Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
A NEW SPECIES OF THE GENUS SITEROPTES
(ACARI: PYGMEPHOROIDEA)
FROM XIZANG, THE PEOPLE’S REPUBLIC OF CHINA

by Jian-Rong GAO*, Ping ZOU** and Rong QIN***

PYGMEPHOROIDEA
XIZANG

SUMMARY: A new species of pygmephoroid mite, Siteroptes xizangensis n. sp., is described and illustrated. It was collected from highland barley and wheat in Xizang, China.

PYGMEPHOROIDEA
XIZANG

RÉSUMÉ: Une nouvelle espèce d’acarien pygmephoroide, Siteroptes xizangensis n. sp., est ici décrite et illustrée. Elle a été récoltée sur des orges et blés de Xizang, en Chine.

The genus Siteroptes Amerling, 1861 (sensu KALISZEWSKI, 1987) is known to contain nine species, viz. S. avenae (Müller, 1905), S. ceralium (Kirchner, 1864), S. graminisugus (Hardy, 1851), S. graminicola Mitrofanov et al., 1984, S. huangsuisiensis Su, 1979, S. longissimusus Kaliszewski, 1987, S. qinghaiensis Su, 1979, S. reniformis Krantz, 1957 and S. triticola Su, 1979. Among them, the first three species were studied morphologically for all stages based on rearing materials and it was concluded that they were different species (SusKI, 1973, 1984), but it was still doubtful that whether S. avenae and S. ceralium are the same species (KALISZEWSKI, 1987). S. huangsuensis was treated as a junior synonym of S. ceralium (Livshits et al., 1986). These problems need further study in future by examining type specimens and by undertaking biological work.

In the present paper, a new species of this genus, S. xizangensis n. sp., collected from China is described and illustrated. According to the classification of Livshits et al. (1986), this new species should be placed in the subgenus Eositeroptes. The type specimens are deposited in the Department of Landscape and Environmental Science, Shanghai Agricultural College, Shanghai, P. R. China. The nomenclature is based on Lindquist (1986) and Kaliszewski & Rack (1985). All measurements are in micrometers. Body length measurements exclude gnathosoma and body width were measured at the level of anterior of trochanter III.

Siteroptes xizangensis sp. nov.
(figs 1–12)

Figs. 1–2: *Siteroptes xizangensis* sp. nov., female. 1. — Dorsum. 2. — Venter.

Setae v1, v2 and c1 coarse, with relatively stiff endings. All other dorsal setae coarse, flagelliform.

Idiosomal venter: Sporothecae opening along anterior margin of metapodosoma. All apodemes on propodosoma well developed, except sejugal apodeme which is almost invisible. Apodemes on hysterosoma very weak. Posteromedian apodeme short, level with posterior parts of trochanters III. Apodeme III with only lateral extremity developed. Apodeme IV not continuous. Apodeme V vestigial. Length of setae: 1a 13, 1b 14–16, 1c 7–8; 2a 18, 2b 21–24; 3a 11–12, 3b 7–8, 3c 14–18; 4a 16–20; 4b 18-20; ps, 5, ps3 26–28. Distances between setae:
Figs. 9–12: Siteroptes xizangensis sp. nov., male. 9. — Leg I. 10. — Leg II. 11. — Leg III. 12. — Leg IV.
3a-3a 30–32, 3b-3b 20–25, 3c-3c 48–52; 4a-4a 46–49, 4b-4b 22–25; ps 1, 13–16, ps 3, 31–33; 3a-3b 36–39, 3b-3c 17–20; 4a-4b 22–25; ps 1, ps 2 8–11. Setae 1b bifurcate. Setae 2c, 4c and ps 3 absent. Setae 1c, 3a, 3b and ps 2 blunt. Setae ps 2 also coarse, with relatively stiff endings. All other setae flagelliform.

Legs: Leg I with one claw, without empodium; legs II–IV with paired simple claws and large membranous empodium on short stalk. Formula of setae on leg I: 1–4–4–6 + 2S–13 + 2S. Solenidion ω 1, 2.8–3.1 long, rod-like; solenidion ω 2, 5.3 long, fusiform; solenidia φ 1, φ 2 both rod-like, 3.9 and 4.8 long, respectively; seta k setiform; formula of setae on leg II: 1–3–2–4 + 1S–7 + 1S; solenidion ω, 5.3 long, fusiform, inserted basally; solenidion φ, 3.6 long, rod-like, arising slightly basally of the middle. Formula of setae on leg III: 1–2–2–4 + 1S–7 and on leg IV: 0–2–1–3–6; one trochanteral and one tibial seta on leg IV absent.

MALE Body length 213–235, width 120–123.

Gnathosoma reduced, non-functional.

Idiosomal dorsum: Prodorsal shield with four pairs of setae (v 1, v 2, sc 1 and sc 2). Tergite C consolidated with tergite D; shield CD with three pairs of setae (c 1, c 2 and d). Setae d reduced to small tuberculi. Tergite EF with one pair of setae (f). Tergite H with two pairs of setae (h 1 and h 2); setae h 1 smooth, rod-like, with rounded ends, setae h 2 small, needle-shaped. All other setae coarse with relatively stiff endings. Length of setae: v 1, 11–14, v 2, 9–11; sc 1, 20–24, sc 2, 18–23; c 1, 14–17; c 2, 20–25; f 21–23; h 1, 5–6. Distances between setae: v 1, 6–8, v 2, 36–39; sc 1, 39–43, sc 2, 40–46; c 1, 40–53, c 2, 71–98; d, d 16; f, f 20. h 1, 16; v 1, 16–21, v 2, sc 1, 4–7, sc 2, 10–11.

Idiosomal venter: Apodemes moderately developed. Anteromedian apodeme connected with strong, short apodeme I and arched apodeme II, not connecting with sejugal apodeme. Apodeme III strong only between setae 3a and trochanter III, not connecting with posteromedian apodeme. Apodeme IV vestigial. Posteromedian apodeme jointed with apodeme V. Coxal plates I with three pairs of setae, 1b slightly thicker than 1a and 1c. Coxal plates II with two pairs, coxal plates III with three pairs and coxal plates IV with two pairs of setae. Length of setae: 1a 7–9, 1b 7–11, 1c 6–9; 2a 8–10, 2b 8–10; 3a 6–10, 3b 6–10, 3c 7–11; 4a 6–10, 4b 7–10; ps 1, 2–3, ps 2, 5–6.

Legs: Leg I with single claw, without empodium; legs II and III each with paired claws and a membranous empodium; leg IV with two modified claws but without membranous empodium. Formula of setae on leg I: 1–4–4–6 + 2S–12 + 2S; solenidion ω 1, ω 2 fusiform, 5.3–5.9 long, respectively, φ 1, φ 2 rod-like, 6.2 and 11 long, respectively, seta k lanceolate. Formula of setae on legs II and III: 1–3–2–4 + 1S–7 + 1S and 1–2–4 + 1S–7. Setae tc' and pl' on both legs spine-like and solenidia rod-like. On leg II, solenidia ω and φ 5 and 5.6 long, respectively; on leg III, φ 7.3 long. Formula of setae on leg IV: 0–2–1–3 + 1S–6; solenidion φ 8.4 long, rod-like, slightly contracted in middle; seta tc, long flagelliform, seta tc' and pl' spine-like.

TYPE MATERIAL: Holotype female, allotype male, paratypes 15 females and 13 males, collected from Hordeum vulgare var. nudum at Jiaza County, Xizang, China by Rong QIN on June 5, 1991. Paratypes 20 females and 1 male, collected from Hordeum vulgare var. frifurcatum at Longzi County, Xizang, by Rong QIN on June 5, 1990.

REMARKS: This species is very closely related to Siteroptes qinghaiensis Su, 1979, but the females differ from those of the latter species in setae v 1 arising closer to peritremes than to setae v 2, and trochanter IV lacking a seta; the males differ from those of all other known species in having setae sc 2 short, subequal in size to setae sc 1.

This new species is very important as a major vector of the fungal pathogen Monographella nivalis (Schaffn.) Mull. which causes severe spike-rot of wheat. This disease has been found recently in many regions in northern China.

ACKNOWLEDGEMENTS

The authors wish to express their sincere gratitude to Dr E. LINDQUIST, Biosystematics Research Institute, Agriculture Canada, Ottawa, for reviewing this manuscript. This study was supported by a grant of the "Qi Ming Xing Project", Shangai Science and Technology Committee, Shanghai, China.
REFERENCES

LIVSHITS (I. Z.), MITROFANOV (V. I.) & SHARONOV (A. A.), 1986. — Revision of mites of family Siteroptidae

