Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ON THE GENUS HOLONOTHUS (ACARI: ORIBATIDA) IN THE AUSTRALIAN REGION

BY Ziemowit OLSZANOWSKI*

ACARI
ORIBATIDA
HOLONOTHUS
AUSTRALIAN REGION
TAXONOMY
ZOOGEOGRAPHY

SUMMARY: Three new species of crotoniid oribatid mites are described from Australian Region: Holonothrus naskreckii sp. nov. and H. gracilis sp. nov. collected from alpine plant mats, New Zealand and H. novaecaledoniae sp. nov. collected from mosses from bark, Mt. Painé, New Caledonia. New records of H. pulcher in New Zealand and H. mitis and H. robustus in Australia are presented. An identification key for adults of eight species of Holonothrus of Australian Region is included.

ACARI
ORIBATIDA
HOLONOTHUS
REGION AUSTRALIENNE
TAXONOMIE
ZOOGÉOGRAPHIE

Résumé : Trois nouvelles espèces de Crotonioidea (Acari, Oribatida) sont décrites de la Région Australienne : Holonothrus naskreckii sp. nov. et H. gracilis sp. nov. en Nouvelle Zélande et H. novaecaledoniae sp. nov. de la Nouvelle Calédonie. Des nouvelles localités de H. pulcher en Nouvelle Zélande et de H. mitis et H. robustus en Australie sont présentées. Une clef d'identification des adultes de huit espèces d'Holonothrus de la Région Australienne est ajoutée.

The oribatid mite genus Holonothrus appears to have a so-called “Gondwanan” distribution. Although five of the six species described so far are known from the Australian Region, members of this genus are widely distributed on the continents and islands of the Southern Hemisphere (Norton & Olszanowski, 1989).

The purpose of this paper is to propose three new species of Holonothrus and to give new records of this genus in the Australian Region. The material on which the present study is based originates from the Field Museum, Chicago, U.S.A., the Hungarian National History Museum, Budapest, Hungary, and the Canadian National Collections of Insects, Arachnids and Nematodes, Centre for Land and Biological Resources Research, Ottawa, Canada. I am indebted to these institutions for the opportunity to study these collections.

Holonothrus naskreckii sp. nov.

Prodorsum (Figs. 1, 2, 66–68). Length of prodorsum equal to 1/3 of body length. Two pairs of longitudinal ridges apparent in dorsal aspect; one pair runs anteromedial from near bothridium towards lamellar apophyse and bears setae in, the other runs posteromedial from bothridium. Longitudinal fold of cuticle present lateral to bothridium. Tip of rostrum rounded. Rostral setae (ro) not situated on apo-

* Department of Animal Taxonomy and Ecology, A. Mickiewicz University, Szamarzewskiego 91A, 60-569 Poznań, Poland.

FIG. 1-4: Holonorbus naskreckii sp. nov., adult, holotype.
1. — Dorsal view. 2. — Prodorsum in different orientation. 3. — Ventral view. 4. — Lateral view.
Fig. 5–17: Holonothrus naskreckii sp. nov., adult
(Holotype, excluding Fig. 15 which is a paratype).

physes; thin, distinctly curved, surrounded by smooth, transparent sheaths of cerotegument (Fig. 5). Lamellar setae (le) curved, serrated, on strong apophyses; the latter somewhat shorter than distance between their tips. Tips of apophyses reach rostrum or not—according to body orientation (Figs. 1, 2). Interlamellar setae (in) on short apophyses (Fig. 68), smooth, bent distally; their tips reach lamellar apophyses. Lamellar and interlamellar setae covered by irregular layer of cerotegument (Figs. 6, 7). Sensillus (Fig. 13) somewhat concave apically, completely contained within bothridium; the latter with narrow, lateral canal.

Notogaster (Fig. 1, 66, 67, 69). Notogaster broadest at level between setae cp and e2. Upper edges appearing as lateral ridges in dorsal aspect, running

Fig. 18–20: Holothrus naskreckii sp. nov., adult paratype. 18. — Chelicera, paraxial view. 19. — Subcapitulum, lateral view. 20. — Subcapitulum, ventral view.
immediately lateral to setae *cp*, *e2*, and *f2*; ridges merge posteriorly with pair of shallow lobes which delimit a truncate, or somewhat concave, posterior region. Pair of distinct, longitudinal, medial ridges delimits more convex central region of notogaster and connects posteriorly with internal edges of lobes. Second pair of ridges, less distinct (especially in weakly sclerotized specimens) lateral to first pair. Notogaster with 16 pairs of similar setae, smooth, surrounded by distinct, smooth, transparent sheaths of cerotegument (Figs. 8, 9, 67, 69). Three pairs of setae (row *c*) on anterior border, distance *c1*–*c2* slightly shorter than *c2*–*c3*; 3 pairs (*d1*, *d2*, and *e1*) in central part of notogaster, between medial ridges, 7 pairs (*cp*, *e2*, *f1*, *f2*, *h1*, *h2*, and *h3*) along lateral ridges and on posterior lobes, and 3 pairs (row *p*) in ventral position. Setae of rows *ps* and *h* not inserted on tubercles. Opisthosomal gland opening (gla) posterior to seta *f2*. Five pairs of lyrifissures (*ia*, *im*, *ip*, *ih*, *ips*) in normal positions for genus.

Ventral region (Fig. 3). Coxisternal pairs fully fused medially. Coxisternal setation 4-3-1-3; setae short and thick. Genital setae all near medial margin, setation variable between 7–10. Two pairs of aggenital setae inserted on medial edge of aggenital plate. Preanal plate distinct, typical of genus. Anal and adanal plates bearing 2 and 3 pairs of similar setae, respectively. All setae on ventral region surrounded by smooth, transparent sheaths (Figs. 10–12).

Gnathosoma. Subcapitulum (Figs. 19, 20) stenarthic. Medial lobe of rutellum large, completely covering adoral region. Mental seta (*h*) rather thin and smooth. Two pairs of genal setae, seta *a* distinctly longer than *m*. Three pairs of adoral setae; *or1* brushed posteriorly, the other two pairs smooth. Palp setation (trochanter to tarsus) 0-1-1-8(1). Chelicerae (Fig. 18) with normal two setae.

Legs (Figs. 21–28).

Tarsi tridactylous. Lateral claws with dorsal fringe of hyaline teeth. Setae inserted on small tubercles. Setation (including famulus): I: 1-11-5-6-29, II: 1-11-4-4-25, III: 5-6-4-4-25, IV: 1-4-4-4-25; solenidial formulae: I: 1-2-2, II: 1-1-2, III: 1-1-0, IV: 0-1-0 or 1-1-0 in some specimens.

Material Examined: The holotype and 42 paratypes (adults) were collected from New Zealand: FM (HD) 85-453, South Island, BR., Nelson Lakes National Park, Mt. Robert summit, 1412 m elev., 20 Dec. 1984, A. NEWTON and M. THAYER coll., ex alpine plant mats. The holotype and 36 paratypes are deposited in the Field Museum, Chicago, USA; three paratypes are in the collection of R. A. NORTON and three paratypes in the collection of Z. OLSZANOWSKI.

Remarks: The species is morphologically most similar to *H. foliatus* Wallwork from Macquarie Island. They differ in that *H. foliatus* has notogastral setae “foliate” and “barbed” (WALLWORK, 1963), whereas in *H. naskreckii* they are smooth, surrounded by distinct, transparent sheaths. Also, setae in the central part of the notogaster in *H. foliatus* are “inserted on inner margins” of grooves, while those of *H. naskreckii* are inserted distinctly between medial ridges.

Etymology: The species is named in honour of Dr Piotr NASKRECKI, Polish orthopterist and acarologist in appreciation of discussions on phylogenetic systematics.
Fig. 25-28: *Holothrus naskreckii* sp. nov., adult paratype, tarsi of legs I-IV, antiaxial view.
Holonothrus gracilis sp. nov.

Adult. Body length: 740–810 μm; maximum body width: 310–320 μm. Colour brown. Prodorsal cuticle covered by fine porose microsculpture; hysterosomal cuticle, especially in lateral parts, with indistinct reticulate pattern caused by rounded or polygonal raised areas. Body covered by transparent cerotegument.

Prodorsum (Fig. 29). Length of prodorsum equal to 1/3 of body length. Tip of rostrum rounded. Rostral setae (ro) not situated on apophyses; thin, curved. Lamellar setae (le) curved, serrated, on strong apophyses with broad bases; apophyses distinctly shorter than mutual distance of their tips. Tips of apophyses reach rostrum. Interlamellar setae (in) on short apophyses, smooth, curved; tips reach rostrum. Lamellar and interlamellar setae covered by layer of cerotegument (Figs. 31, 32), very thin in in. Sensillus (Fig. 34) completely contained within bothridium. Two pairs of longitudinal ridges seen in dorsal aspect; one runs anteromedial from near bothridium towards lamellar apophyses and bears setae in, the other runs posteromedial from bothridium. Longitudinal fold of cuticle present lateral to bothridium.

Notogaster (Fig. 29). Notogaster broadest at level of setae e2. Upper edges appearing as lateral ridges in dorsal aspect, running immediately lateral to setae cp, e2, and j2; ridges merge posteriorly with pair of shallow lobes which delimit a somewhat concave posterior region. Pair of indistinct longitudinal medial ridges delimits more convex central region of notogaster and connects posteriorly with internal edges of lobes. Notogaster with 16 pairs of similar setae, smooth, but with delicate transparent sheets of cerotegument, especially distinct and somewhat frayed on posterior notogastral setae (Figs. 35–38). Setal distribution as in *H. naskreckii*, except cp lie more posteriorly (nearly at level of d2). Setae of rows ps and h not inserted on tubercles. Opisthosomal gland opening (gla) posterior to seta f2. Five pairs of lyrifissures (ia, im, ip, ih, ips) in normal positions for genus.

Ventral region (Fig. 30): Coxiasternal pairs fully fused medially. Coxiasternal setation 4-2-3-2; setae short and thick. Genital setae all near medial margin, setation variable between 7–10. Two pairs of aggenital setae inserted on medial edge of aggenital plate. Preanal plate typical of genus. Anal and adanal plates bearing 2 and 3 pairs of similar setae, respectively.

Gnathosoma: not studied in detail.

Material Examined: The holotype and 1 paratype (adult) were collected from the same site as *H. naskreckii*. They are deposited in the Field Museum, Chicago, USA.

Remarks: This species is morphologically similar to *H. naskreckii* sp. nov. and *H. pulcher* Hammer, from which it differs by the shape of setae h2 and the body shape.

Etymology: The specific epithet is from Latin, meaning slim or slender, and refers to the elongate shape of the body.

Holonothrus novaecaledoniae sp. nov.

Prodorsum (Fig. 39). Prodorsum elongated, distinctly longer than 1/3 of body length. Tip of rostrum rounded. Rostral setae (ro) not situated on apophyses; thin, smooth and curved. Lamellar setae (le) curved, indistinctly serrated, on strong apophyses (Fig. 41); the latter distinctly shorter than distance between their tips. Tips of apophyses not reaching rostrum. Interlamellar setae (in) on short apophyses, smooth, bent medially (Fig. 42). Their tips not reaching lamellar apophyses. Sensillus (Fig. 44) completely contained within bothridium. Two pairs of longitudinal ridges present in dorsal aspect; one runs anteromedial from near bothridium, reaches lamellar apophyses and bears setae in, the other runs posteromedial from bothridium. Longitudinal fold of cuticle present lateral to bothridium.

Notogaster (Fig. 39). Notogaster broadest at level of setae e2, then tapered posteriorly to distinctly convex posterior margin. Upper edges appearing as lateral ridges in dorsal aspect, running lateral to setae cp, e2, and j2; ridges merge posteriorly with pair of...
FIG. 29–30: *Holonothrus gracilis* sp. nov., adult holotype, dorsal view (29) and ventral view (30).
FIG. 31–38: Holomothrus gracilis sp. nov., adult holotype.

31. — Lamellar seta. 32. — Interlamellar seta. 33. — Muscle sigillae in the center of prodorsum. 34. — Bothridium and sensillus. 35. — Seta c2. 36. — Seta dl. 37. — Detailed sculpture on notogaster. 38. — Left caudal (posterior) region of notogaster.
shallow lobes. Pair of indistinct longitudinal, medial ridges delimits central region of notogaster. Notogaster with 16 pairs of setae. Three pairs of setae (row c) on anterior border, distance c1-c2 slightly shorter than c2-c3; 3 pairs (d1, d2, and e1) in central part of notogaster, lateral to medial ridges, 7 pairs (cp, e2, f1, f2, h1, h2, and h3) along lateral ridges and on posterior lobes, and 3 pairs (row ps) in ventral position. Setae of h row surrounded by barbed transparent sheaths (Figs. 45, 46) especially distinct on setae h1. Setae of rows ps and h not inserted on tubercles. Opisthosomal gland opening (gla) posterior to seta

Fig. 39-40: Holothrus novaealedoniae sp. nov., adult holotype, dorsal view (39) and ventral view (40).
FIG. 41-46: Holonothrus novaecaledonius sp. nov., adult holotype.

41. — Lamellar seta. 42. — Interlamellar seta. 43. — Seta cl. 44. — Bothridium and sensillus. 45. — Left caudal (posterior) region of notogaster, lateral view. 46. — Idem, dorsal view.

f2. Five pairs of lyrifissures (ia, im, ip, ih, ips) in normal positions for genus.

Ventral region (Fig. 40). Coxisternal pairs fully fused medially. Coxisternal setation 3-2-3-3; setae curved, as long as genital ones. Nine pairs of genital setae, all near medial margin of genital plates. Two pairs of aggenital setae inserted on medial edge of aggenital plate. Preanal plate typical of genus. Anal and adanal plates bearing 2 and 3 pairs of similar setae, respectively.

Gnathosoma: not studied in detail.

Material examined: One adult specimen (the
holotype) was collected from New Caledonia: MP-4, Mt. Painé, wet and dry moss from bark, 7–9.10.1977, J. Balogh col. The holotype is deposited in the Zoology Department of the Hungarian National Museum, Budapest, Hungary.

Remarks: This species is morphologically similar to *H. pulcher* Hammer, from which it differs by the distribution and the shape of the setae of the *h* row, proportion of the length of prodorsum: notogaster and the length of the body.

Etymology: The specific epithet refers to the island containing the type locality of this species.

Holonothrus pulcher Hammer, 1966

Adult (Figs. 47–61). The specimens studied by me differed in some features from the type specimens described and illustrated by Hammer (Table 1). It seems, however, that these differences can be recognized as the effect of individual variability.

Prodorsum (Fig. 62). Features similar to those of adult; interlamellar setae and their apophyses very short. Sensillus and bothridium as in adult.

Hysterosoma (Fig. 62). Hysterosoma strongly hila bed posteriorly, lobes bearing setae *fl* and *h* row. Six pairs of porose plates dorsally, setae *c1* and *c2* together on one, four others bearing setae *c3*, *cp*, *e2*, *f2*, respectively, the last one on lobes, bearing both setae *fl* and *hl*. Setae *dl*, *d2*, and *el* not on plates, inserted on small tubercles. Setae *hl* with indistinct sheath of cuticula. Setae *h2* both broken from specimen (probably different in shape and length from other notogastral setae). Except for plates, cuticule irregularly striate.

Ventral region (Fig. 65). With 6 pairs of genital and full adult complement of aggenital, adanal and anal setae.

Legs: monodactylous, not studied in detail.

Material examined: New Zealand: BR, Punaiki, Dec. 28, 1983, L. Masner, s.s. (4 adults); ND, Waipoua Kauri Forest, Dec. 11 & 12, 1983, L. Masner, s.s. (2 adults); MC, Arthur’s Pass, 900 m, Dec. 31, 1983, L. Masner, s.s. (3 adults); MC, Banks Peninsula, Prices Valley, Dec., 26, 1983, L. Masner, s.s. (1 adult and 1 tritonymph). Material is deposited in the Canadian National Collections of Insects, Arachnids and Nematodes, Centre for Land and Biological Resources Research, Ottawa, Canada.

Holonothrus mitis Olszanowski, 1991

Australia: NSW, New England N.P., 1300–1500 m, Feb. 13, 1984, L. Masner, s.s. (1 adult). Material is deposited in the Canadian National Collections of Insects, Arachnids and Nematodes, Centre for Land and Biological Resources Research, Ottawa, Canada.

Holonothrus robustus Olszanowski, 1991

Australia: NSW, Monga State Forest, 1984, Lush ferns in *Eucalyptus* forest (1 adult); NSW, New England N.P., 1600 m, Feb. 12, 1984, *Nothofagus moorei* forest, ferns, L. Masner, s.s. (8 adults). Material...
FIG. 47–51: *Holothrus pulcher* Hammer, adult from Punakaiki.

47. — Dorsal view. 48. — Rostral seta. 49. — Lamellar seta. 50. — Interlamellar seta. 51. — Bothridium and sensillus.
Fig. 52-57: Holothrus pulcher Hammer, adults from Punakaiki

52. — Right caudal (posterior) region of notogaster, dorsal view. 53, 54. — Setae h2 in two different specimens. 55. — Seta cl. 56. — Seta c2. 57. — Seta d2.
FIG. 58-61: Holothrus pulcher Hammer, adult from Punakaiki.

58. — Leg I, trochanter to tibia, antiaxial view. 59. — Tarsus of leg I, antiaxial view. 60. — Tarsus of leg III, antiaxial view. 61. — Tarsus (deformed) of leg III, antiaxial view.
Fig. 62–65: *Holothrus pulcher* Hammer, tritonymph from Banks Peninsula.

62. — Dorsal view. 63. — Rostral seta. 64. — Lamellar seta. 65. — Genito-anal region, ventral view.
FIG. 66–69: Holonothrus naskreckii sp. nov., adult paratype.

66. — Frontal view, scale bar = 100 μm. 67. — Dorsal view, scale bar = 200 μm. 68. — Apophyse and base of interlamellar seta, dorsal view, scale bar = 5 μm. 69. — Right caudal (posterior) region of notogaster, dorsal view, scale bar = 10 μm.
rial is deposited in the Canadian National Collections of Insects, Arachnids and Nematodes, Centre for Land and Biological Resources Research, Ottawa, Canada.

KEY TO ADULTS OF AUSTRALIAN REGION SPECIES OF HOLONOTHRUS

1 Interlamellar setae longer than the distance between their bases 2
 Interlamellar setae distinctly shorter than the distance between their bases 6

2(1) Notogastral setae foliate and barbed \emph{H. foliatus} Wallwork
 Notogastral setae smooth, sometimes surrounded by transparent sheaths 3

3(2) Notogastral setae surrounded by distinct, transparent sheaths (Fig. 1, 8, 9, 16)\emph{H. naskreckii} sp. nov.
 Notogastral setae without distinct sheaths 4

4(3) Setae \textit{hi} and/or \textit{h2} similar in shape to other notogastral setae (Fig. 29, 38) \emph{H. gracilis} sp. nov.
 Setae \textit{hi} and/or \textit{h2} differ in shape from other notogastral setae 5

5(4) Setae \textit{h2} small, smooth; setae \textit{hi} with tubercles (Fig. 39, 46) \emph{H. novaecaledonii} sp. nov.
 Setae \textit{h2} large, with tubercles; setae \textit{hi} smooth (Fig. 47, 52) \emph{H. pulcher} Hammer

6(1) Setae \textit{hi} and \textit{h2} ciliate, similar to other notogastral setae \emph{H. mitis} Olszanowski
 Setae \textit{hi} and/or \textit{h2} foliate, differ in shape from other notogastral setae.......... 7

7(6) Both \textit{hi} and \textit{h2} setae foliate, differ in shape from other notogastral setae \emph{H. robustus} Olszanowski
 Setae \textit{h2} foliate, \textit{hi} smooth, similar in shape from other notogastral setae \emph{H. concavus} Wallwork

ACKNOWLEDGEMENTS

This study was financially supported by a grant (6 P205 064 06) from the State Committee for Scientific Research, Warsaw.

I am very grateful to R. A. Norton (State University of New York, Syracuse, NY) and M. Colloff (CSIRO, Division of Entomology, Canberra) for reading the manuscript and for constructive and helpful suggestions which considerably improved this work. My sincere thanks go to J. Wieczorek and E. Kujawa for scanning photography.

I express my sincere appreciation to the following persons and institutions for the loan of specimens: R. A. Norton (State University of New York, Syracuse, NY), J. B. Kethley (Field Museum, Chicago, IL), J. Balogh (Department of Zoosystematics and Ecology, Eötvös Lóránd University, Budapest), S. Mahunka (Zoology Department, Hungarian National Museum, Budapest) and V. Behan-Pelletier (Centre for Land and Biological Resources Research, Ottawa).

REFERENCES

