Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
BOVINE BABESIOSIS IN NIGERIA: THE VECTORIAL CAPABILITY OF *BOOPHILUS DECOLORATUS* AND *BOOPHILUS GEIGYI* FOR *BABESIA BIGEMINA* AND *BABESIA BOVIS*

BY O. A. AKINBOADE and O. O. DIPEOLU*

EXPERIMENTAL TRANSMISSION

BABESIA

BIGEMINA

B. BOVIS

BOOPHILUS DECOLORATUS

B. GEIGYI

CALF

NIGERIA

SUMMARY: *Boophilus decoloratus* and *B. geigyi* which fed on a calf infected with mixed *Babesia bigemina* and *B. bovis* transmitted the parasites to clean calves. Parasitaemia occurred faster in the calf which became infected through *B. decoloratus*. There were also more parasites of *B. bigemina* than of *B. bovis* in the smears from the blood of the infected calves.

INTRODUCTION

Previous works on the incidence of babesiosis in Northern Nigeria (FOLKERS and KUIL 1967; FOLKERS, KUIL and PERIE 1967; LEEFLANG 1972) and in the whole of Nigeria (DIPEOLU 1975a) agreed that the species infecting cattle are *Babesia bigemina* and *B. bovis*. DIPEOLU (1975b, c) recorded the distribution of the suspected vectors — *Boophilus decoloratus* and *B. geigyi* in the country. Only *B. decoloratus* had been shown to be a vector of *B. bigemina* in Nigeria (AKINBOADE, DIPEOLU and ADETUNJI 1981) while *B. geigyi* was reported to be a vector of *B. bovis* (AKINBOADE and DIPEOLU 1980). In this investigation, an attempt was made to transmit both *B. bigemina* and *B. bovis* to calves by both *Boophilus decoloratus* and *B. geigyi*.

MATERIALS AND METHODS

Three white Fulani calves (A, B, C, aged 9-12 months) were used in this study. Calves A and B were free of blood and ectoparasites;

* Department of Veterinary Parasitology, University of Ibadan, Ibadan, Nigeria.

calf C had mixed infection of *B. bigemina* and *B. bovis*. Each calf was kept in a separate pen at the University Animal Hospital and given a regular feeding regime.

About 200 clean, laboratory-bred, unfed adult *B. decoloratus* and 200 *B. geigyi* were fed on calf C by enclosing each group in a bag secured over the ears. After 2 days, each bag was removed and the ticks which had attached to the ears were carefully removed and replaced in their respective bags. The bag containing adult *B. decoloratus* was then secured on one ear of Calf A; the bag containing *B. geigyi* was attached to one ear of calf B; the bags were left undisturbed for 5 days. Daily rectal temperatures were taken and smears were made of blood from the jugular vein of each calf for 21 days. The smears were fixed in methanol, stained with Giemsa and examined for *Babesia* parasites. The number of parasites per available red cells on two hundred fields on each microscope slide was expressed as percent infection.

Table I: Infection post tick attachment (%):

<table>
<thead>
<tr>
<th>DAYS</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Temp. °C of Calves A & B</td>
<td>38.0</td>
<td>38.1</td>
<td>38.6</td>
<td>38.2</td>
<td>37.9</td>
<td>38.0</td>
<td>38.4</td>
<td>39.1</td>
<td>39.0</td>
<td>38.6</td>
<td>38.2</td>
<td>38.2</td>
</tr>
<tr>
<td>% Parasitaemia Calf A</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>2.6</td>
<td>4.0</td>
<td>3.5</td>
<td>1.5</td>
<td>1.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>% Parasitaemia Calf B</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>3.0</td>
<td>3.8</td>
<td>1.6</td>
<td>1.0</td>
<td>0</td>
</tr>
<tr>
<td>% Parasitaemia Calf C</td>
<td>6.0</td>
<td>6.0</td>
<td>5.6</td>
<td>4.0</td>
<td>3.8</td>
<td>3.5</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>2.6</td>
<td>1.5</td>
<td>1.0</td>
</tr>
</tbody>
</table>

RESULTS

Table I and Fig. I show that both *B. decoloratus* and *B. geigyi* transmitted both *B. bigemina* and *B. bovis* to the calves. Calves A and B as shown by studying the morphology of the *Babesia* in the smears were each infected by mixed infection of the two *Babesia* species. In each smear, there were more parasites of *B. bigemina* than of *B. bovis*.

B. decoloratus transmitted *Babesia* infection to calf A faster than *B. geigyi* did to calf B but the infection subsided in each calf at about the same time (Fig. I). There was no marked temperature rise in these calves except on days 12-16, which coincided with the parasitaemia recorded in each calf.

DISCUSSION

Each of the two *Boophilus* species tested is capable of transmitting *B. bigemina* and *B. bovis*. That the parasitaemia first appeared in calf A on day 7 while that in calf B appeared on day 10 probably means that *B. decoloratus* transmits babesial infection to bovines earlier than *B. geigyi* does. The peak of infection in Calf A was also higher than in calf B; it occurred on day 12 compared to day 16 in calf B. This difference in peak periods may be due to the initial difference in days when parasitaemia first came up in the respective calves. It may also be due to the individual physiological body reaction of each which might also affect the general level in each.

The removal of the ticks from the ear of calf C to those of calves A and B did not adversely affect the results since the ticks transmitted the infections afterward. The findings of ABRAMOV (1955) and STILLER and FRERICHS (1978) that interrupted feeding on transmitting tick stages leads to infection of more than one host in *B. equi* and *B. caballi* respectively, are also true of the vectors of *B. bigemina* and *B. bovis*. There were also more numerous *B. bigemina* than *B. bovis* parasites in the mixed infection probably because the former has a greater multiplication than the latter and the incubation period of the latter is also longer (LEVY personal communication). The presence of both *Babesia* species in cattle is advantageous to the animals because certain level of immunity is built up in each animal affected resulting in animal resistance to further *Babesia* infection.

An endemic stability is thus maintained in the animals with little damage to the erythrocytes and fairly constant packed cell volume (PCV).
Fig. 1: Percent infection post tick attachment.

REFERENCES

