Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ON THE BIOLOGY OF SCUTACARUS ACARORUM GOEZE
(ACARINA : TROMBIDIFORMES)

BY Christian SCHOUSBOE*

ABSTRACT : Phoretic females of Scutacarus acarorum Goeze occur in Denmark on bumblebees (Bombus Latr.) and cuckoo bumblebees (Psithyrus Lep.). Frequency and number of S. acarorum on castes of Bombus terrestris L. and B. lucorum L. is recorded; the mites occur primarily on queens. Greatest number — 115 — was found on an overwintered queen of B. terrestris. Small numbers could be found on deutonymphs of Parasitus species (Mesostigmata) phoretic on the bumblebees. Physogastric females were found on bumblebee workers and drones and in late spring on queens. S. acarorum was reared in mass cultures feeding on mycelium of Histoplasma capsulatum Darling. Morphology of the S. acarorum male is illustrated.

INTRODUCTION

Adult females of Scutacarus acarorum Goeze are found phoretic on European bumblebees, and have been recorded from USSR, Mongolia and North America.

A century ago, Michael (1884) reared S. acarorum in the laboratory, and he depicted and described the larvae and adults. Until now, no other rearings of this species have been recorded, and the adult male is known only from Michael’s crude illustration and description, and from a line drawing made by Berlese (reproduced in Vitzthum 1943) on the basis of Michael’s material.

In the last decade, descriptions of males of other Scutacarus species have been published (Binns 1980, Elbadry et al. 1976, Norton & Ide 1974, Rack 1975) and reproduction in Imparipes histicinus Berlese (Scutacaridae) has been studied (Ebermann 1982). Although S. acaro-

* Authors address : Njalsgade 34, lejl. 46, Dk-2300 Copenhagen S.

rum is found in all major parts of the northern hemisphere, very little is known of its biology.

The present work deals with the relation between phoretic female *S. acarorum* and their hosts, and with observations in the laboratory, including experiences with rearing the species. Morphology of the adult male is illustrated.

MATERIALS AND METHODS

Phoretic relationships between *S. acarorum* and bumblebees were studied by recording the mite fauna of the bumblebees. The bees were caught in the vicinity of Copenhagen, Denmark, and all were caught while visiting flowers. A total number of 382 bumblebees was studied: 138 overwintered queens, 119 workers, 111 drones and 14 young queens. The bees were killed either immediately after capture by submersion in alcohol or by decapitation or freezing after half a hour at 7°C.

Injection trials were carried out on overwintered queens. Each queen was injected with 0.1 ml concentrated watery solution of congo-red. Injection was done through the membrane between the 2nd and 3rd or between the 3rd and 4th tergum. Commercial needles 0.5 mm thick were used.

Scutacarus acarorum was reared in plastic petridishes provided with a layer of lampblack/plaster of Paris. The plaster surfaces were scraped with a stiff brush, whereby lumps of lampblack were removed, and hollows and furrows made. The dishes were placed at room temperature (ca 20°C), and kept in flat boxes of isolating material to minimize condensation. Dessication and condensation were not problems during rearing experiments. Mycelia were grown by placing pieces of baker’s yeast on the soaked plaster, and placing a variety of objects on the yeast. These objects were small samples of different types of soil, parts of a year old bumblebee nest (*B. hypnorum* L., stored at room temperature) and objects taken from a honeybee hive. Phoretic female mites were scraped from bumblebees (*B. terrestris* queens) and placed in dishes with growing mycelia. Rearing was successful on mycelia growing in dishes, where dead honeybees, pollen loads from honeybees and pieces of honeybee comb with fecal droppings, had been placed on the yeast. Rearing of the mites was continued in new dishes after transferring mycelia to fresh pieces of yeast.

RESULTS

PHORESY

Adult females of *Scutacarus acarorum* were found on queens of bumblebees (*Bombus* Latr.) and cuckoo bumblebees (*Psithyrus* Lep.) (Table 1). On *Bombus terrestris* L. and *B. lucorum* L., the mites were found on about every second overwintered queen (Table 2). Of these queens 60.5% had 5 or fewer, and 85.7% had 10 or fewer *Scutacarus* mites on them. A total number of 115 *Scutacarus* females was found sitting on an overwintered queen of *B. terrestris*. Infection with the nematode *Sphaerularia bombi* Dufour, which infects the queens during their hibernation, sterilizes them and alters their behavior in the spring, has not been found to influence the fre-

<table>
<thead>
<tr>
<th>Table 1: Danish phoresy hosts of Scutacarus acarorum Coeze.</th>
</tr>
</thead>
<tbody>
<tr>
<td>overwintered</td>
</tr>
<tr>
<td>Bombus terrestris L.</td>
</tr>
<tr>
<td>Bombus lucorum L.</td>
</tr>
<tr>
<td>Bombus lapidarius L.</td>
</tr>
<tr>
<td>Bombus pratorum L.</td>
</tr>
<tr>
<td>Bombus hortorum L.</td>
</tr>
<tr>
<td>Bombus agrorum Fabr.</td>
</tr>
<tr>
<td>Psithyrus bohemicus Seidl.</td>
</tr>
<tr>
<td>Psithyrus silvestris Lep.</td>
</tr>
</tbody>
</table>
frequency of \textit{S. acarorum} (non-significant negative association \(\chi^2 = 3.74 \); \(P > 0.05 \)). On bumblebee queens, females of \textit{S. acarorum} were found on the forewings and on the (3rd) notum of the thorax. On the forewings the mites were sitting on the lower surface near the base of vein III, where they were clinging to the short hairs with the big single claws of legs I. On each wing there were up to a dozen mites often sitting very close together. Single mites could be found on the upper surface of the forewings in the small grooves at the bases of vein I-II and of vein IV. On the notum — between the scutellum and propodeum — the mites were located at the base of the hairs, primarily the longer hairs in lateral positions, but when the mites were numerous on a queen, they sat attached close together forming a rim that more or less covered the notum. On overwintered queens the number of \textit{Scutacarus} females attached to phoretic deutonymphs of \textit{Parasitus sp.} (Mesostigmata) constituted only a minor part of the total number of \textit{Scutacarus} (Table 2).

Frequency and number of \textit{S. acarorum} mites on bumblebee workers was much lower than on overwintered queens (Table 2). Nearly half of the \textit{Scutacarus} found on workers were sitting on phoretic \textit{Parasitus} nymphs (Table 2). On workers, \textit{Scutacarus} mites were found on the lower surfaces of the forewings as on queens, and on hairs of various parts of the thorax-propodeum.

\textit{Scutacarus acarorum} females were found on phoretic deutonymphs of \textit{Parasitus fucorum} De Geer, sensu \textit{VITZTHUM} 1930, of \textit{Parasitus anglicus} \textit{Vitzthum} 1930, and of \textit{Parasitus crinitus} \textit{Oudemans}, sensu \textit{VITZTHUM} 1930. Of 241 \textit{P. fucorum} found on the bumblebees, 18 (7.5\%) carried \textit{Scutacarus} (total 24 individuals). Of 64 \textit{P. anglicus}, \textit{Scutacarus} mites were found on 2 (3.1\%), and on 114 \textit{P. crinitus} only one \textit{Scutacarus} was found. On the \textit{Parasitus} nymphs, \textit{Scutacarus} mites were found clinging to setae on the frontal tip of the anterior dorsal shield (setae J1), to setae on legs II, III and IV, and in one case to sternal setae.

Very pale, almost uncoloured individuals of \textit{S. acarorum} were occasionally found among normal red-brown mites on the bumblebees. On overwintered queens, the mites were seen discharging dark fecal pellets, and removing the pellets by horizontal movements of legs IV and their long distal setae. On forewings of some overwintered queens, a zone of fecal pellets could be seen distolaterally to the cluster of mites.

At the time of year when the first bumblebee workers (\textit{B. terrestris}) were seen, queens that had not founded colonies (being infected with \textit{Sphaerularia bombi}) were caught; on these queens about half of the \textit{Scutacarus} mites were dead, and the majority of the living ones were in a physogastric state (Fig. 1). Physogastric females were also found on workers and drones.
LABORATORY OBSERVATIONS

Injection trials

If staining the haemolymph of the bumblebee is followed by presence of the stain in the mites, parasitism would be proven. Twelve overwintered queens (*B. terrestris*) had their haemolymph stained by injection of congo-red. Immediately after injection a pronounced colouring could be seen through the membrane of the neck. The bees were killed — or they died 1-3 days after injection. *Scutacarus* mites from the queens did not show any trace of red colouring: parasitism was not demonstrated.

Rearing

Rearing of *Scutacarus acarorum* on mycelia from various sources was tried in early spring, but without success. Successful rearing was started with mites taken from queens at the time of year when the first queens (*B. terrestris*) had just founded their new nests and were seen with pollen loads.

In all petri-dishes where *S. acarorum* bred quickly and in some numbers, mycelia of *Histoplasma capsulatum* Darling were growing.

Histoplasma spread from the yeast as a fine network of hyphae bearing macroconidia. Ovipositing females, eggs, and quiescent female larvae accompanied by one to several males were usually found in hollows underneath the *Histoplasma* mycelium. Grazing zones in the mycelium were often seen surrounding adult females and big larvae. Adult males were seen moving around carrying quiescent female larvae on their backs. From phoretic females development of the first offspring of males and quiescent larvae took about 9 days.

On mycelia of other fungi, females would graze, could become physogastric, and in some cases could produce eggs; if such eggs did hatch, the larvae grew slowly and did not pass the larval stage. Nothing indicated that the larvae or females fed on the yeast or on bacterial colonies.

Fig. 1: Phoretic females of *Scutacarus acarorum* Goeze. A: Outline of small dead mite from *Bombus* worker; AX2 spacing 80 μm. B: Outline of large mite from same bee as A; AX2 spacing 110 μm. C: Outline of large physogastric mite from overwintered *Bombus* queen; AX2 spacing 110 μm.
Scutacarus continued to breed as long as the conditions were favorable. In case of dessication, or if Histoplasma was grazed by too many mites, the larvae and the adult males died, but the females assembled at various sites, often in high positions, e.g., in remains of aerial mycelia of Mucor sp. If dessication continued the females gathered together in deep hollows in the plaster, where they if further dessication was avoided stayed alive for at least 5 months.

Colourless adult females were not observed among the progeny. Compared to phoretic females, the progeny was of rather uniform size. Size ranged between 72.5 μm and 97.5 μm with a
mean of 86.8 μm (50 females from one dish), when the spacing of ventral setae AX2 (terminology after Karafiát 1959, see Fig. 1) was used as a measure of body size.

Host finding

The perching stance described by Binns (1980) in S. baculitarsus was not observed in S. acarorum.

Young adult females could not be induced to mount flies (Fannia canicularis L., Lucilia sp.), but on honeybee workers and bumblebee workers (B. terrestris) few to numerous mites could be found after confinement of the bees in rearing dishes for 1.5 - 4 hours. On bumblebee workers the mites gathered together on hairs surrounding the wing bases. Forewings torn from honeybee workers being dead for one month did not activate the mites, but after both the wings and a living honeybee had been confined in the rearing dish for two hours, mites were found on the bee as well as on the loose wings.

Leaving the host

Phoretic S. acarorum did not leave overwintered queens killed by decapitation and did not leave wings torn from the queens; the mites stayed in the phoretic position until they died, probably from dehydration. Exposure to various temperatures (30, 12, 7°C) and to moisture-saturated air for 3 days did not induce the mites to leave loose wings. Neither did phoretic females leave loose wings put in rearing dishes containing Histoplasma mycelium and breeding mites. Mites leaving their phoretic position were only observed in one case: a wing with two mites was placed in moisture-saturated air at room temperature; on the 7th day hyphae were growing on the wing base, both mites had left their position and one was dead, but the other was sitting in the hyphae, where it remained alive until at least the 14th day.

DISCUSSION

In 1845 Gros wrote on S. acarorum sitting on a Parasitus mite: "On voit le petit animal plonger son rostre dans le fémur", and until lately the opinion of Scutacarus acarorum being parasitic has been advocated (Chmielewski 1971). Morphology of the scutacarid gnathosoma (Athias 1973, Karafiát 1959) indicates that these mites hardly could be parasites, and rearing of Scutacarus species on brewer's yeast (Binns 1980), mushroom bedding compost (Norton & Ide 1974), and on decaying bodies of ants (Elbadry et al. 1976), makes it unlikely that parasitism occurs among Scutacarus species. The negative result of the injection trials and the successful rearing on hyphae, described in the present work, makes it very unlikely that S. acarorum should be anything but purely phoretic on the bumblebee hosts. Michael (1884) reared S. acarorum on cheese.

Histoplasma capsulatum is probably not the only species of fungi on which S. acarorum can breed, but Histoplasma has special interest in connection with bumblebees. This fungus grows parasitically in animals, including small rodents, and saprophytically in soil enriched with animal feces (Emmons et al. 1977), and many species of bumblebees build their nests in tunnels and nests of small rodents. Histoplasma causes histoplasmosis in humans as well as in animals (vertebrates).

In the scarce literature on Scutacarus acarorum, the mite is reported either on bumblebees or on Parasitus mites. Finds of the mite in bumblebee nests are very few: Rack (1964) and Richards & Richards (1976) found S. acarorum on Parasitus mites in nests. Chmielewski (1971) found S. acarorum in nests, but only rarely and in small numbers, and Trägårdh (1910) reported the mite from a single nest. In view of the great number of bumblebee nests that for various purposes have been observed and analysed over the years, it is
noteworthy that *S. acarorum*, with its wide geographical distribution and high frequency on bumblebees, has not been reported from the bees nests more often. This might be explained by the small size and the slow movements of these mites. Processing bumblebee nests and nest surroundings in a Berlese-Tullgren apparatus or by an appropriate flotation method might prove that *S. acarorum* is rather common in the nests.

As *Scutacarus acarorum* feeds on hyphae, the frequencies and numbers of these mites can be expected to be highest in bumblebee nests with a high and stable humidity, i.e. in subterranean nests. In the present study *S. acarorum* was only found on bumblebee species that normally or frequently nest in the ground and on species of cuckoo bumblebees parasitizing underground nesting bumblebees. *Scutacarus* is expected to be unable to propagate in man-made above-ground bumblebee domiciles as well as in natural above-ground nests (e.g. *Bombus hypnorum*). Species of predatory mites (*Parasitus, Hypoaspis, Garmanniella*) that live in bumblebee nests and overwinter in phoretic stages on the queens are expected to prey on breeding populations of *S. acarorum*, and may together with the presence of appropriate mycelia be the two major factors limiting the number of *S. acarorum* mites in the nests.

Karafiat (1959) found that *S. acarorum* was among the most abundant of scutacarids in samples of meadow soils (Wiesenboden), and it is possible that the mite lives in soil habitats other than bumblebee nests and their immediate surroundings. As both workers, drones and young as well as overwintered queens can pass the night away from nests and can seek sites shelter under soil litter during showers, they might pick up the mites in places other than their nests. Finds of physogastric female mites on *Sphaerularia*-infected queens indicate that this might happen regularly. Bumblebee queens tend to seek sites with special oecological properties for their underground hibernation, and these sites may offer *S. acarorum* a second breeding locality. As *Sphaerularia*-infected queens revisit the hibernation sites, physogastric *S. acarorum* females can possibly be picked up here.

Scutacarus acarorum females have been found on wasps (Vitzthum 1927), in honeybee hives (Grobov 1975, Homann 1934), in debris under a wild honeybee nest (Karafiat 1959), on *Parasitus* nymphs from honeybee hives (SCHOUSBOE 1984), and on the honeybees themselves (Homann 1934). *S. acarorum* is likely to be brought into honeybee hives with bumblebee queens which in the spring often invade the hives (Morse & Gary 1961), presumably attempting to steal honey.

The vast majority of phoretic *S. acarorum* females was found in Denmark on bumblebees and only a few on phoretic *Parasitus* deutonymphs. According to information given by Richards & Richards (1976), the reverse relation occurs in North America.

Paru en avril 1986.