Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
PHYTOSEIID MITES (ACARI: MESOSTIGMATA) OF SOUTHERN TUNISIA

BY S. KREITER¹, M.-S. TIXIER¹, P. AUGER¹ & K. LEBDI GRISSA²

(Accepted December 2005)

INTRODUCTION

A single species of phytoseiid mites, Phytoseiulus persimilis Athias-Henriot, has been identified from the Gafsa region by Rambier (1972). More recently, we reported the results of the surveys carried out throughout 7 years in five regions of the Northern Tunisia (North, Center, Cap-Bon, Bizerte and Sahel regions), in the four main crops (Kreiter et al., 2002): vegetable productions in greenhouses, apple and citrus orchards, and grapevines. Thirty-seven species belonging to 8 families in total were found, and among them 30 species were not previously reported from Tunisia. In addition, we report here the results of surveys carried out in 2000 and 2001 in the southern part of Tunisia, mainly in several date palm production areas.

SUMMARY: Authors report the results of a survey of phytoseiid mites carried out in 2000 and 2001 in some perennial crops and the surrounding wild vegetation, mainly in date palm production areas. Twelve species were found, among which 4 are new for Tunisia and one genus and one species are new to Science.

Plant inhabiting mites were sampled from various cultivated or uncultivated plants in 2000 and 2001 by collecting directly on leaves of host-plants with a brush using a stereoscopic microscope, by using the dipping-checking-washing method (Boller, 1984), mites being collected on a filter at the end of the process, or by beating shrubs and trees. Mites were then transferred with a fine hairbrush into small plastic vials containing 70° alcohol. Mites were mounted on slides using Hoyer’s medium and identified using a phase and interferential contrasts microscope.

The generic classification of Chant & McMurtry (1994) is used for the Typhlodrominae and Phytoseiinae, the generic classification of Chant & McMurtry (2003a & b) for Amblyseiinae Neoseiinae.

—

¹. Ecole Nationale Supérieure Agronomique/Institut National de la Recherche Agronomique, Unité d’Ecologie animale et de Zoologie agricole, 2 Place Pierre Viala, 34060 Montpellier cedex 01, France,
². Institut National Agronomique, Département de Protection des Plantes, Laboratoire d’Entomologie, Tunis, Tunisie

l ini and Kampimodromini and of Moraes et al. (2004) for other Amblyseiinae.

The chaetotaxy and adenotaxy terminologies used in this paper were proposed respectively by Rowell et al. (1978) for dorsal and Chant & Yoshida-Shaul (1991) for ventral idiosomal setae. Adenotaxy and poroidotaxy terminologies are that of Athias-Henriot (1975).

All average measurements done are given in micrometers (µm).

Specimens of each species are deposited in the mite collections of ENSA.M / INRA Acarology laboratory.

The following abbreviations are used in this paper: INRA (Institut National de la Recherche Agronomique; Centre de recherche de Montpellier, France), ENSA.M (Ecole Nationale Supérieure Agronomique de Montpellier, France), INAT (Institut National Agronomique de Tunisie).

RESULTS AND DISCUSSION

Twelve species were found, with a new genus and a new species for Science and 11 already known species, 4 being new for Tunisia.

Amblyseiinae

Euseius scutalis (Athias-Henriot)
Typhlodromus scutalis Athias-Henriot, 1958a: 183 ;
Amblyseius rubini Swirski & Amitai, 1965: 132;
Amblyseius delhiensis Narayanana & Kaur, 1960: 5;
Amblyseius gossipi El-Badry, 1967: 177.

This species seems very common all around the Mediterranean Sea. It was described from Algeria (Athias-Henriot, 1958a) and mentioned in Turkey (Cobanoğlu, 1989), and Spain on _Citrus_ sp. (Ferragut et al., 1983; García Mari et al., 1985 and 1986). This species seems also very common in the driest regions of the northern Tunisia (Kreiter et al., 2002) and of the South of Spain (Ferragut & Escudero, 1997). Several studies have been carried out to determine the influence of several climatic conditions on the development of this mite and have shown that it can resist to high temperatures (optimal development at 30°C) and to dry conditions (Bounfour & McMurtry, 1987; El-Latthy & Fouly, 1992). This could explain why this species is preferably found in arid and hot regions. It has neither been found in the South of France and the South of Spain seems to constitute the northern limit of its distribution. Even it seems that it shows the same food preference (pollen and spider mites, genus _Tetranychus_) like _Euseius stipulatus_ (Athias-Henriot), these two species do not have the same ecological requirements. In humid regions, _E. stipulatus_ is more frequent than _E. scutalis_, more often found in dry places (Ferragut & Escudero, 1997). This species is also reported as a predator of _Bemisia tabaci_ (Gennadius) (Meyerdikr & Coudriet, 1986).

PREVIOUS RECORDS: Algeria, Canaria Islands, Cape Verde, Egypt, Ghana, India, Iran, Israel, Jordan, Turkey, Lebanon, Morocco, Spain, Pakistan (Moraes et al., 2004), North of Tunisia (Kreiter et al., 2002).

SPECIMENS EXAMINED: Tozeur, 7 ♀ + 1 M3] on _Hibiscus_ sp. and 17 ♀ + 2 ♂ on _Musa paradisiaca_, 11 ♀ + 1 ♂ on _Ricinus communis_, 21 ♀ + 1 ♂ on _Malus pumila_, 1 ♀ on _Vitis vinifera_, IV 2000; Tozeur, Jardin du Paradis, 8 ♀ on _Hibiscus arboreus_, IV 2000; Douz, Hôtel Sahara, 1 ♀ + 1 ♂ on _Hibiscus_ sp., 1 ♀ on an unknown Verbenaceae, IV 2000, and 3 ♀ on _Lantana camara_, IV 2001; Oasis de Douz, 2 ♀ + 2 ♂ on _Ricinus communis_, IV 2000; Tataouine, Hôtel Dak Yanus, 12 ♀ + 1 ♂ on _Althea rosea_, IV 2000; Palmaira, Ibn Chabbat, 1 ♀ on _Cynodon dactylon_, VII 2000; Palmaira de Tozeur, 6 ♀ on _Prunus persica_, 9 ♀ + 3 ♂ on _Vitis vinifera_, 7 ♀ + 9 ♂ on _Punica granatum_, 8 ♀ on _Musa paradisiaca_, 1 ♀ + 1 ♂ on _Ficus carica_, 1 ♀ + 1 ♂ on _Cynodon dactylon_, 1 ♂ on an unknown Asteraceae, VII 2000; Nefta, 5 ♀ + 1 ♂ on _Phoenix dactylifera_, IV 2000.

Iphiseius degenerans (Berlese)

Seiis degenerans Berlese, 1889: 9;
Iphiseius generans, Berlese, 1921: 95; Evans, 1954: 518.

Described in Italy during the 19° century (Berlese, 1889), this species has a wide distribution. It was
found in Israel on Citrus sp. (Porath & Swirski, 1965), in Citrus sp and olive trees in Greece (Papaioannou-Souliotis et al., 1994) and on grapes in Italy (Vacante & Tropea Grazia, 1987).

Previous Records: Algeria, Benin, Brazil, Burundi, Canary Islands, Cape Verde, Egypt, Georgia, Greece, Israel, Italy, Kenya, Lebanon, Madeira Islands, Madagascar, Malawi, Morocco, Nigeria, Portugal, Rwanda, South Africa, Sudan, Tanzania, Turkey, Georgia, Zaire, Zimbabwe (Moraes et al., 2004).

Specimens Examined: Chott-Mariem, ESHE, 13 ♀ + 4 ♂ on Citrus sp., IV 2000.

Neoseiulus barkeri Hughes

This species has been used largely in the last twenty years in experiments for biocontrol of thrips, particularly the onion thrips *Thrips tabaci* Lindeman (Hansen & Geyti, 1987; Hansen, 1988; Brodsgaard & Hansen, 1992) and the western flower thrips, Franklinoella occidentalis Pergande. It has been commercially mass-produced in Europe since the beginning of the 1980’s (Ramakers & Lieburg, 1982). Selection for non-diapause strains was also carried out (Van Houten et al., 1995). As a thrips predator, it is known to be more effective on first stage larvae of its preys (Bakker & Sabelis, 1986). *N. barkeri* was reported in vineyards in Sicily (RAGUSA & CIULLA, 1989) and France (Kreiter et al., 2000) and in various crops in Greece (Papaioannou-Souliotis et al., 1994). *N. barkeri* is widespread throughout the world (Moraes et al., 1986), and the biological characteristics have been documented because of its use in controlling thrips on Cucurbitaceae in greenhouses (Castagnoli, 1989). It also feeds on red spider mites and eriophyid mites (Momen, 1995). This species was found in Israel on Citrus sp. (Porath & Swirski, 1965).

Previous Records: Algeria, Australia, Brazil, Canary Islands, Cape Verde, China, Finland, France, Georgia, Germany, Ghana, Guinea, Hawaï, India, Israel, Japan, Jordan, Italy, Ivory Coast, Madagascar, Mozambique, Netherlands, Nigeria, Norway, Reunion Island, Russia, South Africa, South Korea, Spain, Tahiti, Taiwan, Turkey, Ukraine, United Kingdom, USA, West Bank, Yemen (Moraes et al., 2004).

Specimens Examined: Palmeraie Ibn Chabbat, 2 ♀ on Cynodon dactylon, VII 2000.

Neoseiulus californicus (McGregor)

N. californicus has been mentioned in various crops in Spain (Ferragut et al., 1983; Garcia Mari et al., 1985, 1986; Villaronga et al., 1991), Italy (Nicotina & Cioffi, 1997), France (Kreiter et al., 2000) and Greece (Papaioannou-Souliotis et al., 1994).

This widespread species (Moraes et al., 1986), which McMurtry and Croft (1997) consider to be specialised, migrates from the grassy layer to fruit trees or grapevines and vice-versa (Raworth et al., 1994; Auger et al., 1999). It is a specialist predator of *T. urticae* on annual plants and woody species, and of *P. ulmi* (and perhaps eriophyid mites) on trees and less frequently on grapevines. These biological features have only recently been studied (Castagnoli & Simon, 1991 & 1994; Castagnoli et al., 1995; Auger et al., 1999).

Previous Records: Algeria, Argentina, Brazil, Chile, France, Guatemala, Japan, Peru, Spain, Uruguay, USA (Moraes et al., 2004).

Specimens Examined: Chott-Mariem, ESHE, 22 ♀ + 9 ♂ on Convolvulus arvensis, IV 2000.

Neoseiulus cucumeris (Oudemans)

Previous Records: Numerous records, including Europe, Middle East, North Africa, Asia, North America, Australia (Moraes et al., 2004).
SPECIMENS EXAMINED: Palmeraie Ibn Chablat, 2 ♀ on *Cynodon dactylon*, VII 2000; Palmeraie de Chekmo, 3 ♀ + 1 ♂ on *Cynodon dactylon*, VII 2000; Palmeraie de M’Rah Lahouara, 1 ♀ on *Digitaria communata*, 1 ♀ + 1 ♂ on *Cynodon dactylon*, VII 2000; Palmeraie de Tozeur, 1 ♀ on *Cynodon dactylon*, VII 2000.

Neoseiulus mumai (Denmark)

Cydnodromus mumai Denmark, 1965: 91;
Neoseiulus mumai (Denmark):
Muma & Denmark, 1971: 10;

Amblyseius mumai (Denmark), Schicha, 1981: 209. The biology of this species remains unknown. It seems common on various herbaceous plants (Moraes et al., 2004).

Previous Records: Brazil, Hawai, USA (Moraes et al., 2004).

Specimens examined: Palmeraie de Tozeur, 1 ♀ on *Cynodon dactylon*, VII 2000.

Remarks: this is the first record of this species in Africa.

Neoseiulus paspalivorus (DeLeon)

Typhlodromus paspalivorus DeLeon, 1957: 143;
Neoseiulus paspalivorus (DeLeon),
Muma & Denmark, 1971: 110;
Amblyseius paspalivorus (DeLeon),

The biology of this species remains unknown. It seems common on various herbaceous plants (Moraes et al., 1986, 2004).

Previous Records: Guadeloupe (Moraes et al., 1999), India, Jamaica, Philippines, USA (Moraes et al., 2004).

Specimens examined: Palmeraie de M’Rah Lahouara, 2 ♀ on *Cynodon dactylon*, VII 2000.

Remarks: this is the first record of this species in Africa.

Typhloseiella isotricha (Athias-Henriot)

This species has been described from Algeria on *Inula viscosa* L., in 1958. Since now, it has been reported only under Mediterranean climatic conditions. Furthermore, in the present survey, this species is recorded on *I. viscosa*, where this species has nearly exclusively been found since now (Moraes et al., 2004; Tixier et al., 2000 and 2003). Specific relationships could occur between this mite and *I. viscosa*, this plant being especially sticky, odorant, with hairy leaves. But the relationships have not been investigated.

Previous Records: Algeria, Canary Islands, France, Greece, Israel, Jordan, Lebanon, Portugal, Morocco (; Tixier et al., 2000 and 2003; Moraes et al., 2004).

Specimens examined: Matmata, 4 ♀ on *Inula viscosa*, V 2001

Phytoseiinae

Phytoseius finitimus Ribaga

The individuals found in Tunisia belong probably to the species *P. finitimus* which is confused in other studies with *Phytoseius plumifer* Canestrini & Fanzago. A big confusion between these 2 species has existed during a long time and a tentative solution has been proposed by Duso and Fontana (2002). Specimens belonging probably to *P. finitimus* (but this has to be confirmed) has already been reported on grapevines in Spain (Ferragut et al., 1985; Villaronga et al., 1991), Hungary (Dellai & Szendrey, 1991), Italy (Liguori, 1980; Corino, 1985; Castagnoli & Liguori, 1986; Duso & Ren, 1997), Portugal (Carmena & Ferrera, 1989), Greece (Papaoanou-Souliotis et al., 1994) and France (Kreiter et al., 2000). *P. finitimus* seems to feed on *P. ulmi* (Duso & Moretto, 1994) and various eriophyid mites (Rasmy & El-Banawy, 1974b), and it consumes pollen (Zaher et al., 1969; Rasmy & El-Banawy, 1975). Local conditions in Corsica, i.e. high relative humidity
and very hairy-leaved grapevine varieties, seem to be very suitable for this species (Rasmy et al., 1974a; Duso & Moretto, 1994; Kreiter et al., 2000). Several experimental introductions have been carried out in Corsica in various productive vineyards (Salva, unpublished data). As also noted for Kampimodromus aberrans (Oudemans), side effects of pesticides on this species have only been investigated in the field (Sentenac et al., 2002). This species was also found on Citrus sp. in Spain (Ferragut et al., 1983; García Mari et al. 1985).

Previous Records: Algeria, Egypt, France, Greece, Iran, Israel, Italy, Montenegro, Russia, Spain, Turkey, USA, Yugoslavia (Moraes et al., 2004).

Specimens Examined: Palmeraie de Tozeur, 2 ♀ + 1 ♂ on Ficus carica, VII 2000.

Typhlodrominae

Africoseiulella flechtmanni Kreiter

Africoseiulella flechtmanni Kreiter, 2006: in Kreiter & Tixier, 2006

The biology of this species remains unknown.

Paraseiulus soleiger (Ribaga)

Seiulus soleiger Ribaga, 1902: 176; Paraseiulus soleiger (Ribaga), Chant & Yoshida Shaul, 1982: 3027.

This species is very widespread throughout the Palearctic region but its biological characteristics have yet to be documented. Kropczynska et al. (1988) investigated the development of this species. It seems to be an arboreal generalist predator, feeding preferentially on red spider mites. Kropczynska et al. (1988) concluded that it was the only species that could control spider mite populations on lime trees under their study conditions in Poland.

Previous Records: Europe, North America, China, Japan (Moraes et al., 2004).

Specimens Examined: Chott-Mariem, ESHE, 1 ♀ on Convolvulus arvensis, IV 2000.

Typhlodromus (Anthoseius) kazachstanicus Wainstein

The biology of this species remains unknown. It seems common on various trees (Moraes et al., 2004), especially vines and Rosaceae.

Previous Records: Armenia, Georgia, Iran, Kazakhstan, Kyrgyzstan, Russia, Tajikistan, Uzbekistan (Moraes et al., 2004)

Conclusion

Among the 12 species collected, a new genus and a new species for Science were found, and among the 11 species already known, 4 are new for Tunisian fauna. The number of reported phytoseiid mites is now of 19 species. The species found are mainly Palearctic, some having specific Mediterranean distribution. Two species are newly recorded in Africa and in the Palearctic region (N. mumai and N. paspalivorus). The total number of species is probably strongly underestimated if compared to fauna from Algeria and Morocco. New surveys are consequently needed.

Acknowledgements

These surveys were made with the help of the Tunisian Ministries of Agriculture and Foreign Affairs and of the French Ministry of Foreign Affairs and The French Embassy in Tunis in 2000 and 2001. We are grateful to all people that have help the organisation of surveys, and especially all people working in The French Embassy in Tunis and in the Centre d’Etudes Phéniciennes of the Institut National de la Recherche Agronomique de Tunisie in Degache near Tozeur.
REFERENCES

