TWO NEW SPECIES OF THE GENUS PSOROBIA, FAIN 1959 (PSORERGATIDAE : PROSTIGMATA) FROM TWO NEW HOST ORDERS, LAGOMORPHA AND INSECTIVORA

by K. M. T. GIESEN *, E. J. SPICKA **, \& J. O. WHITAKER Jr. ***

Abstract

taxonomy Abstract : Two new species of the genus Psorobia are described. Psorobia elephantuli sp. nov. ex Elephantulus rozeti (Duvernay 1833), an elephant shrew from Tunis, and Psorobia lagomorphae sp. nov. ex Sylvilagus floridanus (Allen), the Eastern Cottontail from Indiana, USA. Measurements are given in $\mu \mathrm{m}$. A key to the ten species of Psorobia is given.

TAXONOMIE Résumé : Deux espèces nouvelles du genre Psorobia sont décrites. Psorobia elephantuli sp. nov. ex Elephantulus rozeti (Duvernay, 1833), musaraigne éléphante de Tunis, et Psorobia lagomorphae sp. nov. ex Sylvilagus floridanus (Allen), "Eastern Cottontail" de l'Indiana, U.S.A. Des mesures sont données en microns. Une clé des dix espèces de Psorobia est établie.

InTRODUCTION

Species of the genus Psorobia are tiny, white, disc-shaped mites, which parasitize different orders of Mammalia. FAIN (1959a and b) divided the family Psorergatidae Dubinin, 1955 into three genera : Psorergates, Psorobia and Psorergatoides. Psorobia has four pairs of well developed lateral shield setae and parasitizes rodents, carnivores, artiodactyls and primates. Two new species are described in this paper, from two new host orders, Lagomorpha and Insectivora.

Psorobia elephantuli sp. nov.
(Figs. 1-6)
DIAGNOSIS : With characteristics of the genus Psorobia. Legs I-IV with two femoral
setae and a single pointed tibial spine present on leg IV. Lateral shield setae and terminal setae relatively short in comparison to those of P. bos Johnston, 1964 and P. ovis Womersley, 1941. In the male the penis is extraordinarily long and curved. Tibial spines single pointed in P. elephantuli sp. nov. and bifid in P. bos and P. ovis.

Female (holotype). Venter (Fig. 1) with striations laterad of the central venter, rostrad of the epimera and caudad of the gnathosoma and opisthosomal lobes. Epimera I strongly recurved, II-IV straight, directed to the central venter. One pair of median ventral setae (v) and a pair of very long terminal setae on each protruding opisthosomal lobe. Genital opening between these lobes. Anus absent.

Legs. Trochanters with an antero-lateral acute spur and a long seta at its base. Femora with

[^0]Acarologia, t. XXVI, fasc. 2, 1985.
two subequal ventro-lateral setae, these much longer on legs IV than on legs I-III, and a ventroposterior acute spur. Genua I-III with a short seta and genu IV with a very long and heavy ventro-lateral seta. All tibiae with a heavy ventro-lateral spine and a median dorsal seta (Fig. 2). Tarsi ventrally each with a relatively small spine, two apical one-pointed claws and a bilobed empodium. The smaller part of this empodium is situated dorsally between the claws, the larger rounded part is ventral to the claws. Dorsally two lateral subequal setae are present ($d a$ and $d p$, Fig. 2) ; the posterior one is lacking on leg IV. On legs I and II two solenidia (so) are present on the dorso-apical part of the tarsus. The smaller of these two is enveloped by a skinfold (Fig. 2).

Gnathosoma. Ventrally in front of the pharyngeal bulb is a pair of small setae. Palpal tarsi with apical claws, which are difficult to see, both in holotype and in the paratypes. The chelicerae are between the palps and have dorsally directed teeth. Dorsally on the basal part of the gnathosoma is a pair of tri-segmented gnathosomal setae (Fig. 3), on the palpal tibiae a strong, serrated seta and just anterior a thick short seta.

Dorsum (Fig. 3). Sclerotized oval shield punctate and lateral weak parts striate as figured. At the shield border are four pairs of lateral shield setae, which are relatively short compared to those of P. bos Johnston, 1964 and P. ovis Womersley, 1941, and a pair of anteromedian (am) setae at the anterior part of the shield.

Measurements in table I.

- Male (allotype), similar to female but with somewhat smaller setal measurements.

Dorsum (Fig. 4), with four pairs of lateral shield setae, a pair of antero-median (am) setae laterad of the genital opening ; genital setae pos-tero-laterad of the am setae (arrangement of genital and am setae trapezoid-like). Penis (P) extremely long and curved, greatly widened at the base ; penis sheath (PS) short, tube-like (Fig. 5). Dorsum striated laterally. In the middle of the
dorsal shield is a longitudinal furrow ending at the genital opening. Border of genital opening strongly sclerotized.

Venter (Fig. 6). Like female but with only one opisthosomal lobe with one pair of terminal setae. The lobe has an inverted cross-like anterior sclerotization.

Measurements in table I.
Developmental stages as in other species of Psorobia.

Host and Locality : Elephantulus rozeti (Duvernay 1833) (Insectivora: Macroscelididae), Mezuna, Tunis. Summer 1912 and 13-IV-1913. $9^{\circ} 50^{\prime} \mathrm{E}$, $34^{\circ} 34^{\prime} \mathrm{N}$. Host in collection of NHM Wien, coll. nr. NMW 8899.

Deposition of types : Holotype and allotype in coll. oî NHM Wien. Paratypes in collection of F. S. Lukoschus, University of Nijmegen, Netherlands.

Psorobia lagomorphae sp. nov.
(Figs. 7-10)
DIAGNOSIS. With characteristics of genus Psorobia. One seta on femora I-IV and tibial spine IV absent. Terminal setae very unequal in length and strength.

Female (holotype). Venter (Fig. 7). Epimera I recurved laterally, II-IV straight, directed to venter middle and with sclerotized prolongations along the trochanters. Posterior two lobes each with a pair of terminal setae, the lateral one very long and heavy, the median one much weaker and about one-third the length. One pair of setae in center or venter.

Legs. Trochanters with basal acute spur and long, extremely attenuated seta at the base of this spur. Femora with rather slender acute spur and

Figs. 1-2 : Psorobia elephantuli sp. nov.

1. - Female holotype, venter. Ventral seta (v). 2. - Dorsal view of tibia and tarsus leg. I. Dorso-anterior seta (da), dorsoposterior seta ($d p$), and solenidia ($s o$).

Fig. 3 : Psorobia elephantuli sp. nov. Female holotype, dorsum.
Figs. 4-6 : Psorobia elephantuli sp. nov.
4. - Male allotype, dorsum. am : Antero-median setae. 5. - Penis (P) and penis sheath ($P S$). 6. - Caudal part of male venter.

Figs. 7-9 : Psorobia lagomorphae sp. nov.
7. - Female holotype, venter. 8. - Dorsal view of tarsus and tibia leg I. 9. - Papal tarsus (PTa) and Palpal tibia (POi).

Table 1. Measurements of Psorobia lagomorphae n. sp. and P. elephantuli n. sp. in micrometers.

	P. lagomorphae n . sp . female ($\mathrm{n}=18$)			P. elephantuli n. sp. female ($\mathrm{n}=4$)			male
	Holotype	$\overline{\mathrm{X}}$	min-max	Holotype	$\overline{\mathrm{X}}$	min-max	Allotype
body length	129	124	(111-131)	144	145	(135-149)	132
body width	115	113	(107-119)	110	114	(108-122)	95
shield length	98	99	(97-101)	100	100	(95-105)	95
shield width	98	97	(93-101)	83	85	(82-90)	83
setal length :							
terminal (lateral)	99	109	(99-123)	105	107	(105-112)	123
terminal (median)	38	34	(27-38)	105	107	(105-112)	123
trochanter	20	22	(19-26)	23	23	(22-24)	22
femora I-III	25	24	(21-27)	24	26	(24-29)	23
femur IV	26	23	(20-30)	46	40	(34-46)	37
genua I-III	11	10	(9-13)	6	6	(5-6)	5
genua IV	70	71	(62-78)	66	66	(56-73)	55
lateral shield	4	4	(4-5)	7	7	(6-8)	6
gnathosomal	9	9	(8-10)	7	7	(7-8)	8
palpal tibial	15	15	(14-15)	21	19	(17-21)	18
ventral	8	9	(8-11)	7	6	(6-7)	6
distance between :							
ventral setae	12	12	(7-15)	11	12	(11-15)	12
am setae	-	-		-	-		16
genital setae	-	-		-	-		23
penis length	-	-	,	-	-		83
penis sheath length	-	-		-	-		23
no. of femora IV setae	1	1		2	2		2
'no. of femora I-III	1	1		2	2		2
tibial spine IV	absent			present			present

one postero-lateral seta. Genua with one posterolateral seta, very long and heavy on genu IV. Tibiae with a ventro-lateral spine (absent on leg IV) and a dorsal median seta (Fig. 8). Tarsi with a strong conical spine and two apical onepointed claws. Empodia were not observed, perhaps because of the potassium hydroxide technique used to collect the mites. This caused weak parts, probably including the empodia, to dissolve. Dorsally on the tarsi are two lateral setae ($d a$ and $d p$) of subequal length and on tarsi I and II two solenidia (Fig. 8).

Gnathosoma ventrally with a pair of subgnathosomal setae in front of the pharyngeal bulb. Palpal tarsi ($P T a$) with two apical bifid claws and a one-pointed spine-like claw (Fig. 9). Palpal tibia ($P T i$) ventro-apically with two very strong twopointed claws, which have not been previously observed in any of the other species of the family Psorergatidae (Fig. 9). Dorsally (Fig. 10) on the basal part of the gnathosoma, a pair of bilobed
gnathosomal setae. Basal part with serrated border and distal part tapering. Palpal tibia with a strong, serrated seta and just anterior a thin, short seta. Between the palps the chelicerae with dorsally directed teeth.
Dorsum (Fig. 10) with four pairs of lateral shield setae distinctly removed from the shield border and a pair of antero-median setae. The lateral weak parts striated as figured.
Measurements in table I.

Male. Unknown.
Host and locality : Sylvilagus floridanus (Allen) (Lagomorpha : Leporidae), Parke Co., 8 mi . S. Rockville, Indiana, U.S.A. 10-IV-1974. Coll. nr. JOW 8787 (EJS 434).

Deposition of types : Holotype in U.S. National Museum, paratypes in collection of the authors.

Fig. 10 : Psorobia lagomorphae sp. nov. Female holotype, dorsum.

DISCUSSION

Ten species of Psorobia have been described to date, these from a total of six orders of mammals. Unlike species of the other two genera of the family, Psorergates and Psorergatoides, species of Psorobia parasitize a wide range of hosts. This wide range of hosts is reflected in the marked differentiating characteristics of the known species. Differences in morphology can be seen in the number of femoral setae, the presence of a tibial spine on leg IV and the morphology of the tibial spine.

However, too few species are described and the widespread occurrence geographically and also taxonomically of the species of Psorobia leads the present authors to believe that more information is needed before meaningful ideas on phylogenetic relationships can be arrived at in this group.

It is of interest that there is character correlation in the two cases where two different species
of Psorobia are known from hosts from the same family. Both P. bos and P. ovis (Bovidae) have tibial spine IV present, two setae on femur IV, and tibial spine bifid. Contrary to the descriptions and drawings shown in Fain (1959) and Johnston (1964), Psorobia ovis has tibial spines which are two-pointed rather than one-pointed.

Both P. mustelae and P. foinae (Mustelidae) have tibial spine IV absent, two setae on femur IV and the genual seta IV long (more than $40 \mu \mathrm{~m}$).

KEY TO THE SPECIES OF PSOROBIA

1. Tibial spine IV present................................... 2

Tibial spine IV absent.
6
2. Two setae on femur IV......................... 3

One seta on femur IV........................... 5
3. Tibial spine one-pointed (Insectivora).
P. elephantuli

Tibial spine bifid.
4
4. Shield length of female 153 , shield width 142 , length gnathosomal setae $\pm 6 . \ldots$. . P. ovis Shield length of female 105 , shield width 95 , length gnathosomal setae $\pm 14 \ldots \ldots$. . P. bos
5. Two setae on femora I-III................ P. hystrici

One seta on femora I-III........... $\quad P$. cercopitheci
6. Two setae on femur IV............................. 7

One seta on femur IV............................. 9
7. Genual setae IV shorter than $25 \ldots .$. . P. castoris Genual setae IV longer than $40 \ldots$. 8
8. Seta on trochanter ± 16, distance between ventral
 Seta on trochanter 7-10, distance between ventral setae 15-21 P. mustelae
9. Two setae on femora I-III............... P. . zumpti One seta on femora I-III P. lagomorphae

Acknowledgements

We are obliged to Dr. F. S. Luкoschus who examined several mammals of the collection of the NHM Wien and Kindly provided us with material for the description of Psorobia elephantuli sp. nov. from the elephant shrew, Elephantulus rozeti.

SPECIES OF PSOROBIA PRESENTLY KNOWN

Host ORDER	Host family	Mite SPECIES	Authors	Host SPECIES	Locality
Insectivora ${ }^{\text {a }}$					
	Macroscelididae	P. elephantuli	Giesen, Spicka, Whitaker	Elephantulus rozeti	Tunis
Artiodactyla					
	Bovidae	P. bos	Johnston, 1964	Bos taurus Domestic cow	U.S.A.
		P. ovis	Womersley, 1941	Ovis aries Domestic sheep	Australia, South Africa, U.S.A.
Rodentia					
	Castoridae	P. castoris	Kok, Lukoschus, Clulow, 1970	Castor canadensis	N. America
	Hysricidae	P. hystrici	Till, 1957	Hystrix africae-australis	S. Africa
	Bathyergidae	P. zumpti	Fain, 1965	Cryptomys hottentotus	S. Africa
Primates					
	Cercopithecidae	P. cercopitheci	Zump \& Till, 1955	Cercopithecus aethiops and other species	S. Africa
Carnivora					
	Mustelidae	P. mustelae	Lukoschus, 1969	Mustela nivalis Mustela erminea	Netherlands
		P. foinae	Fain \& Lukoschus, 1968	Martes foinae	Belgium
Lagomorpha					
	Leporidae	P. lagomorphae	Giesen, Spicka, Whitaker	Sylvilagus floridanus	Indiana (U.S.A.)

LITERATURE

FAIN (A.), 1959a. - Les Acariens psoriques parasites des Chauves-souris. III. Le Genre Psorergates Tyrrel (Trombidiformes-Psorergatidae). - Bull. Ann. Soc. Roy. Ent. Belg. 95, I-IV : 54-69.
Fain (A.), 1959b. - Les Acariens psoriques parasites des Chauves-souris. IX. Nouvelles observations sur le genre Psorergates Tyrrell. - Bull. Ann. Soc. Roy. Ent. Belg. 95, VII-VIII : 232-248.
Fain (A.), 1965. - Sur un cas de gale chez un rattaupe (Cryptomys hottentotus) produite par un acarien du genre Psorergates (Psorergatidae : Trombidiformes). - Acarologia, 7 (2) : 295-300.
Fain (A.) \& Lukoschus (F. S.), 1968. - Psorergates (Psorobia) foinae sp. n., acarien producteur de gale chez la fouine en Belgique. - Bull. Inst. r. Sci. nat. Belg., 44 (14) : 1-6.

Giesen (K. M. T.), 1982. - A review of Psorergatidae, with description of a new species. - Essay for the laboratory of Aquatic Ecology, Catholic University, Nijmegen.
Johnston (D. E.), 1964. - Psorergates bos, a new mite parasite of domestic cattle (Acari - Psorergatidae). - Ohio Agr. Exp. Station Res. Circ. 129. Wooster, Ohio. 7 p.
Kok (N. J. J.), Lukoschus (F. S.) \& Clulow (F. V.), 1970. - Psorobia castoris spec. nov. (Acarina : Psorergatidae), a new itch mite from the beaver, Castor canadensis. - Can. J. Zool., 48 : 1419-1423.
Lukoschus (F. S.), 1969. - Psorergates (Psorobia) mustelae spec. nov. eine neue Krätzmilbe von Mustela nivalis L. (Acarina : Psorergatidae). - Zool. Anz., 183 : 110-118.
MCKenna (M. C.), 1975. - Towards a phylogenetic classification of the Mammalia. - In : Phylogeny of the Primates : a multidisciplinary approach. W. P.

[^1]Luckett and F. S. Szalay, eds. Plenum Publ. Co. New York : 21-46.
Till (W. M.), 1957. - Two new parasitic mites (Acarina) from the South African porcupine. - Parasitology, 47 : 329-334.
Womersley (H.), 1941. - Notes on the Cheyletidae (Acarina, Trombidoidea) of Australia and New Zea-
land, with descriptions of new species. - Rec. S. Austral. Mus. 7 : 51-64.
Zumpt (F.) \& Till (W.), 1955. - The mange-causing mites of the genus Psorergates (Acarina : Myobiidae) with description of a new species from a South African monkey. - Parasitology 45 : 269-274.

[^0]: * Lab. of Aquatic Ecology, Catholic University, Nijmegen, Netherlands.
 ** Dept. of Biology, State University College of Arts and Science, Geneseo, New York 14454.
 *** Dept. of Life Sciences, Indiana State University, Terre Haute, Indiana 47809.

[^1]: 1. Order Macroscelidae according to McKenna, 1975.
