Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €

http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2018): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
PLANT MITES (ACARI) FROM NORTHEASTERN BRAZIL, WITH DESCRIPTIONS OF TWO NEW SPECIES OF THE FAMILY PHYTOSEIIDAE (MESOSTIGMATA)

BY I. P. FURTADO 1, S. KREITER 2, G. J. DE MORAES 3, M.-S. TIXIER 2, C. H. W. FLECHTMANN 3, M. KNAPP 4

(Accepted November 2004)

INTRODUCTION

The tomato red spider mite (Tetranychus evansi Baker & Pritchard) was originally described from the Mauritius Island and was subsequently found in several other countries around the world (Baker & Pritchard, 1960; Moraes et al., 1987). Most recently, it has also been collected in parts of Africa (Knapp et al., 2003), where it has caused considerable damage to tomatoes, and in southern Europe (Ferragut & Escudero, 1999), where damage is now being assessed. This mite seems to infest mostly solana-

1. Universidade Regional do Cariri (URCA), Rua Cel. Antonio Luiz 1161, 63100-000 Crato, CE Brasil. ipfurtado@starmedia.com
2. Ecole Nationale Supérieure Agronomique/Institut de la Recherche Agronomique (ENSAM/INRA), Unité d’Écologie animale et de Zoologie agricole, Laboratoire d’Acarologie, 2 place Pierre Viala, 34060 Montpellier cedex 01, France. garcin@ensam.inra.fr, kreiter@ensam.inra.fr
3. CNPQ Researchers, USP/ESALQ, Departamento de Entomologia, Fitopatologia e Zoologia Agricola, 13418-900 Piracicaba - SP, Brazil. gimoraes@carpa.ciagri.usp.br, chwflech@carpa.ciagri.usp.br
4. ICIPE, PO Box 30772, 00100 Nairobi, Kenya. mknapp@ICIPE.org

ology (ICIPE), Escola Superior de Agricultura Luiz de Queiroz/ Universidade de São Paulo (ESALQ/USP) and Ecole Nationale Supérieure Agronomique de Montpellier (ENSA.M). The objective of the work reported in this paper was to search for prospective natural enemies of *T. evansi* on solanaceous plants examined in a survey in parts of northeastern Brazil.

Material and Methods

The survey was conducted in October 2002 in areas of the States of Pernambuco, Paraíba, Rio Grande do Norte and Ceará. The collections were done along a route between the cities of Recife (Pernambuco) and Crato (Ceará), with stops programmed for ca. every 50 km, where native and cultivated solanaceous plants were examined. Part of the leaves was examined directly in the field using hand lenses and part was taken for examination under a dissecting microscope. Mites were collected directly on leaves with a brush in 70% ethyl alcohol and later mounted in Hoyer’s medium for identification.

Geographic coordinates of each site were recorded with a Garmin e-Trex Summit GPS (Garmin International Inc., Olathe, Kansas, USA).

The setal nomenclature used in this paper is that of Rowell et al. (1978) for dorsal and Cram & Yalden (1991) for ventral idiosomal setae.

The generic classification of Chant & McMurtry (1994) is used for the Typhlodrominae and Phytoseiinae and of Chant & McMurtry (2003a, b) for Amblyseiinae and Kampimodromini and the generic acceptance of Moraes et al. (2004) for all other tribes of Amblyseiinae.

Adenotaxy and poroidotaxy terminology is that of Athias-Henriot (1975). All measurements are given in micrometers.

Specimens of each species are deposited in the mite collections of ESALQ/USP and of ENSA.M/INRA.

Results and Discussion

A total of 354 mites were collected in this survey, on 27 plant species. The species found are subsequently listed, with the respective taxonomic information as well as information on the plant species on which they were found and the collection sites.

Phytoseiidae

Amblyseius largoensis (Muma)

Specimens examined. *Rio Grande do Norte*: Santa Maria, 103 m altitude, 5°51’ S, 35°37’ W, on *Anacardium occidentale*.

Amblyseius leai Tixier & Kreiter, n. sp. (Figs. 1-5)

Female (2 specimens measured). *Dorsum* (Fig. 1). Dorsal shield smooth with a median line on the anterior part, 335-337 long, 210-220 wide; Seventeen pairs of dorsal setae, two sub-lateral setae, no visible solenostomes. The measurements of setae of 2 adult females are: j1 30, j3 48-50, j4 8, j5 5, j6 5, j7 5-7, j5 8, z2 and z4 10-12, z5 5, Z1 8-10, Z4 90-92, Z5 175-187, s4 88-90, S2 8-10, S4 and S5 8, r3 20-22, R1 8. All setae smooth except for Z4 and Z5 which are lightly serrated.

Peritreme (Fig. 1). Extending to j1.

Venter (Fig. 2). Sternal shield with 3 pairs of setae. Distances between setae St1-St3 55-65, St2-St2 70-75, St4-St5 65-70. Seta ST4 on a small metasternal shield with a pore. With 1 visible pair of metapodal shields. Length of primary metapodal plate 20, width 8. Ventrianal shield 112-115 long, 62-82 wide at level of ZV2 and 68-72 wide at level of anus; with 3 pairs of preanal setae (JV1, JV2, ZV2) and a pair of large preanal pores. Remaining opisthogastric setae (JV4, JV5 and ZV1) on soft membrane. JV5 57-67.

Legs (Fig. 3). Genu II bearing 8 setae: 2-2/0,2/1-1). Macrostae of the following lengths: SgeI 35, SgeII 32-35, SgeIII 37-40, StIII 28, SgeIV 70-75, StIV 40-45, StIV 58-68.

Chelicera (Fig. 4). Movable digit 30 long, with 3 teeth; fixed digit 27, with 12 teeth.

Spermatheca (Fig. 5). Calyx cup-shaped, 9 long and 8 in diameter near vesicle; atrium and minor duct distinct.
Male: Unknown.

Remarks: This species is similar to *Amblyseius andersoni* (Chant, 1957) from which it differs by the more parallel margins of the ventrianal shield near ZV2, by having 12 rather than 8 teeth on the fixed digit of the chelicera, by the longer Z4 and slightly shorter Z5 setae.

Type material: Holotype female from Viçosa, State of Ceará, 752 m altitude, 3°35′ S, 41°06′ W, on *Urtica* sp., deposited at Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, ESALQ/USP, 13418-900 Piracicaba-SP, Brazil; female paratype from Goianinha, Rio Grande do Norte, 92 m altitude, 6°28′ S, 35°06′ W, on *Solanum* sp.3, deposited at Laboratoire d’Acarologie, ENSA.M/INRA, Montpellier cedex 01, France.

Etymology: This species is named *leai* as it is dedicated to Léa, daughter of Marie-Stéphane Tixier.

Amblyseius lynnae McMurtry & Moraes

Specimens examined. Ceará: Viçosa, 775 m altitude, 3°34′ S, 41°05′ W, on *Solanum* sp.2.

Amblyseius operculatus De Leon

Specimens examined. Ceará: Tiangüá, 705 m altitude, 3°04′ S, 40°58′ W, on *Solanum* sp.1; Viçosa, 775 m altitude, 3°34′ S, 41°05′ W, on *Solanum* sp.2.
Euseius alatus De Leon

Specimens examined. *Ceará*: Itapajé, 52 m altitude, 3°40′ S, 39°06′ W, on *Terminalia catappa*; Tiangüá, 800 m altitude, 3°43′ S, 40°59′ W, on *Euphorbia pulcherima* and *Hibiscus* sp. *Rio Grande do Norte*: Santa Maria, 103 m altitude, 5°51′ S, 35°37′ W, on *Anacardium occidentale*.

Euseius citrifolius Denmark & Muma

Specimens examined. *Ceará*: Sobral, 126 m altitude, 3°41′ S, 40°21′ W, on *Annona* sp. *Rio Grande do Norte*: Mossoró, 44 m altitude, 4°56′ S, 37°24′ W, on *Anacardium occidentale*; Natal, 100 m altitude, 6°07′ S, 35°13′ W, on *Solunum paniculatum*.

Euseius concordis (Chant)

Specimens examined. *Ceará*: Cascavel, 22 m altitude, 4°34′ S, 37°44′ W, on *Ricinus communis*; Cascavel, 51 m altitude, 4°09′ S, 38°14′ W, on *Ricinus communis*; Itapajé, 52 m altitude, 3°40′ S, 39°06′ W, on *Anacardium occidentale* and *Terminalia catappa*; Sobral, 126 m altitude, 3°41′ S, 40°21′ W, on *Annona* sp.; Tiangüá, 216 m altitude, 3°09′ S, 40°55′ W, on *A. occidentale*; *Rio Grande do Norte*: Mossoró, 44 m altitude, 4°56′ S, 37°24′ W, on *A. occidentale* and *R. communis*; Natal, 100 m altitude, 6°07′ S, 35°13′ W, on *Solunum paniculatum*.

Associated mite species: *Mononychellus tanajoa* (Bondar) and *Tetranychus neocaledonicus* (Andrè) (Tetranychidae).

Amblyseius tamatavensis Blommers

Specimens examined. *Ceará*: Viçosa, 794 m altitude, 3°34′ S, 41°06′ W, on *Passiflora edulis*.

Associated mite species: *Mononychellus tanajoa* and *Tetranychus* sp. (Tetranychidae).

Fig. 3. — Leg IV of female *Amblyseius leai* n. sp.

Fig. 4. — Chelicera of female *Amblyseius leai* n. sp.

Fig. 5. — Spermatheca of female *Amblyseius leai* n. sp.
Euseius ho (De Leon)

Specimens examined. Ceará: Viçosa, 794 m altitude, 3°34' S, 41°06' W, on a Leguminoseae.

Euseius sibelius (De Leon)

Amblyseius (Typhlodromalus) sibelius De Leon, 1962; Euseius sibelius, Muma et al., 1970; Feres & Moraes, 1998; Euseius subalatus, De Leon, 1965 (synonymy according to Muma et al., 1970).

Specimens examined. Ceará: Aracati, 28 m altitude, 4°20' S, 37°38' W, on Solanum sp.3; Barbalha, 699 m altitude, 7°18' S, 39°23' W, on Triumfetta sp.

Neoparaphytoseius sooretamus (El-Benhawy)

Specimens examined. Paraíba: João Pessoa, 25 m altitude, 7°24' S, 34°57' W, on Solanum sp.2.

Neoseiulus barreti Kreiter, n. sp. (Figs. 6-9)

Female (2 specimens measured).

Dorsum (Fig. 6). Dorsal shield lightly sclerotized, 295-298 long, 148-160 wide; Seventeen pairs of dorsal setae, two sub-lateral setae, 6 pairs of solenostomes (gd1, gd2, gd5, gd6, gd8, gd9) and 14 pairs of poroids. j1 23-25, j3 35-38, j4 15-18, j5 18, j6 20-23, J2 25, J5 8, z2 33, z3 33-38, z4 18, Z1 25-30, Z4 45-50, Z5 50-55, s4 45-48, S2 43-48, S4 23-25, S5 23, r3 30, R1 30-33. All setae smooth except Z4 and Z5, which are serrated.

Fig. 6. — Dorsal shield of female Neoseiulus barreti n. sp.

Fig. 7. — Ventral shields of female Neoseiulus barreti n. sp.
Peritreme (Fig. 6). Extending almost to the level of j1.

Venter (Fig. 7). All shields lightly sclerotized. Sternal shield with 3 pairs of setae. Distances between setae St1-St3 53-55, St2-St2 63, St5-St5 60. Seta ST4 on a small metasternal shield with a pore. With two pairs of metapodal shields, one small and short, one longer and larger. Length of primary metapodal plate 17-22, width 5. Ventrianal shield 95-103 long, 73 wide at level of ZV2 and 63-68 at the level of anus; with 3 pairs of preanal setae (JV1, JV2, ZV2) and a pair of large preanal pores. Remaining opisthogastric setae (JV3, JV4, JV5 and ZV1) on soft membrane. One pair of small platelets on the surrounding membrane of the ventrianal shield. JV5 35-42.

Legs (Fig. 8). Genu II with 7 setae (2-2/0,2/0,1). Three thick lightly knobbed macrosetae on the leg IV with the following lengths: SgeIV 15-20, StIIV 15-17, StIV 27-32. No macrosetae on other legs.

Chelicera. With two teeth on the fixed digit and no distinguishable tooth on the movable digit.

Spermatheca (Fig. 9). Calyx trumpet-shaped, 18 long, 5 in diameter medially, 12 in diameter near vesicle; atrium and minor duct distinct.

Male: Unknown.

Diagnosis: This species differs from Neoseiulus neoaurescens (Moraes & Mena, 1988) by the longer dorsal shield setae, especially j3, J2, z4, z5, Z1 and R1, by the shorter macrosetae on genu and tarsus of leg IV and by the shape of the spermatheca without a constricted cervix and a bifid atrium.

Type material: Holotype female from Itapajé, 52 m altitude, 3°41’ S, 39°06’ W, on Solanum paniculatum, deposited at Departamento de Entomologia, Fitopatologia e Zoologia Agrícola, ESALQ/USP, 13418-900 Piracicaba-SP, Brazil; female paratype, same data as holotype, deposited at Laboratoire d’Acarologie, ENSA.M/INRA, 34060 Montpellier cedex 01, France.

Etymology: This species was named in honor of Daniel Barret, a student of Serge Kreiter, who has greatly contributed to the knowledge of the plant phytoseiid mites relationships.

Neoseiulus idaeus Denmark & Muma

Neoseiulus idaeus Denmark & Muma, 1973; Amblyseius idaeus, Moraes & McMurtry, 1983.

Specimens examined. Ceará: Tiangúá, 800 m altitude, 3°43’ S, 40°59’ W, on Erythrina indica.

Associated mite species: Tetranychus neocaldonicus (André) (Tetranychidae).

Typhlodromips tunus (De Leon)

Specimens examined. Ceará: Viçosa, 752 m altitude, 3°35’ S, 41°06’ W, on Triumfetta sp. and Urtica sp.

Paraphytoseius multidentatus Swirski & Shechter

Specimens examined. Ceará: Tiangúá, 941 m altitude, 3°58’ S, 40°52’ W, Solanum paniculatum; Tiangúá, 794 m altitude, 3°35’ S, 41°06’ W, Solanum paniculatum; Viçosa, 775 m altitude, 3°34’ S,
41°05’ W, on a Leguminosae and *Solanum* sp.2; Ibiapina, 752 m, 3°35’ S, 41°06’ W, on *Solanum* sp.2 and *Urtica* sp. *Paraiba*: João Pessoa, 25 m altitude, 7°24’ S, 34°57’ W, on *Solanum* sp.3. *Pernambuco*: Goiana, 83 m altitude, 7°36’ S, 34°58’ W, on *Solanum* sp.3. *Rio Grande do Norte*: Goianinha, 92 m altitude, 6°28’ S, 35°06’ W, on *Solanum* sp.3 and *S. paniculatum*; Natal, 100 m altitude, 6°07’ S, 35°13’ W, on *S. paniculatum* and *Solanum* sp.3.

Associated mite species: *Monychellus tanajoa* (Bondar) (Tetranychidae).

Phytoseiulcus macropilis (Banks)

Laelaps macropilis Banks, 1906; *Hypoaspis macropilis*, Banks, 1915; *Phytoseiulus macropilis*, Muma et al., 1970; McMurtry, 1983; Denmark & Schicha, 1983; Kreiter & Moraes, 1997; *Phytoseiulus chantihara*, Ehara, 1966 (synonymy according to Denmark & Muma, 1973); *Phytoseiulus speyeri* Evans, 1952 (synonymy according to Kennett, 1958).

Specimens examined. Ceará: Tiangüá, 941 m altitude, 3°58’ S, 40°52’ W, on *Solanum paniculatum*; Tiangüá, 800 m altitude, 3°43’ S, 40°59’ W *Hibiscus* sp.; Tiangüá, 758 m altitude, 3°44’ S, 41° W, on *Solanum* sp.3.

Typhlodromalus aripo De Leon

Specimens examined. Ceará: Viçosa, 775 m altitude, 3°34’ S, 41°05’ W, on *Convolvulaceae*; Viçosa, 794 m altitude, 3°34’ S, 41°06’ W, on *Solanum paniculatum*; Viçosa, 752 m altitude, 3°35’ S, 41°06’ W, on *Urtica* sp. *Paraiba*: João Pessoa, 25 m altitude, 7°24’ S, 34°57’ W, on *Solanum* sp.3. *Rio Grande do Norte*: Goianinha, 92 m altitude, 6°28’ S, 35°06’ W, on *S. paniculatum*.

Typhlodromalus peregrinus (Muma)

Specimens examined. *Paraiba*: João Pessoa, 25 m altitude, 7°24’ S, 34°57’ W, on *Solanum* sp.3; Ceará: Mamanguape and 210 m altitude, 6°44’ S, 35°07’ W, on *Solanum* sp.3. *Pernambuco*: Goiana, 83 m altitude, 7°36’ S, 34°58’ W, on *Solanum* sp.2. *Rio Grande do Norte*: Goianinha, 92 m altitude, 6°28’ S, 35°06’ W, on *Solanum paniculatum* and *Solanum* sp.3.

Associated mite species: *Monychellus tanajoa* (Bondar) (Tetranychidae).

Phytoseiulus guianensis De Leon

Phytoseiulus guianensis De Leon, 1965; Denmark & Muma, 1973; Moraes & McMurtry, 1983; *Phytoseius* (*Phytoseius*) *guianensis* Denmark, 1966.

Specimens examined. Ceará: Araçati, 28 m altitude, 4°20’ S, 37°58’ W, on *Solanum paniculatum* and *Solanum* sp.3; Fortaleza, 43 m altitude, 3°53’ S, 38°25’ W, on *S. paniculatum*; Viçosa, 752 m altitude, 3°35’ S, 41°06’ W, on *Solanum americanum*; Ubaíara, 941 m, 3°58’ S, 40°52’ W, on *Solanum* sp.1 and *S. paniculatum*; near Ibiapina, 916 m, 3°52’ S, 40°54’ W, on *S. paniculatum* and *Solanum* sp.2. *Pernambuco*: Recife, 26 m altitude, 8°00’ S, 34°56’ W, on *S. paniculatum*. *Rio Grande do Norte*: Macaíba, 100 m altitude, 6°07’ S, 35°13’ W, on *S. paniculatum*; Santa Maria, 51 m altitude, 5°52’ S, 35°19’ W, on *S. paniculatum*; Mossoró, 103 m altitude, 5°51’ S, 35°37’ W, on *S. paniculatum*; near Mossoró, 28 m altitude, 4°20’ S, 37°58’ W, on *S. paniculatum*; near Mossoró, 21 m altitude, 4°31’ S, 37°47’ W, on *S. paniculatum*.

Associated mite species: *Tetranychus* sp. and *Monychellus tanajoa* (Bondar) (Tetranychidae), *Brevipalpus phoenicis* (Geijskes) (Tenuipalpidae).

Typhlodromina subtropica Muma & Denmark

Typhlodromina subtropica Muma & Denmark, 1969; Muma et al., 1970; Chant & Yoshida-Shaul, 1983; Moraes & McMurtry, 1983.
Specimens examined. **Pernambuco**: Goiana, 83 m altitude, 7°36' S, 34°58' W, on *Solanum* sp.3.

Tetranychidae

Mononychellus tanajoa (Bondar)

Specimens examined. **Pernambuco**: Goiana, 83 m altitude, 7°36' S, 34°58' W, on *Solanum* sp. **Ceará**: Aracati, 28 m altitude, 4°20' S, 37°58' W, on *Solanumpaniculatum*; Itapajé, 52 m altitude, 3°41' S, 39°06' W, on *Anacardiumoccidentale*; Tiangüa, 216 m altitude, 3°09 S, 40°55 W, on *S.paniculatum*; Tiangüa, 758 m altitude, 3°04' S, 40°58' W, on *Solanum* sp.; Viçosa, 794 m altitude, 3°34' S, 41°06' W, on *Passifloradulis*; *S. paniculatum and Solanum* sp.: Barbalha, 699 m altitude, 7°18' S, 39°23' W, on *Manihot esculenta*.

Mononychellus sp.

Specimens examined. **Rio Grande do Norte**: Mossoró, 21 m altitude, 4°31' S, 37°47' W, on *Solanumpaniculatum*.

Oligonychus sp.

Oligonychus Berlese, 1886

Specimens examined. A few females in **Ceará**: Macaiba, 51 m altitude, 5°52' S, 35°19' W, on *Solanumpaniculatum*.

Tetranychus prob. abacae Baker & Pritchard

Specimens examined. A few females of a *Tetranychus*, most likely *T. abacae*, in **Ceará**: Guaraciaba do Norte, 940 m altitude, 4°08' S, 46°47' W, on *Musa paradisiaca*.

Tetranychus desertorum Banks

Tetranychus desertorum Banks, 1900.

Specimens examined. **Ceará**: Ibiapina, 941 m altitude, 3°58' S, 40°52' W, on *Solanumpaniculatum*.

Tetranychus evansi Baker & Pritchard

Specimens examined. **Rio Grande do Norte**: Mossoró, 21 m altitude, 4°31' S, 37°47' W, on *Solanumpaniculatum*. **Ceará**: Tiangüa, 758 m altitude, 3°44' S, 41°00' W, on *S.grandiflorum and Solanum* sp.; Viçosa, 794 m altitude, 3°34' S, 41°06' W, on *Lantana* sp.; Guaraciaba do Norte, 940 m altitude, 4°08' S, 46°47' W, on *Lycopersiconesculentum*; Barbalha, 699 m altitude, 7°18' S, 39°23' W, on *S.paniculatum*.

Tetranychus neocaledonicus André

Tetranychus neocaledonicus André, 1933.

Specimens examined. **Ceará**: Cascavel, 51 m altitude, 4°09' S, 38°14' W, on *Ricinuscommunis*; Tiangüa, 800 m altitude, 3°43' S, 40°59' W, on *Erythrina* sp.

Tetranychus sp.

Tetranychus Dufour, 1832

Specimens examined. **Pernambuco**: Recife, 26 m altitude, 8°00' S, 34°56' W, on *Solanumpaniculatum and Solanum* sp.; **Rio Grande do Norte**: Natal, 100 m altitude, 6°07' S, 35°13' W, on *Solanum* sp.3. **Ceará**: Aracati, 28 m altitude, 4°02' S, 37°58' W, on *Solanum* sp.3; Cascavel, 51 m altitude, 4°09' S, 38°14' W, on *S.paniculatum*; Itapajé, 52 m altitude, 3°41' S, 39°06' W, on *S.paniculatum*; Tiangüa, 758 m altitude, 3°44' S, 41°00' W, on *S.paniculatum*; Viçosa, 794 m, 3°34' S, 41°06' W, on *Passifloradulis*; Viçosa, 794 m, 3°34' S, 41°06' W, on *Passifloradulis and Solanum* sp.2.

Tenuipalpidae

Brevipalpusphoenicis (Gejskes)

Tenuipalpusphoenicis Gejskes, 1939; *Brevipalpusphoenicis* (Gejskes) Sayed, 1946.

Specimens examined. **Pernambuco**: Recife, 26 m altitude, 8°00' S, 34°56' W, on *Solanumpaniculatum*. **Rio Grande do Norte**: Santa Maria, 103 m altitude, 5°51' S, 35°37' W, on *S.paniculatum*. Cearámirim, 111 m altitude, 5°43' S, 35°29' W, on *S.paniculatum*; **Ceará**: Aracati, 28 m altitude, 4°02' S, 37°58' W, on *S.
paniculatum; Cascavel, 51 m altitude, 4°09' S, 38°14' W, on S. paniculatum; Tiangüá, 216 m altitude, 3°09 S, 40°55 W, on S. paniculatum; Viçosa, 794 m altitude, 3°34' S, 41°06' W, on Solanum sp.; Caucaia, 2 m altitude, 3°34' S, 38°38' W, on S. paniculatum.

Brevipalpus sp.

Brevipalpus Donnadieu, 1875.

Specimens examined. Ceará: Tiangüá, 705 m altitude, 3°41' S, 40°58' W, on Bauhinia sp.; Viçosa, 775 m altitude, 3°34' S, 41°05' W, on Solanum sp.2.; Viçosa, 794 m altitude, 3°34' S, 41°06' W, on S. paniculatum; Viçosa, 752 m altitude, 3°35' S, 41°06' W, on S. paniculatum; Itapajé, 52 m altitude, 3°41' S, 39°06' W, on S. paniculatum; Ubajara, 916 m altitude, 3°52' S, 40°54' W, on S. paniculatum; Ibiapina, 941 m altitude, 3°58' S, 40°52' W on S. paniculatum and Solanum sp.2.

Remarks

The main emphasis in this study was to examine solanaceous plants, on which *T. evansi* and its natural enemies were expected to be most probably found. Unfortunately the diversity of this plant group in the region where the study was conducted was low. Some effort was dedicated to search for those mites on commercial plantations of tomatoes and other solanaceous plants but none were found probably because of the heavy usage of pesticides on those crops.

Within the family Phytoseiidae, Amblyseiinae was by far the most diverse group in this study. Eighteen of the species found belong to the subfamily, while just three species belong to the subfamily Phytoseiinae and one, to the subfamily Typhlodrominae. Nevertheless, one of the two most ubiquitous and abundant species collected, namely *P. guianensis*, belongs to the subfamily Phytoseiinae. Only *P. multidentatus*, of the subfamily Amblyseiinae, was about as ubiquitous and abundant as *P. guianensis*. This is apparently related to the fact that the most common plant species sampled in this study was Solanum paniculatum. Despite belonging to different subfamilies, *P. guianensis* and *P. multidentatus* are morphologically very similar in some respects, as the names of the genera indicate. The morphological similarity between *Phytoseius* and *Paraphytoseius* and its possible relation to ecological convergence was discussed by Beard & Walter (1996). One of the characteristics they share is the elongate idiosoma, which seems to turn them well adapted to living on hairy leaves.

The very common occurrence of *P. guianensis* and *P. multidentatus* on solanaceous plants in northeastern Brazil, although not always in association with *T. evansi*, has suggested that those should be the first species to be considered in detailed laboratory studies as to their effect on *T. evansi*. Such studies are presently been conducted. However, preliminary results are not encouraging in relation to their effectiveness as predators of *T. evansi*. It seems that *P. guianensis* and *P. multidentatus* could be feeding on other organisms co-occurring with *T. evansi* on *S. paniculatum* and other solanaceous species. It should not be concluded however that effective natural enemies of *T. evansi* are not found in the visited area. It is possible that some of the less common species may be more promising than *P. guianensis* and *P. multidentatus*. In addition, the results here reported were obtained from a single, though extensive, survey. It is conceivable that surveys conducted at different periods could show the predominance of other, more promising species of natural enemies of *T. evansi*.

Most of the species were collected on Solanaceae plants without any phytophagous mites, especially *T. evansi* which was very difficult to find within the investigated area. *T. evansi* was encountered in different geographical localities on solanaceous plants as *S. paniculatum*, *S. grandiflorum*, *Lycopersicon esculentum* and *Solanum* sp. Its occurrence on *Lantana* sp. could be accidental; it could conceivably have moved to that plant from nearby severely infested solanaceous plants. *Neoparaphytoseius sooretama*, *A. largoensis*, *A. leai*, *A. lynnae*, *A. operculus*, *E. citrifolius*, *E. ho*, *E. sibelius*, *N. barretti*, *N. tunus*, *T. aripo* and *T. tropica* were found on plants without phytophagous mites. The other ones were collected at least once on plants with phytophagous mites and *P. macropilis* was the only one species found in a *T. evansi* colony.
<table>
<thead>
<tr>
<th>Species</th>
<th>Alt. in m</th>
<th>South lat.</th>
<th>West long.</th>
<th>Host plants</th>
<th>Nb Phyto.</th>
<th>Phytophagous mites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoparaphytoseius sooretanus</td>
<td>25</td>
<td>7.24</td>
<td>34.57</td>
<td>Solanum sp.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amblyseius tamatavensis</td>
<td>794</td>
<td>3.34</td>
<td>41.06</td>
<td>Passiflora edulis</td>
<td>1</td>
<td>Mononychellus tanajoa + Tetranychus sp. + Tetranychus mexicanus</td>
</tr>
<tr>
<td>Amblyseius leai</td>
<td>92</td>
<td>6.28</td>
<td>35.06</td>
<td>Solanum sp.3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.35</td>
<td>41.06</td>
<td>Urtica sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amblyseius largoensis</td>
<td>103</td>
<td>5.51</td>
<td>35.37</td>
<td>Anacardium occidentale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amblyseius lynnae</td>
<td>775</td>
<td>3.34</td>
<td>41.05</td>
<td>Solanum sp.2</td>
<td>3</td>
<td>Brevipalpus sp.</td>
</tr>
<tr>
<td>Amblyseius operculatus</td>
<td>705</td>
<td>3.04</td>
<td>40.58</td>
<td>Solanum sp.1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>775</td>
<td>3.34</td>
<td>41.05</td>
<td>Solanum sp.2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Euseius alatus</td>
<td>103</td>
<td>5.51</td>
<td>35.37</td>
<td>Anacardium occidentale</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>3.43</td>
<td>40.59</td>
<td>Euphorbia pulcherina</td>
<td>1</td>
<td>Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>3.43</td>
<td>40.59</td>
<td>Hibiscus sp.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>3.4</td>
<td>39.06</td>
<td>Terminalia catappa</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Euseius citrifolius</td>
<td>44</td>
<td>4.56</td>
<td>37.24</td>
<td>Anacardium occidentale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>3.41</td>
<td>40.21</td>
<td>Annona sp.</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.07</td>
<td>35.13</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Euseius concords</td>
<td>216</td>
<td>3.99</td>
<td>40.55</td>
<td>Anacardium occidentale</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>4.56</td>
<td>37.24</td>
<td>Anacardium occidentale</td>
<td>9</td>
<td>Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>3.4</td>
<td>39.06</td>
<td>Anacardium occidentale</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>126</td>
<td>3.41</td>
<td>40.21</td>
<td>Annona sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>4.34</td>
<td>37.44</td>
<td>Ricinus communis</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Euseius ho</td>
<td>103</td>
<td>5.51</td>
<td>35.37</td>
<td>Anacardium occidentale</td>
<td>2</td>
<td>Tetranychus desertorum</td>
</tr>
<tr>
<td></td>
<td>800</td>
<td>3.43</td>
<td>40.59</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.34</td>
<td>41.06</td>
<td>Urtica sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.34</td>
<td>41.06</td>
<td>Trifolium sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Neoseiulus barreti</td>
<td>52</td>
<td>3.41</td>
<td>39.06</td>
<td>Solanum paniculatum</td>
<td>2</td>
<td>Brevipalpus sp. Tetranychus sp.</td>
</tr>
<tr>
<td>Neoseiulus idaeus</td>
<td>800</td>
<td>3.43</td>
<td>40.59</td>
<td>Erythrina indica</td>
<td>7</td>
<td>Tetranychus desertorum</td>
</tr>
<tr>
<td>Neoseiulus tanus</td>
<td>752</td>
<td>3.35</td>
<td>41.06</td>
<td>Urtica sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.35</td>
<td>41.06</td>
<td>Trifolium sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Paraphytoseius multidentatus</td>
<td>775</td>
<td>3.34</td>
<td>41.05</td>
<td>Leguminosae</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.07</td>
<td>35.13</td>
<td>Solanum paniculatum</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>794</td>
<td>3.34</td>
<td>41.06</td>
<td>Solanum paniculatum</td>
<td>13</td>
<td>Tetranychus desertorum + Brevipalpus sp.</td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>6.28</td>
<td>35.06</td>
<td>Solanum paniculatum</td>
<td>38</td>
<td>Tetranychus desertorum + Brevipalpus sp. + Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>941</td>
<td>3.58</td>
<td>40.52</td>
<td>Solanum paniculatum</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>775</td>
<td>3.34</td>
<td>41.05</td>
<td>Solanum sp.</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>753</td>
<td>3.35</td>
<td>41.06</td>
<td>Solanum sp.2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.07</td>
<td>35.13</td>
<td>Solanum sp.3</td>
<td>15</td>
<td>Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>7.24</td>
<td>34.57</td>
<td>Solanum sp.3</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>83</td>
<td>7.36</td>
<td>34.58</td>
<td>Solanum sp.3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>92</td>
<td>6.28</td>
<td>35.06</td>
<td>Solanum sp.3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.35</td>
<td>41.05</td>
<td>Urtica sp.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Phytoseius macropilis</td>
<td>800</td>
<td>3.43</td>
<td>40.59</td>
<td>Hibiscus sp.</td>
<td>1</td>
<td>Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>941</td>
<td>3.58</td>
<td>40.52</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>758</td>
<td>3.44</td>
<td>41</td>
<td>Solanum sp.</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>752</td>
<td>3.35</td>
<td>41.06</td>
<td>Solanum americanum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>6.07</td>
<td>35.13</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>5.51</td>
<td>35.37</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td>Brevipalpus phoenicis</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4.31</td>
<td>37.47</td>
<td>Solanum paniculatum</td>
<td>4</td>
<td>Mononychellus tanajoa</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>8</td>
<td>34.56</td>
<td>Solanum paniculatum</td>
<td>12</td>
<td>Tetranychus sp.</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>4.2</td>
<td>37.58</td>
<td>Solanum paniculatum</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. List of Phytoseiid mites, localities coordinates, host plants and densities in a survey made in Northeast of Brazil in 2002.
This predatory mite was also observed with *M. tana-joa* and *T. desertorum.*

ACKNOWLEDGEMENT

This research was conducted with funds provided by projects within USP/COFECUB and FEALQ (Fundação de Estudos Agropecuários Luiz de Queiroz)/ICIPE (International Centre of Insect Physiology and Ecology) Agreements. ICIPE thanks the German Federal Ministry for Economic Cooperation and Development (BMZ) for funding. Thanks are also due to Marie-Magdeleine Nehil, Philippe Auger, Romain Bonafos and Antonio Carlos Lofego for their considerable help at different stages of the work.

REFERENCES

Banks, N., 1900. — The red spiders of the United States (Tetranychus and Stigmatae). — *United States Department of Agriculture Division of Entomology Technical Series* 8, 65-77.

EHARA, S., 1966. — Some mites associated with plants in the state of Sao Paulo, Brazil, with a list of plant mites of South America. — *Japanese Journal of Zoology* 15, 129-150.

GEUSKES, D.C., 1939. — Beitraege zur Kenntnis der europäischen Spinnmilben, mit besonderer Beruecksichtigung der niederlaendischen Arten. — *Mededelingen van de Landbouwhoogeschool te Wageningen* (Nederland) 42, 1-68.

Muma, M.H., 1964. — Annotated list and keys to Phytoseiidae (Acarina: Mesostigmata) associated with Florida citrus. — *University of Florida Agricultural Experiment Station Bulletin* 685, 1-42.

