Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
DESCRIPTIONS OF THE IMMATURE STASES OF MACROCHELES MYCOTRUPETES KRANTZ AND MELLOTT (ACARI: MACROCHELIDAE), WITH REMARKS ON FORM, FUNCTION, AND PHORESY

BY G. W. KRANTZ AND L. A. ROYCE

ABSTRACT: The larval and nymphal stases of M. mycotrupetes are described and illustrated, and a discussion of characters unique to this phoretic species is presented. Chief among these are the paranal extensions of the cribrum, the occurrence of five pairs of setae in the J series, and the presence of postepigynial platelets in all postlarval instars. Absence of a bidentate tooth on the movable digit of the female chelicera, and persistent deficiencies in number of tarsal sensilla, are discussed in terms of their possible significance in the evolution of phoresy in M. mycotrupetes.

INTRODUCTION

Macrocheles mycotrupetes Krantz and Mellott is found in close phoretic association with the geotrupine scarabs Mycotrupes gaigei Olson and Hubbell and Geotrupes egeriei Germar in the dry sandhill regions of north-central Florida (Krantz and Mellott 1968, 1972). Recent research on the chemical basis of phoresy in M. mycotrupetes (Krantz et al. 1991) gave rise to the development of a laboratory culture method that has provided the opportunity to augment our original diagnoses of adult M. mycotrupetes (Krantz and Mellott 1968) with descriptions of the previously undescribed immature stases. Larvae, protonymphs, and deutonymphs of M. mycotrupetes were separated from the culture, mounted in Hoyer’s solution, and cleared at 50°C for 72 hours prior to study. Illustrations generally were based on study of two or more specimens. Measurements given in the text are in micrometers.

DESCRIPTIONS

LARVA (Figs. 1-3). Length of idiosoma averages 606 (586-616), width at level of coxae III averages 495 (473-513) (n = 4). Dorsum (Fig. 1) with 14 pairs...
FIGS. 1-4: *Macrocheles mycotrupetes* K. & M.
1. — Dorsum of larva (scale bar = 100µm). 2. — Terminal portion of tarsus I of larva showing porous (cross-hatched) and non-porous (solid) sensilla (scale bar = 25µm). 3. — Venter of larva (scale bar = 100µm). 4. — Terminal portion of tarsus I of protonymph, with porous sensilla numbered after the system of COONS and AXTELL 1973 (scale bar = 25µm)
of setae, some of which are weakly pilose distally; with two pairs of podonotal and four pairs of opisthonotal pores or pore-like apertures discernible on examined specimens (pj4, pj6, pj1, pj2, pj4, pj5) (KRANTZ and REDMOND 1987), dorsal shields absent. Venter (Fig. 3) without distinct sclerotization, with three pairs of smooth sternal setae inserted in the podogastral region posterior to a well developed tritosternum; with two pairs of preanal setae (Jv1, Jv2), the posterior pair (Jv2) being over half again as long as the anterior pair; paranal setae slightly longer than postanal seta, flanking the anal aperture, with some indication of an anal shield, cribrum and cribral gland apertures absent. With paired internal entities lying between the preanal setae and coxae III that may represent the rudiments of the developing respiratory system; setae Zs and S5 inserted posterolaterad from anal shield, with a single pair of ventral pores laterad from Jv2. Gnathosoma typical for the genus, with only two pairs of hypostomatic setae (hyp. 1,2); hypostomastics 3, capitular setae and deutosternal groove undeveloped; palpal chaetotaxy holotrichous, typical for genus and stase (0-4-5-12-11), palpal apotele with rudimentary third tine on proximoventral face of central tine; median element of epistome (Fig. 1) broadly produced, without lateral elements. Legs more or less equal in length (280-300), legs II considerabte stouter than legs I and III, leg chaetotaxy (Table 1) normal for the cohort; with only four blunt sensory setae, or sensilla, at the tip of tarsus I (Fig. 2) rather than six (COONS and AXTELL 1973), with only the two more proximal sensilla appearing porous.

Protonymph (Figs. 4-6). Length of idiosoma averages 657 (580-725), width at level of coxae III averages 493 (435-632) (n = 8). Dorsum (Fig. 5) with lightly tanned unornamented podonotal and opisthonotal shields; podonotal shield with 11 pairs of distally pilose setae, pores pj3, pj4, pj6, and pz5 discernible on specimens examined; pore pz3 in integument laterad from seta z2; opisthonotal shield with 10 pairs of distally pilose setae, including what appears to be an entire complement of J setae and at least nine pairs of pores, with additional pores in integument surrounding shield. Venter

Table 1: Leg chaetotaxy of immature stases of *Macrocheles mycotrupetes* (tarsi have been omitted).

<table>
<thead>
<tr>
<th></th>
<th>Coxa</th>
<th>Troch</th>
<th>Femur</th>
<th>Genus</th>
<th>Tibia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Larva</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Protonymph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Deutonymph</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(Fig. 6) with a weakly defined sternal and anal shield; sternal shield lying behind a well developed tritosternum, occupying area mediad from coxae II-IV, somewhat broadened medially and narrowed posteriorly, with weak ornamentation in the posterior portion; with three pairs of smooth sternal setae and two pairs of pores; with six narrow postepigynial scutellae lying posterior to the sternal shield, epigynial setae (st5) inserted between the shield and scutellae, somewhat shorter than sternal, epigynial pores absent or obscure. Anal shield ovate, weakly defined, with a pair of smooth paranal setae and a single distally pilose postanal seta; cribrum distinct, extending anterolaterally on shield to level of paranals. With four pairs of opisthogastric setae, of which only Jv1 is without distal pilosity; with at least three pairs of opisthogastric pore-like apertures, including the putative cribral gland apertures adjacent to the cribrum; metapodal platelets weakly developed behind coxae IV. Stigmata laterad from coxae III-IV; peritremes
abbreviated, curved anterad, peritrematic pores present. Gnathosoma typical for genus; hypostomatic setae 3 present, longer than other hypostomastics, with a pair of short capitular setae, well developed deutosternal groove with five rows of denticles; palpal chaetotaxy holotrichous (1-4-5-12-15), proximal tine of palptarsal apotele distinct, smaller than more distal tines. Lateral elements of epistome produced behind central element (Fig. 5), epistomatic margins serrate. Legs IV well developed, longer than legs I-III, setae of tibia and tarsus IV robust, longer than those of other legs, leg chaetotaxy (Table 1) normal for the cohort; with six blunt sensilla discernible on terminus of tarsus I in available material (Fig. 4) rather than seven as in the protonymph of *M. muscaedomesticae* (COONS and AXTELL 1973); four of the sensilla clearly porous, longer than porous sensilla on tarsus of larva (Fig. 2).

DEUTONYMPH (Figs. 7-9). Length of idiosoma averages 838 (748-934), width at level of coxae III averages 624 (580-696) (n = 8). Dorsum (Fig. 8) covered in large part by a holonotal shield which is deeply incised laterally at level of setae j6, shield punctate-reticulate more or less throughout, podonotal portion with muscle bundle insertions forming an ornamental pattern; shield setae uniformly pilose distally, 18 pairs of podonotal setae as is typical of “generalized” *Macrocheles* species (HALLIDAY 1987), but with hypertrichry — often asymmetrical — in the opisthunotal portion (20-22 pairs rather than 10 as in the generalized form (the holotrichious number for the suborder is 15 pairs (EVANS and TILL 1979)), with dorsal pores and pore-like apertures as illustrated; hypertrichry extreme in the integument adjacent to the opisthnotum, integumental setae shorter than most of the shield setae, distally pilose. Venter (Fig. 7) with well developed, basically unornamented peltate sternal shield lying behind well developed tritosternum and mediad of the insertions of coxae II-IV, with four pairs of smooth stedia and three pairs of pores, sternals 4 (the metasternals) somewhat shorter than more anterior sternals, with six postepigynial scutel-

2. Adults also have five pairs of setae in the J series, but hypertrichy obscures the identity of critical Z and S series setae (see KRANTZ and MELLOTT 1968).
Fig. 5-10: *Macrocheles mycotrupetes* K. & M.

5. — Dorsum of protonymph (scale bar = 100μm).
6. — Venter of protonymph (scale bar = 100μm).
7. — Venter of deutonymph (scale bar = 100μm).
8. — Dorsum of deutonymph (scale bar = 100μm).
9. — Chelicera of deutonymph (scale bar = 50μm).
10. — Chelicera of female (scale bar = 50μm).
mycotrupetes also displays certain ontogenetic characteristics more typical of free-living than of highly derived phoretic Macrocheles species. For example, the cribrum (Fig. 6-7) is not confined to a postanal position as in other phoretic species, but rather extends antero-laterally to the level of the paranal setae in the manner of primitive non-phoretic forms (KRANTZ and REDMOND 1988). Postlarval stages have distinct postepigynial platelets (Fig. 6, 7), a primitive characteristic seen in certain edaphic and nidicolous macrochelid species (BREGETOVA and KOROLEVA 1960).

Deficiencies have been observed in the number of blunt sensory setae, or sensilla, at the tip of tarsus I in pre-adult and adult stages of M. mycotrupetes when compared to those of M. muscaedomesticae (Scopoli), a phoretic associate of synanthropic flies (COONS and AXTELL 1973). These sensilla are considered to be the olfactory receptors that mediate the phoretic response of adult M. muscaedomesticae to their dipteran phoronts (JALIL and RODRIGUEZ 1970). The larva of M. mycotrupetes has only four sensilla rather than six as in M. muscaedomesticae (three rather than four terminal sensilla (Fig. 2)), the protonymph has six rather than seven (Fig. 4), and the deutonymph and adult have seven rather than eight (sensillum 1 of COONS and AXTELL 1973 is absent). A similar deficiency in sensory setal number occurs in a free-living member of the macrochelid genus Machholaspis which, like M. mycotrupetes, achieves a full complement of only seven tarsal sensilla in the adult stage. In light of its primitive cribral trait and the presence of postepigynial platelets behind the sternal shield, it is tempting to consider the sensillar deficiency in M. mycotrupetes as an expression of still another pre-phoretic ancestral character. It should be noted, however, that sensillar deficiencies also occur in the immature stages of M. pisentii (Berlese) and M. saceri Costa, highly derived Old World phoretic species. Both were found to lack sensillum 1 in the adult stage. Comparative SEM studies on the sensory chaetotaxy of tarsus I of a variety of free-living and phoretic Macrocheles species may prove useful in resolving the phylogenetic and behavioral significance of these deficiencies.

Of equal interest is the fact that the movable digit of the female chelicera lacks the bidentate tooth characteristic of other phoretic Macrocheles species, having instead a single enlarged tooth whose ridged proximal surface opposes a weakly ribbed facet on the fixed digit (Fig. 10). Thus, the phoront hair is grasped without benefit of the bidentate "seat" seen in most other phoretic Macrocheles species.

The cheliceral, cribral, and postepigynial platelet characteristics of M. mycotrupetes, coupled with its close phoretic association with a geographically restricted, ecologically isolated phoront (KRANTZ and MELLOT, 1968), implies a long-term relationship that evolved independently from those of its more conventional phoretic congeners.

REFERENCES

KRANTZ (G. W.) and MELLOTT (J. L.), 1972. — Studies on phoretic specificity in *Macrocheles mycotrupetes* and *M. pelotrupetes* Krantz and Mellott (Acari : Macrochelidae), associates of geotrupine Scarabaeidae. — Acarologia, 14 (3) : 317-344.

Paru en Novembre 1992.
CORRIGENDUM

In our 1992 paper on the immature stases of Macrocheles mycotrupetes Krantz and Mellot, we (KRANTZ and ROYCE) considered opisthonotal setae Z5 of the protonymph and deutonymph to be absent. We subsequently recognized that the setal pair tentatively identified in the nymphs as setae J4 (Figs 5 and 8) are somewhat displaced setae J5, and the more posterior pair identified by us in the same paper as setae J5 are Z5. Please make the appropriate corrections in your copy.

G. W. KRANTZ and L. A. ROYCE