Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
ABSTRACT: This paper reexamines type material of the fossil oribatid mite species described by Tyler Woolley from Tertiary amber in Chiapas, Mexico, and presents new records of fossils from Tertiary amber of the Dominican Republic. Woolley’s species Damaeus setifer and Damaeus mexicanus are transferred to Oppia; Hydrozetes smithi is transferred to Mochloribatula; Exoripoda chiapasensis is transferred to Benoibates; Liebstadia durhami is transferred to Scheloribates; Scapheremaeus brevitarsus is transferred to Liodes; Eremaeus denaius is transferred to Parapirnodus; and Oppia hurdi is transferred to Arthrovertex. Tertiary amber fossils from the Dominican Republic represent Allonothrus, Oribotritia, Sacculobates, Liodes, Teleiolodes, Dolicheremaeus, Eremaeozetes, Mochlozetes, Oripoda, probably Oppia and Carabodes, and undetermined Galumnidae.

In 1971, Tyler A. Woolley published an account of oribatid mite fossils preserved in amber of Oligocene-Miocene age from Chiapas, Mexico (see Hurd et al., 1962). The twelve fossils examined were considered to belong to eight previously undescribed species, representing eight extant genera. A number of papers have described oribatid mites from the abundant Baltic amber of Oligocene age (see reviews by Kielbach, 1982; Krivolutsky and Druk, 1986, Krivolutsky et al., 1990), but Woolley’s was the first to address fossil oribatid mites from a locality that currently has a tropical climate. Except for the brief mention of oribatid mites in Cretaceous amber from Canada by McAlpine and Martin (1969), it was also the first study of fossil oribatid mites in the Western Hemisphere.

One of the Chiapas mites was proposed as a new species of the genus Hydrozetes, extant members of
which occupy freshwater habitats. The distribution implied by this record — an aquatic mite found in the fossilized sap of trees — is highly incongruent. For this and certain other species, WOOLLEY’s illustrations added to suspicions that errors were made in generic placement. Subsequent studies of his type specimens proved many of his determinations to be incorrect at the generic and even familial level. Errors at such high taxonomic levels, especially when listed uncorrected in review papers such as those cited above, can significantly cloud biogeographic and paleontological analyses.

Therefore one purpose of this two-part paper is to make appropriate generic recombinations and provide as much supportive discussion as the condition of the specimens allows. The species are not redescribed; in most cases enough details can be seen to be confident of generic position, but characters used in species diagnoses of mites are rarely discernable with confidence in amber material. A second objective is to provide the first records of oribatid mite fossils from the extensive amber deposits in the Dominican Republic.

Materials and Methods

WOOLLEY’s type specimens were borrowed from the Museum of Paleontology, University of California, Berkeley. The amber enclosing the specimens had been trimmed to thin chips, mostly with a thickness of 1.5 mm or less. In cases where the specimen was well embedded this allowed their study with compound microscopy with 20X or 40X objectives. The chip was mounted temporarily between a microscope slide and thin coverglass in an immersion oil or glycerine medium. Bright-field (transmitted and reflected), Nomarski, and phase-contrast illumination were used as conditions allowed. Stereoscopic observations were made while the chip was submerged in the above media.

The amber enclosing the Dominican Republic mites is still in relatively large, irregular pieces. It was collected from mines located between Santiago and Puerto Plata in the Cordillera Septentrional, but for many specimens the specific mine of origin is unknown. When available, specific locations are mentioned in figure captions, but due to the possibility of confusion during local trading among collectors these are not absolutely certain.

The mines are in the Altamira facies of the El Maney formation, a shale-sandstone interpersed with a conglomerate of well rounded pebbles that has been assigned to the upper Eocene (EBERLE et al., 1980). Earlier dating of amber from the Palo Alto mine in the Cordillera Septentrional, based on an analysis of foraminiferan counts, suggested a lower Miocene age (BARONI-URBANI and SAUNDERS, 1980). Thus, sedimentary and geological evidence indicate a range of ages — from lower Miocene to upper Eocene — for the specimens discussed below.

Thirteen of the Dominican amber specimens are in RAN’s personal collection, to be transferred eventually to the Field Museum of Natural History, Chicago. The remainder are in the POINAR Collection of Dominican Amber maintained at the University of California, Berkeley.

I. Generic Placement of Woolley’s Species from Chiapas

Damaeus setiger Woolley, 1971

The holotype of this species (#13528) is not an adult, as implied by Woolley, but a nymph. The gastronotic region is pale and strongly distorted, indicating a lack of sclerotization. The specimen, estimated to have a length of 260 µm, is air-filled, but some features could be studied under a 40X objective. It is clearly not a member of the Damaeidae; it has dorsocentral setae in the gastronotic region, unlike any nymphal Damaeidae.

All visible characters suggest it is a member of
the Oppiidae. It has the elongated, monodactylous legs; flagellate tibial solenidia; barbed, clavate sensilli; large, barbed gastronotic setae; elongate palp tarsus; and globose body form (considering the distortion) that are characteristic of large tropical/subtropical oppiid species. In fact, the one comparison that WOOLLEY made was with the oppiid Globoppia intermedia, rather than any known damaeid mite.

Immatures of Oppia and related genera are poorly known, and there is currently no means to distinguish their nymphs. The species is hereby transferred to Oppia (sensu lato) as Oppia setigera (Woolley), n. comb.

Damaeus mexicanus Woolley, 1971

The holotype (#13524, Fig. 1) and one paratype (#13525, Fig. 2) are from the same location, and are conspecific. As in the previous species, they are clearly members of Oppiidae, not Damaeidae. In addition to having the general oppiid facies, there is a conspicuous, long, curved coxisternal border IV; this trait is characteristic of Oppiidae but is very rare in Damaeidae (known only in three Palearctic species). Each is adult, about 240 µm long, and has relatively short, posteriorly curved notogastral setae (about 30 µm), which preclude their being adults of Oppia setigera.

Considering that the hysterosoma was collapsed in both specimens during preservation, they fit the facies of the *O. nitens* Koch group, except that the legs are proportionally longer (leg IV is 1.1 times the body length). The name is therefore recombined to Oppia mexicana (Woolley), n. comb., with the generic name used sensu lato. Clearly, there is a possibility that mexicana belongs to one of many similar genera (see SUBIAS and BALOGH, 1989), but diagnostic characters could not be studied.

Hydrozetes smithi Woolley, 1971

Inspection of WOOLLEY’s Fig. 4 shows that placement of this fossil in Hydrozetes is untenable.

1. Neither the second paratype of *D. mexicanus* (#13526) nor the unidentified specimen designated as hypotype (#13527) could be located on the amber chip.
FIG. 1-8: Fig. 1. — Oppia mexicana (Woolley) (formerly Damaeus); holotype, lateral aspect (length 240 µm). Fig. 2. — Oppia mexicana (Woolley) (formerly Damaeus); paratype, dorsolateral aspect (length 240 µm). Fig. 3. — Mochloribatula smithi (Woolley) (formerly Hydrozetes); holotype, lateroventral aspect (length 525 µm). Fig. 4. — Mochloribatula smithi (Woolley) (formerly Hydrozetes); holotype, frontolateral aspect (length — see text). Fig. 5. — Benoibates chiapensis (Woolley) (formerly Exoripoda); holotype, ventral aspect. Fig. 6. — Scheloribates durhami (Woolley) (formerly Liebstadia); holotype, lateroventral aspect (length 280 µm). Fig. 7. — Parapirnodus denatus (Woolley) (formerly Eremaeus); holotype, dorsal aspect (length 225 µm). Fig. 8. — Arthrovertex hurdi (Woolley) (formerly Oppia); holotype, ventral aspect (length 585 µm).
extant species of *Mochloribatula*, but it is certainly longer than the 330 µm suggested by Woolley. It is not measurable with accuracy because of the angled viewing planes, but its length probably is over 500 µm. The smallest *Mochloribatula* specimen we have observed (a male of *M. bahamensis* Norton) is about 530 µm.

Although the holotype is the only mite bearing the name *H. smithi*, there is another specimen of the same species in the collection: #12732 (Fig. 3), labeled “hypotype”, and determined only as “Eramaeidae (?) or Orbatulidae (?)” (sic) by Woolley. This specimen exhibits some characters better than the holotype. It is about 525 µm long, and although much detail is obscured by refractive amber surfaces, it clearly has a notogaster that is fused to the prodorsum without suture. A retrotecutum is visible at the base of femur I, characteristic of *Mochloribatula*, but not *Zygoribatula*. Porose area Aa is elongated, as usual in *Mochloribatula*, although some *Zygoribatula* species share this character state. Based on a compilation of characters from both specimens, the combination *Mochloribatula smithi* (Woolley), n. comb. is proposed.

Exoripoda chiapasensis Woolley, 1971

The holotype (#13530, Fig. 5) is clearly a member of the Oripodidae, but its generic placement was not discussed by Woolley, except for superficial comparisons with the type species of the genus, *E. excava* Woolley. Characters cited as being similar — sensilli, pteromorphs, lamellae, apodemes — are also similar in many Oripoda species. The interlamellar setae were said to be similar, but they clearly are not (short and relatively thick in *excava* but long and thin in *chiapasensis*). None of these is diagnostic at the generic level, nor is the notogastral margin that is concave (“excavated”) in the region of the bothridium; *Oripoda* species with a similar emargination include *moderata* (Berlese), *pinicola* Aoki & Ohkubo, and *lobata* Mahunka. More recent treatments of Oripodidae (Aoki & Ohkubo, 1974; Balogh and Balogh, 1984) emphasize the setation of ventral plates, characters that for the most part could not be discerned in the fossil.

Another point is that Aoki and Ohkubo (1974) considered *Exoripoda* a junior synonym of *Benoibates*, a synonymy with which we agree. In contrast, the genera have been considered distinct by Mahunka (1983) and Balogh and Balogh (1990, 1992), seemingly based only on the presence of a single pair of adanal setae in the latter genus, and two in the former. Other distinctions suggested in the past do not hold. Woolley (1966, p. 6) claimed that the notogastral cuticle of *Benoibates* was “granulate or roughened”, compared to having “elongate pits” in *Exoripoda*; but *Exoripoda suramericana* Mahunka has a roughened, tuberculate cuticle, and several *Benoibates* species are pitted. Two differences cited by Woolley — the interruption of the anterior notogastral margin in the region of the sensilli in *Benoibates*, and continuation of the pteromorph margin with the base of the lamella — are illusory, and were apparently based on inaccurate drawings in the literature.

The fossil appears to have a sculptured notogastral cuticle, but its precise nature could not be discerned. It also has at least two pairs of flagellate setae in the posteroventral region; they extend well beyond the posterior margin of the notogaster on the left side. *Exoripoda/Benoibates* species have flagellate anal and adanal setae, as do certain species in other genera of Oripodidae; Woolley neither discussed nor illustrated these characters, but they are consistent with his generic placement.

In summary, the original generic placement of this fossil seems to be correct, but the junior synonymy of *Exoripoda* requires the use of the name *Benoibates chiapasensis* (Woolley), n. comb.

Liebadia durhami Woolley, 1971

As Woolley noted, observation of the holotype (#13558, Fig. 6) is made difficult by the combination of being completely air-filled and having irregularities in the amber immediately around it. Although it is clearly a member of the Oripodoidea, about 280 µm long, Woolley’s generic placement is incorrect.

Woolley based his opinion on the monodactyloous nature of leg pretarsi, but they are actually
heterotridactylyous. With phase-contrast illumination under a 40X objective the thin lateral claws can be discerned on left tarsus IV. Another attribute of *Liebstadia*, not discussed by WOOLLEY, is the fusion of prodorsum and notogaster. There is no such fusion in the fossil; a complete suture can be seen in reflected light.

In addition to these characters, the holotype has: relatively large clavate sensilli (the right one seems to be somewhat pointed); a smooth, conical rostrum; simple lamellae; no tutoria; moderately large interlamellar setae; and distinct pteromorphs which bend only slightly ventrad (i.e., they do not cover leg bases).

These attributes form the facies of the common genus *Scheloribates*, to which the species is transferred as *Scheloribates durhami* (Woolley), n. comb. Many small members of this genus have been collected from trees in tropical and subtropical environments (RAN, unpublished).

Scapheremaeus brevitarsus Woolley, 1971

The holotype specimen (#12853) is oriented perpendicularly to the thin, rectangular amber chip, and the body is within a discontinuity or fracture in the amber, such that only the distal segments of legs I and II are easily visible. Under the stereomicroscope, with the chip on its side under glycerine, the mite can be seen with clarity, but is not easily photographed. It is not a *Scapheremaeus*, nor a member of the Cymbaeremaeidae. It is a larva (3 pairs of legs), with a strongly plicate hysterosomal cuticle, about 380 µm long (WOOLLEY gave no measurement). Considering its size (attained by few oribatid mite larvae) and form, there is no doubt that it represents a species of Liodidae. Woolley did claim a "superficial resemblance" to *Lioides*, based on the legs alone. Arborvalent habitats are known in species of each of the four described genera of Liodidae, and the holotype has been compared with larvae of one or more members of each of them.

Many of the leg setae of the fossil are strongly foliose. Also, the opisthosoma terminates posteriorly in a distinct conical projection on which setae h_1 insert (one seta of the pair remains; it is narrowly clavate), and pair h_2 is inserted lateral of the base of the projection. *Platyliodes* larvae have no such projection and setae h_1 are on separate small tubercles. The fossil is highly flattened, like larvae of *Platyliodes*, but this may be an artifact, as seen in other of the fossil mites. *Teleiolodes* larvae have the conical projection of the opisthosoma, and often foliose leg setae, but setae h_1 are usually much longer (see Grandjean, 1934). Poroliodes larvae are rather similar to the fossil in having a posterior projection and foliose leg setae, but the genus is not known outside the Holarctic region. Larvae of some undescribed *Lioides* species from the Caribbean region also have these characters (RAN, unpublished), and we tentatively suggest that the name *Lioides brevitarsus* (Woolley), n. comb. be adopted.

Eremaeus denaius Woolley, 1971

The holotype (#12950, Fig. 7) is well preserved and about 225 µm long, despite Woolley's smaller measurement. It is neither a member of the genus *Eremaeus* nor the family Eremaeidae. Attributes of the fossil that are inconsistent with *Eremaeus* include the following. 1) Apodeme II and the sejugal apodeme are fenestrate (solid in *Eremaeus*). 2) Coxisternal borders are not well defined (they are in *Eremaeus*). 3) The anal plates are nearly rectangular, each with two pairs of setae, and are far removed from the genital plates (those of *Eremaeus* are trapezoidal in shape, bear more than two pairs of setae — although two are found in some other members of the family — and are separated from the genital plate by less than their length). 5) There is a single pair of genital setae (six pairs in *Eremaeus*). 6) The preanal apodeme is

2. The "apodeme" running from leg IV to the genital plate in Woolley's Fig. 8 is an artifact of cuticular folding. The fold passes laterally well behind the level of acetabulum IV (Woolley did not draw the trochanter, leaving the femur "floating" in space).
3. Woolley noted only one pair; the other is near the anterior margin of the plate.
rather goblet-shaped (finger-like in *Eremaeus*). 7) The prodorsal bothridia are inconspicuous and have a lateral position (conspicuous and positioned well toward the midline in *Eremaeus*). 8) The sensillus is capitate with a large head, about 22 µm long (never capitate in *Eremaeus*). 9) True lamellae are present (not so in *Eremaeus*). 10) The notogaster is indistinguishably fused to the prodorsum (clearly separated by circumgastric scissure in *Eremaeus*). 11) There is a laterophragmatic apodeme (absent in *Eremaeus*).

These character states are consistent with membership in the Oripodoidea, a group of poronotic Brachypylina. In fact, one the octotaxic organs, porose area Aa, is distinguishable. The general size and shape of the mite, including its strong dorso-ventral flattening, suggest that it is a member of the genus *Parapirnodus*, to which it hereby is transferred as *Parapirnodus denarius* (Woolley), n. comb. This placement is supported by the combined possession of monodactylous leg pretarsi and single pair of genital setae. Other characters consistent with the type species (*P. longus* Balogh and Mahunka) and my unidentified *Parapirnodus* specimens from North and Central America include a long, transversely oriented lyrifissure and similarly positioned notogastral and coxisternal setae. Consistent with the presence of the genus in amber, most of my specimens were collected from trees or shrubs, as were those of *P. longus* (BALOGH and MAHUNKA, 1968; BARANEK, 1982).

Parapirnodus is currently placed in the Oripodidae, but its relationships need further study. For example, it is the only nominal member of that family (sensu BALOGH and BALOGH, 1984, 1992) having monodactylous leg pretarsi, bothridia that are not covered by the notogaster in dorsal view, and an octotaxic system represented by porose areas. Rather than Oripodidae, it is easy to imagine *Parapirnodus* being a small, regressive member of the oripodoid lineage containing *Gerlouzia*, which it resembles in general form. The latter genus is commonly included in Oribatulidae (BALOGH, 1972; BALOGH and BALOGH, 1984, 1992), but both genera may be more closely related to Scheloribatidae. Except for the presence of a sternal groove (not investigated), and the notogastral porose areas (plesiomorphic homologues of sacculi) their attributes are consistent with the distinguishing characters of the family listed by GRANDJEAN (1958).

Oppia hurdi Woolley, 1971

There are two specimens in the collection labeled with this name; #13045 is the holotype, #13044 is a paratype. However, there is some confusion in WOOLLEY's publication, if one compares the text and figure captions. The text (p. 98) is in agreement with specimen labels, and also refers to the correct figures. The captions of the figures have the type nomenclature reversed; his Fig. 10 represents the holotype, whereas his Fig. 9 represents the paratype.

The holotype (Fig. 8) is neither a member of the genus *Oppia* nor the family Oppiidae. It very clearly represents an adult of the genus *Arthrovertex* (Scutoverticidae), to which it is hereby transferred as *Arthrovertex hurdi* (Woolley), n. comb. Among described species, it is most like *A. baloghi* Mahunka (1978), which has a similar notogastral sculpturing and well developed lamellar cusps. The specimen is about 585 µm long (WOOLLEY measured only the paratype), and though air-filled it is mounted in a favourable position.

The paratype (#13044) is clearly neither conspecific nor confamilial with the holotype. It is larger than reported by WOOLLEY, perhaps about 425 µm. The general appearance and leg structure are consistent with membership in Oppiidae, but this is uncertain, due to two planar defects in the amber, along with associated distortion.

4. the following are the first records of *Parapirnodus* from the United States. Missouri, Boone Co.; Hinkson Creek Recreation Area, Columbia; col. 30-nv-1985, R. A. NORTON and J. B. KETTLELEY; ex. lichens and bark scrapings from tree branches. North Carolina, Durham Co.; L. J. METZ, 1979; ex. litter in lobolly pine (*Pinus taeda L.*) forest.

5. Based on the examination of the holotype and paratypes, two statements in the original descriptions of *P. longus* were incorrect. There are ten pairs of notogastral setae, not nine; seta p3 is present, as in the specimens discussed by BARANEK (1982). Also, the octotaxic system of the notogaster takes the form of small, but distinct porose areas, not sacculi. Only two of these are present: Aa and A2.
II. GENERIC RECORDS FROM DOMINICAN AMBER

We examined 19 amber-embedded specimens from the Dominican Republic, representing 13 genera in 12 families. Most specimens could be readily identified at the generic level; noted difficulties resulted from observational problems, not taxonomic uncertainty.

Allonothrus (Fig. 9; Trhypochthoniidae) is one of two early-derivative genera represented. Among extant species, the single fossil seems most similar to A. neotropicus Balogh & Mahunka. The ptyctime family Oribotritiidae also is represented by a single specimen (Fig. 10), and all observed characters are consistent with the genus Oribotritia. We could not ascertain the presence of the diagnostic incomplete fusion of aggenital and adanal plates. The latter genus is a common wood-associate, but an association with trees has not been reported for Allonothrus.

The remaining mites are members of Brachypylina (= Circumdehiscentiae), mostly in pycnonotic families. The Hermanniellidae is represented by a species of Sacculobates (Fig. 11). Unlike the type species, S. horologiorum Grandjean, the interlamellar seta (in) is longer than the sensillus. Only one "seta" in can be discerned, but it is directly in the midline. It may be a pair too closely adjacent to be resolved; such a close pair in is present on an undescribed extant species from Panama. The type species was described from specimens found in leaf litter, rather than trees, but its biology is almost unknown. Preservation in amber is not incongruent, however, since many members of the family are wood-associates.

Two genera of Liodidae are represented in our material. There are two adults of Liodes that are probably conspecific; one bears the exuvial scalps of earlier instars (Fig. 12) and one has lost them (Fig. 13). Teleoloides is represented by an adult (Fig. 14) and nymph (Fig. 15) that seem to be conspecific. Both genera are commonly collected from trees in the neotropics and subtropics.

Two families of Carabodoidea are represented among the fossils, and members of both have been collected from trees (e.g., Aoki, 1970; Reeves, 1988). Otocephidae is represented by a specimen of Dolicheremaeus (Fig. 16), a common genus in the neotropics. Another specimen is a member of Carabodes, but generic diagnoses rely on characters that could not be discerned with certainty. There are described species in three genera (Phyllocarabodes, Pentabodes, and Carabodes) with the facies of the fossil (Fig. 17); among them, Carabodes jamaicensis Woolley is most similar.

Three other pycnonotic brachypline families were included among the fossils. Two specimens of Oppiidae (e.g. Fig. 18) appear to be members of Oppia, but as with the Chiapas specimens characters diagnostic of the many related genera could not be discerned; the unillustrated specimen is similar but larger (length 682 µm). Two fossils (e.g. Fig. 19) represent the Eremaeozetidae, which presently contains a single genus, Eremaeozetes. The Scutovertexidae is represented by one specimen of Arthrovortex (Fig. 20). The latter two genera are commonly represented in arboreal mite faunas in Florida (RAN, unpublished), and two of the Eremaeozetes species described by Mahunka (1985) inhabit trees in the West Indies.

Three families of poronotic Brachypylina are represented in our material. The Mochlozetidae is common in tropical and subtropical environments, and most of its species seem to be arboreal (Norton, 1983). Two specimens probably are members of the family, but could not be identified further; another is a member of Mochlozetes (Fig. 21). Oripodidae, another family typical of arboreal microhabitats, is represented by Oripoda (Fig. 22), a genus with more than a dozen species known from the neotropics (Balogh and Balogh, 1989). Two specimens represent Galumnidae, but characters diagnostic of genera are not discernable.

Table I summarizes the fossils discussed above. We do not know the extant oribatid mites of either the Dominican Republic or Chiapas well enough to make meaningful comparisons of chronofaunas, such as that done for the ants of the Dominican Republic by Wilson (1985). However, this list
Fig. 9-14: **Fig. 9.** - *Allonothrus* sp., dorsal aspect (length 450 µm); El Valle, Dominican Republic. **Fig. 10.** - *Oribotritia* sp. adult, left lateral aspect (length 520 µm); unknown mine, Dominican Republic. **Fig. 11.** - *Sacculobates* sp. adult, dorsal aspect (length 675 mm); unknown mine, Dominican Republic. **Fig. 12.** - *Liodes* sp. adult, dorsal aspect, bearing gastronotic exuviae of immatures (length 1,170 µm, not including exuvial scalps); unknown mine, Dominican Republic. **Fig. 13.** - *Liodes* sp. adult, dorsal aspect, gastronotic exuviae of immatures absent (length 1,005 µm); unknown mine, Dominican Republic. **Fig. 14.** - *Teleoliodes* sp. adult, dorsal aspect (length 790 µm); Dominican Republic.
FIG. 15-22: FIG. 15. — *Teleoliodes* sp. nymph, dorsal aspect (length 548 µm); unknown mine, Dominican Republic. FIG. 16. — *Dolicheremaeus* sp., adult, dorsal aspect (length 620 µm); La Toca, Dominican Republic. FIG. 17. — Probably *Carabodes* sp., adult, dorsolateral aspect (length 483 µm); unknown mine, Dominican Republic. FIG. 18. — *Oppia* sp. (sensu lato), adult, dorsolateral aspect (length 570 µm); Bayaguana, Dominican Republic. FIG. 19. — *Eremaezetes* sp., adult, dorsolateral aspect (length 384 µm); El Valle, Dominican Republic (a second specimen is from Bayaguana). FIG. 20. — *Arthrovertex* sp., adult, dorsal aspect (length 608 µm); El Valle, Dominican Republic. FIG. 21. — *Mochlozetes* sp., adult, ventral aspect (length 510 µm); unknown mine, Dominican Republic. FIG. 22. — *Oripoda* sp., adult, dorsal aspect (length 397 µm); unknown mine, Dominican Republic.
TABLE 1 : Amber fossil oribatid mites from the Tertiary of Chiapas, Mexico (C) and the Dominican Republic (D).

<table>
<thead>
<tr>
<th>Family</th>
<th>Genus</th>
<th>Species Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRHYPOCHTHONIDAE</td>
<td>Allonothrus</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>ORIBOTRITIDAE</td>
<td>Oribotria</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>HERMANNNIELIIDAE</td>
<td>Sacculobates</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>LIOIDAE</td>
<td>Liodes</td>
<td>sp. (D)</td>
</tr>
<tr>
<td></td>
<td>Liodes brevitarsus (Woolley) n. comb. (C)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teleioliodes</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>OTOCERPIDAE</td>
<td>Dolicheremaeus</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>CARABODIDAE</td>
<td>?Carabodes</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>OPPILDAE</td>
<td>Oppia</td>
<td>setifer (Woolley) n. comb. (C)</td>
</tr>
<tr>
<td></td>
<td>Oppia mexicana</td>
<td>(Woolley) n. comb. (C)</td>
</tr>
<tr>
<td>EREMAEOZETIDAE</td>
<td>Eremaeozetes</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>SCUTOVERTICIDAE</td>
<td>Arthrovertex</td>
<td>hurdi (Woolley) n. comb. (C)</td>
</tr>
<tr>
<td></td>
<td>Arthrovertex</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>MOCHLOZETIDAE</td>
<td>Mochloribatula</td>
<td>smithi (Woolley) n. comb. (C)</td>
</tr>
<tr>
<td></td>
<td>Mochlosletes</td>
<td>sp. (D)</td>
</tr>
<tr>
<td>ORIPODIDAE</td>
<td>Benibates</td>
<td>chiapasensis (Woolley) n. comb. (C)</td>
</tr>
<tr>
<td></td>
<td>Oripoda</td>
<td>sp. (D)</td>
</tr>
<tr>
<td></td>
<td>Parapirnodus</td>
<td>denaius (Woolley) n. comb. (C)</td>
</tr>
<tr>
<td>GALUMNIDAE, undetermined (D)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We thank Ms. LAURIE BRYANT (Museum of Paleontology, University of California, Berkeley) for the loan of WOOLLEY’s type specimens; Dr. S. MAHUNKA for the loan of Parapirnodus longus type specimens; and Dr. V. M. BEHAN-PELLETIER (Centre for Land and Biological Resources Research, Ottawa, Canada) for constructively reviewing portions of the manuscript. The Dominican amber fossils were obtained through Mr. JACOB BRODZYNSKI, of Santo Domingo. ROBERTA HESS-POINAR kindly printed photographs and prepared the plates.

ACKNOWLEDGMENTS

REFERENCES

BALOGH (J.), and BALOGH (P.), 1988. — Oribatid Mites of the Neotropical Region I. — Akademiai Kiadó, Budapest., 335 pp.

BALOGH (J.) and BALOGH (P.), 1990. — Oribatid Mites of the Neotropical Region II. — Akademiai Kiadó, Budapest., 333 pp.

6. WOOLLEY (1971) noted that Scutoribates, a fossil genus well represented in the Baltic amber material studied by SELLNICK (1919, 1931), seems very similar to Eremaeozetes. The tropical and subtropical distribution of extant Eremaeozetes species seems incongruent with its occurrence in this material. SELLNICK’s (1919) illustration also resembles species of the holarctic genus Unduloribates (Unduloribatidae); however, the lenticulus of the latter is rather diffuse, whereas that in the illustration is well circumscribed, typical of Eremaeozetes.

HURD (P. D., JR.), Smith (R. F.) and DURHAM (J. W.), 1962. — The fossiliferous amber of Chiapas, Mexico. — Ciencia (Mexico), 21 : 107-118.

