Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
FOOD FOR MACROCHELID MITES (ACARINA)
BY AN IMPROVED METHOD
FOR MASS REARING OF A NEMATODE, RHABDITELLA LEPTURA
BY
Pritam Singh and J. G. Rodriguez
(University of Kentucky).

Rodriguez, Wade and Wells (1962) reported that Rhabditella leptura, a free living nematode, was a natural food for Macrocheles muscaedomesticae (Scop.), a predator of the house fly egg. They also standardized a method for the rearing of this species of nematode in the laboratory. Since then this method has been followed in our laboratory, and elsewhere, to mass rear M. muscaedomesticae on nematodes. Two more species of macrochelid mites, M. merdarius (Berl.) and M. subbadius (Berl.), have also been successfully mass reared on this nematode in this laboratory. An improvement in culturing R. leptura has been made which is more economical in respect to time, materials, labor and space; in addition, this method yielded 5-6 times as great a return of nematodes as compared with the method given by Rodriguez and his co-workers (1962).

The nematode was cultured in plastic refrigerator trays 30.5 × 25.5 × 10 cm in size with tops ventilated with 9 equally spaced holes of 24.4 mm diameter. Approximately 125 grams of standard fly larval rearing media 3 was put into a tray and shaken from side to side to level the media to a uniform thickness. A dilution of sodium hydroxide (60 ml of a 5N solution in one quart of water) was used to soak the media; approximately a half-liter of liquid was required to soak the media. Each tray was inoculated with nematodes obtained from the old tray which was divided into 5 equal parts. This media containing nematodes was spread evenly on the new substrate and about 200 ml of water was sprinkled over

1. This study was sponsored in part by Grant E-2770 of the National Institute of Health. Grateful acknowledgement is due to Douglas E. Cox for his assistance in maintaining cultures. This paper (No. 65-7-91) is published with the approval of the Director of the Kentucky Agricultural Experiment Station.
2. Research Associate and Professor of Entomology.
3. CSMA media from Ralston Purina Company.

Acarologia, t. VIII, fasc. 4, 1966.
it so that the old media mixed well with the new. In this way five trays were made and kept in a large chick-hatching type incubator and maintained at 30-3 ±°C and 55-65 percent relative humidity. Each tray contained the equivalent of about 8 mr of nematodes after they were extracted through a Baerman funnel and centrifuged. The nematodes completely covered the surface of the media after 3 days and were over-flowing and crawling on the sides of the trays on the 4th day. The nematodes formed a band about 4 cm wide on the sides of the trays. Those from the sides were collected with the help of a 12 mm soft paint brush in a beaker in lukewarm water. This concentrated suspension of nematodes was fed to the mites with the help of a dropper. Care was taken to handle the nematodes gently.

The incubator was located in a greenhouse. After the nematodes were collected, the trays were left out of the incubator, under the ambient conditions of the greenhouse for about an hour. During this time the nematodes that remained on the sides of trays were washed down with water from a squeeze bottle, and 10-15 ml of water was sprinkled over the media. It was observed that this short exposure to daylight and the airing apparently helped to keep the substrate in better condition than if the trays were placed into the incubator immediately. This procedure was repeated for 5 to 7 days in succession.

With this improved technique, the collection of nematodes took only 10-15 minutes, compared with the previous method in which the nematodes were extracted through the funnels, a procedure which took almost 2 hours. In the previous method new trays had to be made after daily extraction. This, of course involved much unnecessary handling. Also, the number of trays required in the old method was 20, while with the new method 12 trays were sufficient to obtain the desired quantity of nematodes. Hence, this technique is not only much more economical in time, labor, materials and space, but it also has the advantage of yielding 5 to 6 times more nematodes.

REFERENCE