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r. Introduction. 

Statistical and other numerical methods have been used in taxonomy for well 
over fifty years but their value is only now becoming recognized by many taxono
mists. The main reasons for this are that biologists find mathematical and nume
rical work difficult, that early numerical work in taxonomy was in specialised 
subjects (mainly in anthropometry) and that most of the calculations are impracti
cable without a computer. 

Many taxonomists are still suspicious of numerical methods, particularly when 
computers are involved. Sorne of them feel that in future they will merely collect 
data and feed them into a large computer, which will produce irrevocable taxo
nomie classifications. This is not so, as the taxonomist's judgement is needed 
at nearly every stage in the methods described below. These methods may 
suggest new groups or the artificiality of sorne previously assigned groups, but it 
remains for the taxonomist to consider this in the light of all the information he 
has. Numerical methods should be considered as a further aid rather than super
seding more traditional skills. 

Because computers are nov,· widely available, and can perform lengthy and 
repetitive calculations there is increasing use of known numerical methods in many 
branches of taxonomy, and many new methods, usually for classifying individuals 
into groups, have been developed. The diversity of these methods suggests that 
taxonomists should consider more precisely the criteria used for constructing 
groups. 

This paper outlines the more important existing methods. Details of the 
Acarologia, t. XI, fasc. 3, rg6g. 
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numerical techniques are omitted except vvhere these help in understanding the 
principles, as these are embodied in computer programmes that are fairly readily 
accessible. To enable taxonomists to decide which programme to use and to 
evaluate the results, the important thing is to understand the principles behind 
the numerical methods. 

When a taxonomist examines a specimen 1 he observes that it has certain cha
racters 2 sorne of which other specimens lack. A table listing for every specimen 
the characters it does and does not have is the starting point of many numerical 
methods used in taxonomy. This table is often amplified by making quantita
tive or qualitative observations of existing characters. Thus the length of a cha
racter may be measured or its colour noted. If a character does not occur in a 
particular specimen then no supplementary information of this kind can be record
ed. Provision must be made for dealing with missing or non-recorded observations. 
Observations may be missing for many reasons but no logical distinction is usually 
made between them; thus characters may be non-observable (e.g. because the spe
cies is extinct and we only have fossils) or the observation may be lost, unreliable, 
not made, etc. 

Most classical taxonomie statistical methods are designed for quantitative data 
only and do not easily cope with missing values. Thus these methods are useful 
only with closely related groups of animais, where all the characters being studied 
occur in sorne form in all the individuals of the sample. In contrast, the tech
niques developed by taxonomists themselves were originally designed for pre
sence/absence characters but quantitative and multi-level qualitative data can now 
be used (see GowER, rg68; GoonALL, rg66). 

Most of the methods described here are designed to assist with one of two 
taxonomie problems; either to suggest sensible groupings of individuals which the 
taxonomist might label as species, genera, families, etc. or given such groupings, 
how to assign correctly a new individual supposedly belonging to one of the groups. 
These will be referred to as the grmtping problem and the identification problem 
respectively. 

The identification problem is the one on which most statistical work has been 
doue (but very much more work is needed) and the logical principles are best 
understood, but most taxonomists think of the grouping problem when "numeri
cal taxonomy" is mentioned. Consequently, the grouping problem will be outlin
ed first. 

I. The words sp ecimen or individual are used interchangeably. Depending on context, 
an individual may represent a whole group of individuals such as a genus. Other words 
used in a similar connotation are unit, OTU (originalfoperational taxonomie unit) , strain, 
species and quadrat (in ecology) . 

2. The word character will be used throughout, because this is commonly used by taxo
nomists ; other worcls with a similar connotation are jeature, test, att1•ibute, property, characte
ristic and variate. 
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2. The Gro~tping Problem. 

We shall start with the simplest case, in which a table of the presence and 
absence of characters for a sample of individuals is given. Table r gives an example 
of observations that might be made on types of fruit. The presence of the charac
ter, named at the top of each column, is denoted by + and its absence by -. 
The characters chosen are not particularly good because of their variability; for 
example not all apples are hard, but we shall assume that the fruits examined 
had the properties listed. 

Table I. A table giving the presence ( +) or absence (-) of eight characters 
for seven types of fruit. 

Hard 

Apple ......... + 
P ear ........... + 
Leman ... . ..... + 
Orange • 0 0. 0 ••• + 
Grapefruit • 0 •• 0 + 
Plu rn •• 0 •••••• • 

Greengage . . . .. . 

Round Stone Skin or Peel Smooth Sweet Stalk 

+ 

+ 
+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 

+ 
+ 
+ 
+ 
+ 

+ 
+ 

+ 
+ 

Segmenta ble 

+ 
+ 
+ 

Two distinct steps are necessary to find groups; first calculate a coefficient of 
similarity between each pair of individuals and then put like individuals into sets 
and like sets into larger groups of sets and so on ; this second step is known as a 
cluster analysis. There are many ways of doing both operations but we shall 
illustrate the techniques by simple methods. 

One of the simplest coefficients measuring the similarity between two indivi
duals (the simple matching coefficient) is obtained by counting the number of 
matches (either positive or negative) between two individuals and expressing this 
as the proportion of all possible matches. Thus comparing the apple and pear 
of Table r, there are seven matches (5 positive and 2 negative) out of eight possible 

matches : a similarity of ~. Whatever the measure of similarity the similarity 

between an individual and itself must always be r and the similarity between 
two individuals can never be greater than one. When they have no character 
state in common the similarity must be O. The full table of similarities derived 
from Table r is given in Table 2. 
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Table 2. Similarities (simple matching coefficient) between each pair 
of fruits given in Table I. 

Name Abbreviated name Similarity 

Apple .......... A I 

Pear .. .......... PR 7 
1 8 

Lemon .. . ....... L 
2 3 
8 8 1 

0 4 3 6 
Orange .......... 8 8 8 1 

Grapefruit. ..... GF 3 2 7 7 
8 8 8 8 1 

PM 5 6 1 0 
Plum .... . .. . .. 8 8 8 8 8 1 

GG 
6 5 0 2 1 7 Greengage ....... 8 8 8 8 8 8 
A PR L 0 GF PM 

1 

GG 

This table can be expressed in triangular form because the similarity between, 
for example, an apple and a grapefruit must be the same as that between a gra
pefruit and an apple. The table can be considered as a symmetric square matrix, 
with the same mimbers appearing in the upper triangle as in the lower. 

To illustrate the cluster analysis we shall use the single linkage method. At 

a similarity of ~ apples apd pears go together as do greengages and plums and 

also grapefruits with lemoris and oranges. At this level of similarity we say that 
grapefruits, lemons and oranges form a group even though the similarity between 

lèmons and oranges is only ~; this isa characteristic of the single linkage method, 

where all that is required is that there is at least one set of links joining the three 

fruits at the prescribed level of similarity ( here ~)· The situation after sm-Jing 

at the ~ level may be written down as (A, PR) (L, 0, GF) (PM, GG), the brackets 

enclosing fruits which have been combined into groups at this level of similarity. 

If we now sort at a level of similarity of ~ sorne of the groups found at level 

~ may merge, because cif a link of ~ joining two or more of the groups. There 

are two such links between (A, PR) and (PM, GG), one joining A to GG and the 



other PR to PM and in virtue of either of these links (A, PR, PM, GG) forms a 

group of the ~ level. Thus, after sorting at the level ~, we have 

(A, PR, PM, GG) (L, 0, GF). 

The closest similarity behveen any two members of these two groups occurs for 

oranges and apples which have a similarity of ~; consequently the two groups 

merge at the ~ level. 

The results of this calculation can be exhibited as a dendrogram or family 
tree, with the levels of sorting written in the left-hand margin (Fig. r). 

s A PR PM GG L 0 GF 

1 1 

7 1 

8 

6 

8 

5 
8 
4 
8 

FrG. I. -A denclrogram giving the results of a single linkage cluster analysis of Table 1. 

Sensible groupings have been found, with the citrus fruits grouped separa
tely from the rosaceous and -vvith the rosaceous subdivided into soft fruits with a 
stone and hard fruits with pips. 

Many points arising from this type of analysis can only be mentioned but sorne 
references for further reading are given. 

It has been suggested that the similarities written down the left-hand side of 
dendrograms, as in Fig. r can be used to define families, genera, species, etc. Thus 
individuals occurring on different branches which join at a level of similarity 
below .5 might be regarded as belonging to a different genus, those joining bet
ween .5 and .8 as being different species and those joining above .8 as being sub
species or varieties. This is fallacious because the similarity levels themselves 
can easily be raised by including many further characters common to all individuals 
but irrelevant to the study; e.g., in Table r we might add characters " does it grow 
on a tree, " " is it sold in shops, " " can it sneeze ". The effect of adding constant 
characters is to make all the similarities bigger ; the general form of the dendro
gram will be unaltered but greater similarity levels must be written down the 
side. Another reason for rejecting any attempt to give meaning to absolute values 
of the similarities is that there are many different ways of calculating similarity 
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(see SoKAL and SNEATH (1963) for a discussion of many different coefficients and 
GowER (rg68) for sorne more) . Different coefficients will not only give different 
values but two different types of coefficient need not be monotonically related; 
that is to say if A, B and C are three individuals and SAn is the similarity between 
A and B as measured by one method and S'An by another, then if SAD is grea ter 
than S"c it is not necessarily true that S'AD is grea ter than S' w Clearly different 
coefficients may sort the individuals out differently even when the same type of 
cluster analysis is used. There are also very many different types of cluster ana
lysis which will in general give different results. Sorne of these are discussed in 
Section 3· 

The single linkage method has been explained in terms of grouping individuals 
with high similarities, it may also be explained in terms of distance. Pairs of 
individuals with a high similarity may be regarded as doser together than pairs 
with low similarities. I t is not necessary in the single linkage method to know 
the actual distances so long as we know the ranking of these distances. vVe can 
then imagine a diagram as in Fig. 2. 

PR --/\ 
/ ..,-'A'· 

/ - ·. - . . - . 

--Joins at% 

----Joins at % 
-·-·-Joins at % 

4 
...... Joins at le PM\<~i-s 

- . 
GG_, ••••.. . A. 

···.o_L _____ ~L 

FIG. 2. - An approximate geometrical representation of the similarities of Table 2 

in terms of dist ance. 

Thus the three clusters formed at a level of ~ similarity (PM, GG) (PR, A) 

(0, L, GF) are represented by the solid joining lines, and the first two of these 

groups merge at ~ similarity because of either one of the two lines PM, PR or 

GG, A. At i no further joining occurs but the group (A, PR, PM, GG) becomes 

more tightly bound as in fact all possible joins have now occurred between mem

bers of this group. The final join is represented by the line A, 0 at ~ similarity. 

The actual coordinate values for the individuals as represented in diagrams 
like Fig. 2 can be found but it is first necessary to have a table of all the distances, 
rather like the table of similarities. Again there are many possibilities that pre-



serve the ranking (e.g. each similarity S can be transformed to a distance I- S, 
VI-S, or -log S). 

Another problem in numerical classification is how to select characters to 
include. If in a classification for a special purpose the characters relevant to that 
purpose can be identified, there is no problem. If the methods can lay any daim 
to generality, similar classifications should be obtained when different sets of cha
racters are used, provided the character sets have not been specially selected to 
bias the classification in a particular direction. This requires that adding new 
characters will not upset previous classifications. Clearly, if a stable classifica
tion exists, information on only one character cannot be expected to find it, so 
the question then arises as to how many characters must be observed before a 
stable classification can be achieved. In terms of distance we require that, although 
the distances between individuals may differ with different choices of characters 
or when additional characters are included, the relative distances must not be 
unduly changed. SoKAL and SNEATH (r963) discuss these problems from the taxo
nomie point of view but a statistical treatment is still required. 

In practice the taxonomist's judgement is accepted and it is usual to include 
in the analysis all the characters he has examined giving them all equal wieght 
when calculating any similarity coefficient or distance. The decision to weight 
or not to weight character scores has been a controversial problem for taxono
mists; in general those in favour of using numerical methods prefer not to weight, 
but the traditional taxonomist holds that taxonomies have always been construct
ed by recognizing that certain characters are more important than others. At 
least part of the difficulty seems to come from the fact that with a new set of 
organisms completely unrelated to any known group, no a priori weighting would 
be acceptable, but once this set has been classified, it becomes clear that certain 
characters are more suitable than others for constructing an identification key. 
In any subsequent reclassification, these characters might be regarded as more 
important and might therefore reasonably be assigned greater weight. 

There is no mathematical difficulty in weighting characters unequally but it 
is difficult to assign differentiai weights on a priori grounds or to do so sensibly 
from an examination of the data. Several different forms of weighting are possible, 
e.g., simple weighting of a character or weighting the result of comparing the same 
character in two individuals - if it agrees it gets one weight, otherwise it gets 
another. GoWER (rg68) discusses this aspect at grea ter length. 

Taxonomists are often advised to include as many characters as possible in 
their analysis. The rationale here is the notion that there is sorne " true " value 
of similarity between pairs of individuals that can be measured only when all the 
characters are observed but is accurately estimated when enough characters are 
observed. However, sorne characters may not contain any useful classificatory 
information (e.g. fur length in distinguishing cats from dogs). The values of irre
levant characters vary from individual to individual but are not correlatèd with 
the values of other characters ; the converse is not true because characters uncorre-



lated in the sample as a whole may be correlated within sub groups determined 
by a cluster analysis. If there are not too many irrelevant characters, they will 
contribute little to any similarity coefficient but otherwise they may be the major 
factor involved. When they are, sensible classification is likely to be difficult 
unless the irrelevant characters can be eliminated. How this should be done is 
not known, but it is probably unwise for a taxonomist to include characters he sus
pects of being irrelevant, just to increase the number of characters in the analysis. 
The type of subjective judgment involved here is the same as that required to 
decide what characters should be included in the study and amounts to an a priori 
character weighting (weight r = include; weight o = exclude). This subject 
needs much doser examination than it has so far received. 

3· Otlter Methods of Chtster Analysis. 

SOKAL and SNEATH (rg63), BALL (rg65) and ANDERSON (rg66) discuss many 
forms of cluster analysis in detail. Cluster analyses may be agglomerative or 
divisive, polythetic or monothetic. Single linkage cluster analysis is agglomera
tive and polythetic. It is agglomerative because the groups determined at any 
level of sorting are obtained by combining individuals or previously determined 
groups and polythetic, because groups need not, and usually will not, have cons
tant characters. 

WILLIAMS and LAMBERT's (r959) association analysis and the scheme outlined 
by EDWARDS and CAVALLI-SFORZA (rg65) are both examples of divisive methods 
because groups are repeatedly subdivided. The first is monothetic because groups 
are divided into two on a single character, one group consisting of all the indivi
duals possessing the chosen character and the other all individuals without it ; 
the second is polythetic. GowER (rg67 a) discussed these superficially dissimilar 
methods in tenns of distance and showed that they can all be interpreted as group
ing individuals, so that the distance between groups (suitably defined) is maximised. 

Agglomerative polythetic methods are often preferred when trying to deter
mine groups and divisive monothetic ones for constructing keys (see Section 5 
below). 

When the individuals fall into well defined groups all methods can be expected 
to give similar results, but when boundaries between groups are less distinct, diffe
rent methods are likely to assign borderline individuals differently. 

It is in precisely this situation that most taxonomie wrangles occur. The 
numerical approach merely reflects that intermediate fonns are difücult to clas
sify and unless there are overwhelming reasons for accepting one numerical method 
in preference to all others, no definite method for assigning borderline cases can 
be given. Thus numerical techniques are unlikely to give a final " correct " 
answer to the classification of closely related individuals, although diagrams like 
Fig. 2 do give a general view of the problem and reveal the futility of many argu
ments behveen taxonomists. 



There is a danger of misinterpreting the results of a cluster analysis because 
there is no theoretical and little empirical knowledge concerning how the analysis 
behaves with random data. All clustering methods will produce sorne sort of 
hierarchical classification along the lines of Fig. r even when the data do not vvar
rant it ; examination cf diagrams like Fig. 2 help to expose this type of situation. 
Sorne experimental work has been done using dummy data. Cluster analysis of 
data, with presence and absence of characters being assigned at random with 
varying frequencies, has given results comparable to the analysis of sorne real data. 

A property of single linkage cluster analysis that sorne taxonomists find objec
tionable is that a cluster of individuals may occur on long chains and not in com
pact groups. The first and last members of such a chain may be very unalike 
although a chain of individuals links them at sorne prescribed level of similarity. 
The situation is shown in Fig. 3· 

A B 
x----x-

w x 
~~--~x 

~~-----x 
y z 

FIG. 3· - (A, B, C, D, E, F, G, H) forma group on single linkage analysis whilst V·l, X , Y, Z 
do not join until a lower leve! of similarity. 

SOKAL and MICHENER (rg58) suggested a clustering method without this pro
perty and which will be used below to illustrate another method of agglomerative 
polythetic cluster analysis. The method exists in two forms, the unweighted mean 
pair group (UMPG) and the weighted mean pair group (Wl\1PG), and they are most 
simply explained geometrically, in terms of distance. The method explained here 
is not exactly SoKAL and MICHENER's original method but is very similar (GOWER, 
rg67 a). In UMPG, replace the two nearest neighbours by a single combined meru
ber at their centroid (centre of gravity). Keep on repeating this process combin
ing individuals or previously combined groups of individuals. At any stage a 
combined group of individuals is represented by the centroid of the original posi
tions of the individuals. An objection to this method is that, if the original sample 



comprised several members each of several species, when groups representing two 
species are combined the position of the resulting centroid depends on the number 
of members of each species; i.e., on their relative abundance. Taxonomists do 
not usually want their classifications to depend on abundance, so the alternative 
\iVMPG method was devised. This differs from the UMPG method in that when 
two points (representing individuals or previous combinations of individuals) are 
joined they are replaced by a single point at the centre of the joining line, irres
pective of the number of individuals represented by each point. 

A minor disadvantage of these methods is that, when a point A is joined to a 
point B, the point replacing them may be doser to sorne other point than A was 
to B. This property of the methods is very unlikely to give trouble but it may 
mean that it is not always possible to write consistant similarity Ievels against 
each branch of the dendrogram as was possible in Fig. r. 

Both these forms of analysis used on the data of Fig. 2 give substantially the 
same results as a single linkage cluster analysis. The only difference is that (0, 
GF) or (L, GF) join arbitrarily at a higher level of similarity than the remaining 
citrus fruit. 

The possible dangers discussed above, arising from the relative abundance of 
different species are also relevant to sorne coefficients of similarity. In Table r, 
the proportion of times each character occurs can be calculated, thus hardness 

occurs ~ times and roundness ~ times, etc. These can be interpreted as esti

mates of probabilities of the occurrence of each character. Coefficients of simila
rity using these probabilities have been proposecl (see e.g. GooDALL (rg66) and 
McNAUGHTON-SMITH (rg65)). The danger of using such probabilities can be seen 
when we consider a sample consisting of only two species and we consider a cha
racter that is always + for one species and always- for the other. The estimated 
probability for this character will then be an estimate of the relative abundance 
of the first species; any value between o and r can be obtained by adjusting the 
sample sizes. There may be situations when this type of coefiicient is useful but 
the problems arising from abundance need more attention; GoWER (rg67 a) showed 
that there was implicit weighting from abundance in WILLIAMS and LAMBERT's 
association analysis and also in EDWARDS and CAVALLI-SFORZA's (rg65) cluster 
analysis method. 

4· Distance and Similarit_y. 

In the discussion so far, the complementary concepts of distance and simi
larity were used. In statistical writing the distance concept has been most used, 
whereas most taxonomists favour similarities. As was shown above it is easy to 
convert a similarity into a distance but because similarities are restricted to the 
range o, r, derived distances are sometimes also restricted (e.g. r - Similarity is 
restricted to the range between o and r but -log (Similarity) is not). 



The simplest distance to use with quantitative characters is obtained by regard
ing the character values as coordinate values referred to a set of rectangular axes, 
and using an extension of Pythagoras's theorem. Table 3 gives values for four 
quantitative characters for each of two imaginary individuals. 

Table J. The values of Jour q~tantitative characters for two individ~tals. 

Length (mm's) Breadth (mm's) H eight (mm's) Weight (Grm's) 

Indiviclual 1 . .... ..... . 

Individual 2 ...•. .•.••• 

10 
12 

1.5 
1.3 

The distance Jd 12 between the two individuals is calculated as 

3 
4 

d212 (10-12)2 + (1.5-1.3)2 + (3-4)2 + (21-24)2 
= 14.04 

21 
24 

Thus d12 = 3·75· An obvious objection is that this distance depends on the units 
of measurements of each character. Thus if length were measured in centimeters 
and not millimeters the value of d2

12 would be ro.o8. To avoid this it is usual 
to express every measurement in sorne standardized non-dimensional unit. This 
is usually achieved by dividing each measurement by its standard deviation cal
culated from all the values observed in the sample. This standardized measure 
of taxonomie distance, discussed in detail by SOKAL (rg6r), has been used for over 
50 years in statistical writings. Clearly if the two individuals had exactly the same 
measurements, d12 = o and the more they differ in their measurements the greater 
the distance becomes. This measure of distance is just as arbitrary as the choice 
of similarity coefficient ; there is no special reason, apart from convenience, for 
choosing rectangular axes as a coordinate framework for the character values and 
the method of normalizing is quite arbitrary. GowER (rg66, rg67 b) discusses these 
matters further. 

When there are many individuals in the sample, a triangular table, similar 
to that given in Table 2 can be calculated, whose elements are the distances between 
the individuals. The distances can be evaluated as above or by transforming a 
table of similarities S or obtained by sorne direct experimental means. The coor
dinates of points giving rise to these distances can be found, so that diagrams simi
lar to Fig. 2 can be drawn. These diagrams are helpful in examining interrela
tionships between closely related individuals, which do not admit hierarchical 
classification. It will only very rarely be possible to represent the given distances 
exactly in two or three dimensions. In the particular case of the distance defined 
above, the coordinates of the individuals can be taken as the actual observed values 
of the characters and this needs as many dimensions as there are different characters 



To economize in the number of dimensions, mathematical techniques have 
been devised for finding the best representation of the distances in a few dimen
sions. Details of these methods can be found in GowER (rg66) and examples of 
this type of analysis using data on mites were given by SHEALS (r964) and by 
SHEALS (rg6g). If the distance defined by Pythagoras's theorem is used, the ana
lysis is called a Principal Components Analysis and has sorne simplifying features; 
if any other distance is used I have termed it a Principal Coordinates Analysis. 
In either, a set of coordinates is found with the desired distances and the coordi
nate axes are ordered so that the coordinates referred to the first r axes give the 
best representation of these distances (in a least squares sense) using r dimensions. 
In principal components analysis these new axes can be related to those originally 
used to represent the sample, and this property can occasionally be used to give 
biological meaning to the new axes. 

The interpretation of principal axes, is again complicated by the relative pro
portions of two or more biological populations that may be in a sample. When 
two characters are distributed statistically in multivariate normal form, then a 
scatter diagram of these two characters will have approximately elliptical shape, 
and similarly for more than two characters. Thus either of the ellipses in Fig. 4 
could have arisen in this way. The principal axis of either of these two popula
tions is the major axis of the corresponding ellipse. With more samples, the 
ellipses can be expected to retain the same orientation so that the principal axes 
will remain fixed (within sampling variation) and are thus a reproducible property 
of the biological populations that may also have biological meaning. When the 
combined data are now analyzed, the principal component depends on the distance 
between the two centroids and the relative sizes of the two populations. If this 
distance is great compared with the within population scatter, the principal compo
nent will be approximately in the direction of the line joining the centroids; if 
small it will be approximately the resultant of the two separate principal compo
nents weighted by the population sizes, and is unlikely to have any useful meaning. 

Population A 

Principal 
Axis 

... .. .. .. 

:· ... : : . 

Principal 
Axis 

Population 

Approximate Principal 

Axis of Combined 
Populations 

FIG. 4· - A scatter diagram arisin.g from a sample of two characters observeà for two bioio
gical populations A and B (representing say different species). The areas enclosed will 
be elliptical when the two characters are normally distributed and the directions of the 
principal axes of each population are given by the major axes of the ellipses. 
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\iVhen all the characters are measured in identical units it is not necessary to 
standardize them in defining a distance. An interesting special case of this is 
when all characters are of the presence/absence type with r coded for presence 
and 0 for absence. If s12 is the simple matching coefficient between individuals 
one and two then d 2

12 = n(r- S12) when there are n characters in all. A prin
cipal components analysis of this type of data is therefore equivalent to choosing 
a distance vr -- S between pairs of individuals. 

In proximity analysis (developed by R. N. SHEPARD) a distance matrix is again 
the starting point and a low dimensional representation of these distances is sought. 
However, it sometimes happens that the distances are only very roughly known 
and, although individuals close together are probably more similar thau distant 
pairs of individuals, the absolute values of these distances cannot be relied on 
strongly. It is then reasonable to seek a low dimensional representation that pre
serves, so far as possible, the monotonie relationships among the original distances. 
SHEPARD (rg6za, b) and KRUSKAL (rg64a, b) show how this can be done. 

Factor analysis is sometimes used by taxonomists, but I do not think it rele
vant to taxonomie purposes. GowER (rg66) discussed the reasons further and 
showed that it is likely to give very similar results to the simpler principal com
ponents analysis. 

5. The 1 dentification Problem. 

In the grouping problem individuals are grouped into species becmtse they 
have many characters in common; distances used to solve such problems should 
take this into account. The more characters there are in common, the stranger 
the conviction that a "natural" grouping has been found. These common cha
racters may of course be highly correlated in the sample but this is not necessarily 
so -vvhen, for example, the characters have low correlation for sorne species and 
high correlation for others. It is sometimes said that correlations should be eli
minated when defining distances suitable for the grouping problem, but this seems 
to be because of confusion with the needs of the identification problem discussed 
below. An example illustrates the point. Suppose we have a sample of different 
species of cats and dogs, although we do not as yet know it. Two characters might 
be 

(r) Does the animal possess claws it can extend ? 
(z) Does the animal have a third eyelid which moves transversely across its 

eye? 

These two characters will be completely correlated in the sample and are two 
of the characters that lead. us to distinguish cats from dogs. If, because of the 
perfect correlation, we eliminate one of the two characters, we are obscuring this 
difference. In general when all such characters, except one, are eliminated we 
are left mainly with those characters that tell us nothing about the differences 

Acart'logia, t. XI, fasc. 3. rg6q. 24 
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between cats and dogs (e.g., length of fur) and the sample would seem homoge
neous. 

The distances discussed in Section 4 are suitable for the grouping problem but 
the identification problem is quite different because the different groups are already 
defined. This may be clone by describing single type specimens or by reference 
to samples of individuals that reflect the natural variation within the group. Species 
groupings may have been suggested by a cluster analysis of the type discussed 
earlier. Correlations between characters must now be eliminated, because if two 
characters are completely correlated within a group, a knowledge of the value of 
both of them does not add any more information for identification than is avai
lable from either one. 

Statisticians tend to think of the variable characters of species, particu.larly 
quantitative measurements, and have provided techniques to identify sample indi
viduals assu.med to belong to one of two or more known populations ; this is known 
as discrim,inant analysis; taxonomists have been more interestecl in constructing 
keys based on qualitative characters. 

The basis of discriminant analysis is to imagine the frequency distributions 
of each population and to assign individuals so that the probability of their mis
classification is minimum. Clearly the more overlap there is between populations 
the more likelihoocl of misclassification. Discriminant analysis is therefore most 
useful in those situations where there are no clear eut distinctions between popu
lations and is mainly relevant to the identification of closely related species or 
subspecies ; for example, it proved useful in the description of island races of mice 
and shrevvs, (DELANY & HEALY, 1964, rg66). The techniques of discriminant 
analysis have been little examined except when within species variation is mul
tivariate normal (possibly after transformation), preferably with the same disper
sion matrix for every species. Uncler these conditions the bounclaries used to 
cliscriminate between species are linear combinations of the variate values. The 
probability of misclassification can be interpretecl in terms of a distance D which, 
when squared, is known as Mahalanobis's D2-statistic; D is the distance between 
the two population means after eliminating the effects of correlations. When 
there are several populations, a table like Table 2 can be drawn up in which an entry 
is the value of D2 between the two populations represented by the row and column 
in which the entry occurs. The principle coorclinates technique can be used to 
draw diagrams, like that of Fig. 2 in which each point represents a population 
mean. The variation of each species about its mean can be inclicated by drawing 
circles with the mean as centre. The wider the radius then the greater proportion 
of the population can be expected to lie within the circle; it is usual to choose 
the radius so that the circle contains 90-95% of the population. Although D2 is 
associated with the identification problem, tables of D2 values may be useful in 
the grouping problem when it is clesirecl to group the species into higher aggre
gates such as genera. 

The value of D2 can also be evaluated between a single sample individual and 
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a population. This gives a simple interpretation to discriminant analysis, becau.se 
if there is a single sample to be assigned to one of several populations the values 
of D giving the distance of the sample from each population can be evalu.ated. 
The nearest population is the best one to assign the sample to. The probability 
of getting a value of D as large as the one observed (or equivalently whether the 
sample point lies within the circles discussed above) can be calcu.lated to see if it 
is reasonable to regard the sample as belonging to any of the populations. This 
use of D 2 is valid even when the populations have different dispersion matrices 
and requ.ires only that characters are distributed symmetrically (possibly after 
transformation). See CooPER (1963, 1965) for more information on this topic. 

When the distribution of the character values do not fall into any of the classes 
discussed above, practical techniques for discriminant analysis do not exist ; 
althou.gh the mathematical theory is kno-vvn (RAo, 195:2) the numerical calcu.lations 
become u.nwieldy and difficult to specify. A more serions practical difficulty is 
that often too little is known about the qualitative and quantitative characters 
available to set up any acceptable multivariate distribution that they can be sup
posed to follow. 

Quantitative characters may be altered by growth and the sensitivity of dis
crimination reduced. DELANY and HEALY (1964) showed how the growth of 
young animais into larger adu.lts can be allowed for using standard statistical 
regression techniques and BuRNABY (1966) discussed how to combine the necessary 
adjustments into the standard discriminant analysis. There are further diffi
culties when sorne characters grow at different rates from others; HOPKINS (rg66) 
discussed this problem and gives fu.rther references. 

The uses of discriminant analysis were surveyed by BARTLETT (r965), who 
gives examples of discrimination between populations with different dispersion 
matrices and possibly with the same mean. BARTLETT also discusses Penrose's 
method for separating size and shape components and Fisher's method for assessing 
optimum scores for the different levels of a qualitative character. This latter is 
useful in many taxonomie situations, but so far as I am aware, has never been 
used by taxonomists. 

\iVhen qualitative characters are used there is no question of overlap between 
the species and identification, strictly speaking, is possible only when complete 
agreement between the sample and type specimen exists, althou.gh even 
when agreement is not exact, it is still possible to ask what species the sample 
most resembles. 

The question u.sually asked by taxonomists is how can an identification key 
be devised so that individu.als can be identified with the fewest steps. I know 
of no general algorithm to answer this question, but many monothetic grouping 
methods are clearly influenced by the design of keys. GowER (r967 a) su.ggested 
that WILLIAMS and LAMBERT's (1959) monothetic "association analysis" may be 
better for determining a key than for assigning groups. At any stage the value 
of one particular character is required and this diminishes the number of possible 
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species to which the sample can belong; further steps of this process eventually 
narrow the identification down to a single species. 

The following points need to be kept in mind when trying to devise a key, 
whether automatically or by trial and error : 

(r) If a mistake is made or the individual being identified is aberrant in sorne 
way, the wrong branch of the hierarchical key will be followed and identi
fication will be impossible. Cross referencing betvveen one branch and ano
ther can be used to overcome the danger. 

(z) It is difficult to include quantitative characters in a key, especially when 
there is overlap between species. 

(3) Quicker identification might be obtained by considering the characters in 
conjunction with one another and not just in isolation. 

(4) It might sometimes be better not to use the most direct way of identi
fying an individual, but to recognize that sorne characters are more easily 
or more cheaply observed thau others and are therefore more economie 
to use. 

Although taxonomists argue about the advisability of tlsing numerical methods 
to determine groups, there seems less reason to disapprove of any attempt to 
mechanize the identification process. This involves both the determination of 
the best set of rules to follow when identifying an individual and the process of 
using these rules for identification. The closely related problem of (medical) 
diagnosis has already been studied intensively. 

6. Phylogenetic Background. 

Classifications found by the methods discussed earlier are based on general 
resemblance between pairs of individuals and therefore cannot daim any evolu
tionary basis. Because of the biological phenomena of mimicry and evolutionary 
convergence, a morphological classification may be quite different from a phylo
genetic one. Nevertheless, when enough characters are taken, sorne morpholo
gical, sorne biochemical, sorne histological, etc., those characters that are similar 
from convergence or mimicry, might be expectecl to be far outweighed by the others 
and so the phenetic classification might be acceptecl as being at least an approxi
mation to a phylogenetic one. 

Most taxonomists woulcl rightly view such an approach with suspicion and 
would want to base their phylogenetic classifications on any fossil record and 
collate their results with geological information. If fossils are pheneticly classi
fied there is no guarantee that accepted evolutionary principles will not be broken. 
For example, it may be found that a classification is suggested in which C is sup
posecl to have evolved from B and B from A ; this might involve one or more cha
racters in changing from a primitive state to a specialised one and back again. 
To avoid this sort of difficulty, CAMIN and SoKAL (rg65) have suggested that a 
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phylogenetic classification might be constructed directly from the table of cha
racter states. Each character state is given an integer number representing its 
supposed stage of development from the most primitive (0). To do this, a fair 
amount must be known about the development of the group. The next step is 
to fit an evolutionary tree to the character states without violating a set of rules 
governing the type of step allowed in an evolutionary change of character. Usually, 
many possible trees can be fitted and the criterion taken is to select the tree with 
the fewest evolutionary steps. CAMIN and SOKAL (rg65) were not able to give 
an exact logarithm for finding this but suggested several approximate methods. 
They found their methods useful and have for example successfully constructed 
phylogenies for the fossil horses. They daim also that their methods reveal cha
racters that have been wrongly coded and have shown empirically (for the fossil 
horses, for example) that presumed ancestral forms can be reconstructed within 
reasonable bounds when doubtful characters are omitted from the analysis. 

This type of analysis seems promising and is more in agreement with the das
sical taxonomists' approach than other forms of cluster analysis. The rules govern
ing the evolutionary steps allowed may be a source of disagreement, but one advan
tage of this general approach is that the effects of choosing different sets of rules 
can be studied. For example, CAMIN and SOKAL (rg65) appear to allow a cha
racter to take the same step on different branches of phylogeny ; this permits the 
same evolutionary change to occur independently on more than one occasion and 
might not be allowed by other taxonomists. 

A branch of mathematics that may be useful in the construction of trees with 
the minimum number of steps is that part of "mathematical programming" that 
deals with finding the shortest path through a set of points. A typical problem 
of this kind is to find an optimum route from a point A1 to a point An given a map 
of a set of points AvA2, ••• ,An which has sorne (but not necessarily all) of the joins 
AiAi and their lengths. In its simplest form the shortest route from A1 to An 
is required but it might also be stipulated that all the points Ai be visited at least 
once (this is the travelling salesman problem) and further we might require that 
A1 is the same as An (i.e., we must return to the starting point). An example of 
an algorithm for a problem of this sort can be found in NICHOLSON (rg66), which 
gives further references. BooTHROYD (rg67) has published Algol programs for 
Nicholson's and related methods. 

In the present context a map might be drawn where each point Ai represents 
an individual. I t will not in general be possible to go from Ai to Ai by a set of 
forward evolutionary steps but there is always a hypothetical common ancestor A. 
Thus we consider a map with the points Ai and a hierarchy of common ancestors 
from which we select the minimum spanning tree containing all the original indi
viduals. 
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Conclusion. 

This brief survey has outlined the main types of numerical methods useful 
to taxonomists. It is clear that much remains to be doue and that much that is 
already done is far from perfect. This is no reason to reject the whole structure 
out of hand, rather it demonstrates a need for discussion and constructive criti
cism, so that any deficiencies are clearly understood and so far as possible remedied. 
I suspect that one of the most important results of the increased use of numerical 
methods in taxonomy has been the re-examination of basic principles. 

Summary. 

The principles underlying sorne numerical methods useful in taxonomy are 
described. The mathematical treatment is elementary and is intended to give 
an introduction to the subject that can be supplemented by further reading. Clas
sification, identification and the construction of phylogenies are discussed. As a 
first step towards improving the methods, attention is drawn to sorne of their 
deficiencies. Only by understanding the principles can taxonomists judge the 
usefulness, or otherwise, of numerical methods. 
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