Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
THE LIFE-CYCLE OF *DERMATOPHAGOIDES EVANSI* FAIN, 1967
(ACARI : PYROGLYPHIDAE), A MITE ASSOCIATED WITH POULTRY *

BY K. Y. MUMCUOGLU ¹ and I. LUTSKY ²

LIFE-CYCLE

Summary: *Dermatophagoides evansi* was cultured in a medium composed of chicken skin or human skin scales plus powdered bakers yeast at a temperature of 25-27°C and relative humidity of 75-80%. The mean duration in days for each stage of the mite life-cycle was: egg 8.3; larva; protonymph 5.4; tritonymph 6.6; male 28.9 and female 52.9. The average time required for completion of one generation was 28.7 days. The female was oviparous and laid an average of 35.5 eggs during her lifetime; parthenogenesis was not observed. Adults copulated frequently. The male : female ratio was 1.2 : 1.

REsUMÉ: *Dermatophagoides evansi* a été cultivé dans un milieu comprenant de la peau de poulet ou des pellicules de peau humaine et de la poudre de levure de boulanger à une température de 25-27°C et une humidité relative de 75-80%. La durée moyenne exprimée en jours de chaque stade de l'acarien est pour l'œuf 8.3; la larve 6.4; la protonymphe 5.4; la tritonymphe 6.6; le mâle 28.9 et la femelle 52.9. La durée moyenne pour le développement d'une génération de l'acarien est de 28.7 jours. L'acarien est ovipare et il n'a pas été observé de parthenogénèse. La femelle pond en moyenne 35.5 œufs pendant sa vie. Les adultes copulent fréquemment. Le rapport male : femelle est de 1.2 : 1.

INTRODUCTION

Dermatophagoides evansi was first identified as a species from material derived from a feather pillow in England (FAIN 1967). It has been occasionally isolated from birds' nests (FAIN, 1967), house dust samples (WHARTON, 1976) and poultry houses (BRADY, 1970).

In a recent survey of 35 poultry houses in Israel, *D. evansi* was found in all of the 35 poultry houses examined. This species was the most prevalent species in dust samples of poultry houses, and accounted for 74.4% of the total mite fauna (MUMCUOGLU & LUTSKY, 1990).

In view of the possible significance of *D. evansi* as an allergy causing agent, the aim of this study was to culture *D. evansi* and to study its life-cycle under laboratory conditions.

MATERIALS & METHODS

1. Isolation of mites: Dust samples collected in different poultry houses near Jerusalem were examined for mites by a method described previously.

* This study was supported in part by the Peter Hilston Foundation for Medical Research, Jerusalem.
1. Department of Parasitology, The Kuvin Center.
2. Department of Comparative Medicine, Hebrew University-Hadassah Medical School, 91010 Jerusalem, Israel.

Acarologia, t. XXXI, fasc. 2, 1990.
(Mumcuoğlu, 1976). Samples which contained only D. evansi specimens were placed in plastic beakers (5 cm in diameter and 5 cm high) and incubated at a temperature of 25-27°C and relative humidity (RH) of 75-80%. Two days later, 100 mg of culture medium was added to an empty area of the container floor. Seven days later the culture medium which was infested with mites was transferred in toto to a new container. Examination of 3-5 samples from each culture container two months later confirmed that the culture was pure.

2. Culture of the mites: Two culture media were employed. One culture medium consisted of chicken skin and powdered bakers yeast (Saccharomyces cerevisiae) (Sigma Co. St. Louis, Mo. USA) in a ratio of 1 : 1.5 (w/w). After removing the skin from commercially available chickens, the fatty layers were excised with a scalpel; further defattting was achieved by placing the skin in acetone for two days. The acetone was discarded, and the skin dried at room temperature and homogenized in a Waring Blender. The second culture medium contained human skin scrapings instead of chicken skin. These skin scrapings were obtained from a chiropodist's office and defatted with acetone.

Plastic beakers 8 cm in diameter and 5 cm high were used to maintain the colony. The rim of the beaker was smeared with "Tanglefoot" to prevent the mites from escaping and the invasion of the culture either by other mite species or small insects.

The mites were kept in an incubator at a temperature of 25-27°C and 75-80% RH. Additional growth studies were carried out at 20° and 30°C.

Cultures were examined once a week, and every month 50-250 mg of culture medium was added. In those cases where heavy growth occurred, part of the culture was transferred to an empty beaker and maintained as described previously.

3. Observation of specimens: The pre-adult stages were studied in plastic "Terasaki" microplates having 60 wells (Cel-Cult, Sterilin, Feltham, England). Approximately 1 mg of culture medium was distributed into each well to which a freshly oviposited egg was added. Nine wells were covered with one cover glass (22 x 22 mm), which was attached to the surrounding well-edges by vaseline. This provided sufficient space for exchange of air, but did not permit mites to escape.

Contents of the wells were examined daily, and the duration of each stage from egg to adult was recorded. In order to distinguish between active and resting stages, the mites were exposed briefly to a strong light source, rendering the active mites more mobile.

To facilitate observation of the duration of adult stages, oviposition and copulation, two resting tritonymphs were separated from the main culture and placed in a well of a 96-well flat - bottomed tissue culture plate (Cel-Cult, Sterilin). Approximately 2 mg of culture medium was added to each well prior to the introduction of nymphs. Four colonized wells were covered with a 22 x 22 mm cover glass and examined with a stereo-microscope at a magnification of 30×.

In order to distinguish the original (tritonymph-derived) adults from those males and females in the same well belonging to the new generation, tritonymphs were identified by a vital dye. This was achieved through the addition of 5 mg of Pararosaniline (basic parafuchsin, Sigma Co.) to 100 mg of mite culture; upon ingestion the mid-gut was stained red for several weeks. This technique enabled the study of adult stages of mites derived from the stained tritonymphs. In cases of overcrowding and/or lack of food, the original adults were removed to new wells together with food. For this purpose the micro-plate was placed on a cold-plate at 5°C and left until all mites were immobile. The mites were then individually transferred under the stereo-microscope with the aid of a mounted needle.

RESULTS

The developmental stages of D. evansi include: egg, larva, protonymph, tritonymph and adult male and female. Resting larval, protonymphal and tritonymphal stages were observed, whereas deutonymph, hypopi and heteromorphic males were not identified.

Table 1 shows the duration of the different developmental stages of D. evansi under laboratory
Table 1: Duration of the developmental stages of *D. evansi* under laboratory conditions.

<table>
<thead>
<tr>
<th>Stage</th>
<th>n*</th>
<th>Lifespan (days)</th>
<th>Mean lifespan (days ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>52</td>
<td>4-13</td>
<td>8.3 ± 3.3</td>
</tr>
<tr>
<td>Active larva</td>
<td>23</td>
<td>4-6</td>
<td>4.7 ± 0.7</td>
</tr>
<tr>
<td>Resting larva</td>
<td>48</td>
<td>1-3</td>
<td>1.7 ± 0.5</td>
</tr>
<tr>
<td>Active protonymph</td>
<td>18</td>
<td>2-5</td>
<td>3.8 ± 0.8</td>
</tr>
<tr>
<td>Resting protonymph</td>
<td>25</td>
<td>1-2</td>
<td>1.6 ± 0.5</td>
</tr>
<tr>
<td>Active tritonymph</td>
<td>18</td>
<td>2-8</td>
<td>4.5 ± 1.6</td>
</tr>
<tr>
<td>Resting tritonymph</td>
<td>14</td>
<td>1-3</td>
<td>2.1 ± 0.5</td>
</tr>
<tr>
<td>Male</td>
<td>25</td>
<td>21-35</td>
<td>28.9 ± 4.9</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>30-62</td>
<td>52.9 ± 8.6</td>
</tr>
</tbody>
</table>

n*: number of mites examined.

The development of *D. evansi* from egg to adult under laboratory conditions is similar to that of *D. pteronyssinus* (SPIEKSM, 1967), *D. farinae* (OSHIMA & SUGITA, 1966) and *D. microceras* (GRIFFITHS & CUNNINGTON, 1971), mites normally found in house dust. The lifespan of *D. evansi* (male: 21-35 days and female: 30-62 days) is similar to that of *D. farinae* (OSHIMA & SUGITA, 1966) and *D. microceras* (GRIFFITHS & CUNNINGTON, 1971), in contrast to the lifespan of *D. pteronyssinus* (male: 60-80 days and the female: 100-150 days) (SPIEKSM, 1967).

The mating behaviour of *D. evansi* resembles that of *D. pteronyssinus* and *D. farinae* (SPIEKSM, 1967; BRONSWIJK & SINHA, 1971). Egg deposition in *D. evansi* and in other species follows copulation; the female *D. evansi* lays 25-50 eggs during life-time, as compared to *D. farinae*, 40-80 eggs, and *D. pteronyssinus*, 70-100 eggs.

D. evansi is relatively mobile and in its behaviour is more similar to that of *D. farinae* (BRONSWIJK & SINHA, 1971) than to *D. pteronyssinus*, which tends to hide under the food substrate (SPIEKSM, 1967).

The cultivation of *D. evansi* in vitro has facilitated the preparation of diagnostic antigens. Prick skin testing and provocative bronchial challenge tests utilizing these antigens are now being carried out on poultry workers in order to determine the possible clinical relevance of *D. evansi* in poultry-house related hypersensitivity diseases.

REFERENCES

BRONSWIJK (J. E. M. H., van) and SINHA (R. N.), 1971. — Pyroglyphid mites (Acari) and house dust allergy. — J. Allergy 47 : 31-52.

Paru en Juillet 1990.