Thrips sp.

Previous records — Apple leaves, Malus domestica L. (Alatawi 2011b).

Genus Neoseiulus Hughes, 1948

Neoseiulus burkeri Hughes, 1948

Field association — This species was found with Tetranychus sp. and Thrips sp.

Previous records — Riyadh, ex C. dactylon, Ficus carica L., P. dactylifera, Sesuvium sp., in date palm orchards (Negm et al. 2012b).

Genus Proprioseiopsis Muma, 1961

Proprioseiopsis asetus (Chant, 1959)

Previous records — Riyadh and Qassim (Negm et al. 2012b).

Proprioseiopsis ovatus (Garman, 1958)

Previous records — Riyadh and Qassim (Negm et al. 2012b).
Genus *Paragigagnathus* Amitai and Grinberg, 1971

Paragigagnathus insuetus (Livshitz and Kuznetsov, 1972)

Genus *Euseius* Wainstein, 1962

Euseius scutalis (Athias-Henriot, 1958)

Previous records — Riyadh and Qassim, ex *Solanum melongena* L. (Solanaceae), *Vitis vinifera* L. (Vitaceae), *Ricinus communis* (Euphorbiaceae), *Fragaria* sp. (Rosaceae) (Al-Shammery 2010; Alatawi 2011b).

FAMILY OTPHEIDOMENIDAE TREAT, 1955

Genus *Nabiseius* Chant and Lindquist, 1965

Nabiseius arabicus Negm and Alatawi

Nabiseius arabicus Negm and Alatawi 2013: 184.

Field association — This species was collected together with *Aegyptobia* sp. (Tenuipalpidae).

Previous records — Riyadh, ex *C. dactylon* (Negm and Alatawi 2013).

FAMILY BLATTISOCIIDAE

Lasioseius parberlesei Bhattacharyya

Lasioseius parberlesei Bhattacharyya 1968: 532.

Field association — This species was found in association with *Tetranychus* sp.

Previous Records — Hayer, ex *Capsicum* sp. (Solanaceae) (Alatawi 2011a).

KEY TO THE FEMALES OF PHYTOSEIOIDEA OF SAUDI ARABIA

1. Dorsal shield with less than 20 pairs of setae, setae J1 absent, and with less than 4 pairs of marginal setae on soft integument .. 7
 — Dorsal shield with more than 20 pairs of setae, setae J1 present, and usually with more than 4 pairs of marginal setae on soft integument..............

 Family Blattisocidae Garman ... 2

2. Legs II-IV with median lobe of pulvillus broadly rounded; para-anal setae inserted anterior to hind margin of anus, and usually at least slightly shorter than postanal seta……

 Subfamily Blattisocinae, Genus Lasioseius

 Berlese ... 4
— Legs II-IV with median lobe of pulvillus slender, acute or narrowly rounded; para-anal setae inserted level with or posterior to hind margin of anus, and usually longer than postanal seta. Subfamily Platyseinae, Genus Cheiroseius.

3. Tarsus I longer than tibia I. C. neocorniger (Oudemans)
 — Tarsus I shorter than tibia I or equal in length. C. serratus (Halbert)

4. Anus remarkably large, length of anus = 1/4 to 1/3 of the length of the ventrianal Shield. Lasioseius (Borinquolaelaps) dentatus Fox
 — Anus normal, not remarkably large.

5. A number of dorsal setae trispinate. Lasioseius (Crinidens) queenslandicus (Womersley)
 — Dorsal setae acicular or pectinate.

6. Ventrianal shield with six pairs of setae. Lasioseius (Lasioseius) parberlesei Bhattacharyya
 — Ventrianal shield with five pairs of setae. Lasioseius (Cuspiacus) garambae Krantz

7. Dorsal shield laterally incised, peritremes reduced, extending up to coxae II. Family Otopheidomenidae Treat, Genus Nabiseius Chant and Lindquist. N. arabicus Negm and Alatawi
 — Dorsal shield entire, peritremes not reduced, extending anteriorly beyond coxae II. Family Phytoseiidae Berlese.

8. Setae z3 and s6 absent
 — Either or both setae z3 and s6 present.

9. Sternal shield with median posterior projection; preanal setae JV2 and ZV2 some migrated forward and inserted on anterior margin of ventrianal shield. Tribe Euseiini Chant and McMurtry.
 — Sternal shield without median posterior projection; preanal setae JV2 and ZV2 not migrated forward on ventrianal shield.

10. Female ventrianal shield divided into separate ventral and anal shields, dorsal shield strongly sclerotized. Genus Iphiseius Berlese, I. degenerans Berlese
 — Female ventrianal shield entire, dorsal shield not strongly sclerotized.

11. Peritreme extending up to the level between z2 and z4, spermathecal calyx long and slender. E. scutalis (Athias-Henriot)
 — Peritreme extending forward up to setae j3.

12. Dorsal shield setae in j series small, j1=8-12, j5=8-13, j6=8-13. Dorsal shield setae in j series comparatively long, j1=42, j5=49, j6=73, j2=75. E. yousefi (El-Borolossy)

13. Spermathecal calyx incompletely sclerotized, broad and apparently fused with atrium. E. batus (Ueckermann and Loots)
 — Spermathecal calyx completely sclerotized, proximal two third tubular and distal third cup-shaped, not fused with the atrium.

14. Setae s4 more than three times long than setae Z1, Z5 and Z4 markedly longer than other dorsal setae. Tribe Amblyseiini. E. africanus (Evans)

15. Sternal shield as long as or longer than wide, setae J2 present. Genus Amblyseius Berlese, A. largoensis (Muma)
 — Sternal shield wider than long, setae J2 absent.

17. Setae Z5 longer than distance between their bases. ... P. asetus (Chant)
 — Setae Z5 longer than distance between their bases. ... P. beatus (Chaudhri)

18. Setae Z5 longer than distance between their bases, sternal shield medially smooth ... P. messor (Wainstein)
 — Setae Z5 shorter than distance between their bases, sternal shield medially reticulated ... P. ovatus (Garman)

19. GeII without and GeIII rarely with macrosetae; fixed digit of chelicera usually with fewer than 6 teeth, rarely multidentate; never with these 2 character state together ... Tribe Neoseiulini Chant and McMurtry ... 20
 — GeII without and GeIII rarely without macrosetae; fixed digit of chelicera usually with more than 6 teeth, most species with both of these 2 character states ... Tribe Typhlodromipsini Chant and McMurtry, Typhlodromips De Leon, T. swirskii (Athias-Henriot)

20. Female ventrianal shield with elongate and prominent waist, length/width ratio at narrowest point 3.3:1.0 primary metapodal platelets unusually elongate ... Genus Paragigagnathus Amitai and Grinberg ... 21
 — Female ventrianal shield without prominent waist slightly longer then wider, primary metapodal platelet normal ... Genus Neoseiulus Hughes ... 24

21. All dorsal shield setae on prominent tubercles ... 22
 — Only posterior setae on dorsal shield or some lateral setae on prominent tubercles ... 23

22. All dorsal shield setae long (range from 15 to 55 μm); ventrianal shield with three pairs of preanal setae, with/without pores; movable digit of chelicera smooth ... P. desertorum (Amitai and Swirski)
 — All dorsal shield setae short (range from 11 to 29 μm); ventrianal shield with two pairs of preanal setae and a pair of minute pores; movable digit of chelicera with one blunt tooth ... P. tamaricis Amitai and Grinberg

23. Setae J5 serrated, dorsal shield setae short (9-25) ... P. insuetus (Livshitz and Kuznetsov)
 — Setae J5 simple, dorsal shield setae long (15-50) ... P. madinaensis Alatawi, Kamran and Basahih

24. Macrosetae absent on leg IV ... N. mumae (Shehata and Zaher)
 — Macrosetae present on leg IV ... 25

25. Spermatheca with atrium not forked at junction with major duct ... 26
 — Spermatheca with atrium forked at junction with major duct ... 32

26. Dorsal shield with marked shoulder at the level of setae r3 ... 27
 — Dorsal shield without marked shoulder at the level of setae r3 ... 28

27. Sternal and genital shield moderately reticulated; St IV short (less than 20 μm) ... N. paspalivorus (De leon)
 — Sternal and genital shield smooth; StIV long (more than 50 μm) ... N. rambami (Swirski and Amitai)

28. Spermatheca without a stalk between calyx and atrium as atrium undifferentiated or no duller, joint directly to the calyx ... 29
 — Spermatheca with atrium and calyx joined by a stalk ... 31

29. Sternal shield reticulated ... N. zaheri (El-Borolossy)
 — Sternal shield smooth ... 30

30. Fixed digit of chelicerae with 9 to 10 teeth; moveable digit with 3 teeth ... N. imbricatus Corpuz-Raros and Rimando
 — Fixed digit of chelicerae with 4-5 teeth; moveable
digit with 1 tooth \textit{N. cucumeris} (Oudemans)

31. Spermathecal calyx dish to bowl shaped, Z5 80-90. \textemdash \textit{N. bicaudus} (Wainstein)
 — Spermathecal calyx bell shaped, Z5 40-50. \textemdash \textit{N. conterminus} (Kolodochka)

32. Calyx of spermatheca trumpet shaped; genu IV with macroseta \textemdash \textit{N. makuwa} (Ehara)
 — Calyx of spermatheca cone-shaped; genu IV without macroseta \textemdash 33

33. Spermatheca with a stalk between calyx and atrium \textemdash \textit{N. saudiensis} Negm, Alatawi and Aldryim
 — Spermatheca without a stalk between calyx and atrium \textemdash 34

34. Setae Z4 subequal in length to Z5. \textemdash \textit{N. cydnodactylon} (Shehata and Zaher)
 — Setae Z4 shorter than Z5. \textemdash \textit{N. barkeri} Hughes

35. Setae Z1, S2, S4 and S5 absent. \textemdash \textbf{Subfamily Phytoseiinae Berlese, Genus Phytoseius Ribaga.} \textemdash 36
 — At least one of setae Z1, S2, S4 and S5 present. \textemdash \textbf{Subfamily Typhlodrominae Chant and McMurtry.} \textemdash 37

36. Dorsal setae J2 and R1 present. \textemdash \textit{P. plumifer} (Canestrini and Fanzago)
 — Dorsal setae J2 and R1 absent. \textemdash \textit{P. tabukensis} n. sp.

37. Setae z3 absent, Z1 present. \textbf{Genus Cydnoseius, C. negevi (Swirski and Amitai)}
 — Setae z3 present, Z1 absent. \textemdash 38

38. Setae z6 present. \textbf{Genus Kuzinellus Wainstein}
 — Setae z6 absent. \textbf{Genus Typhlodromus Scheuten.} \textemdash 39

39. Setae S5 present. \textbf{Subgenus Anthoseius De Leon.} \textemdash 40
 — Setae S5 absent. \textbf{Subgenus Typhlodromus, T. (T.) pyri Scheuten}

40. Female ventrianal shield narrow. \textemdash \textit{T. (A.) egypticus} (El-Badry)
 — Female ventrianal shield almost pentagonal. \textemdash 41

41. Setae Z4 serrated, setae Z5 distally knobbed, ventrianal shield with a pair of preanal pores. \textemdash \textit{T. (A.) persianus} McMurtry
 — Setae Z4 simple, setae Z5 distally sharped, ventrianal shield without a pair of preanal pores. \textemdash \textit{T. (A.) tamaricis} Kolodochka

\section*{Acknowledgements}

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at the King Saud University for funding this research through Research group No. RG 1437-043.

\section*{References}

doi:10.1080/01647954.2015.1037792

Britto E.P.J., Gago E., Moraes G.J. 2012 — How promising is *Lasiosoma floridensis* as a control agent of *Polyphagotarsonemus latus*? — Exp. Appl. Acarol. 56: 221-231.

doi:10.1007/s10493-012-9513-5

doi:10.1080/01647959408684022

doi:10.1080/01647959408684527

doi:10.3923/je.2011.139.151

doi:10.1093/aesa/70.4.563

293

COPYRIGHT

Alatawi F.J. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.