Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php

Previous volumes (2010-2016): 250 € / year (4 issues)

Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
FIRST RECORD OF THE GENUS VIETOPPIA
IN THE PALEARCTIC REGION: DESCRIPTION OF
VIETOPPIA (PARAGLOBOPPIA) MERCEDESÆ SP. NOV.
FROM SOUTHERN SPAIN (OPPIIDAE, OPPIIINAE)

by Antonio ARILLO* and Luis S. SUBIAS*

ORIBATID MITES
OPPIDAE
VIETOPPIA (PARAGLOBOPPIA)
PALEARCTIC REGION
SPAIN

ORIBATES
OPPIDAE
VIETOPPIA (PARAGLOBOPPIA)
RÉGION PALEARCTIQUE
ESPAGNE

SUMMARY: The genus Vietoppia is recorded for the first time in the Palearctic region. A new species, Vietoppia (Paragloboppia) mercedesae sp. nov., is described from southern Spain.

RÉSUMÉ: Le genre Vietoppia est signalé pour la première fois dans la région paléartique avec une nouvelle espèce décrite du sud de l’Espagne, Vietoppia (Paragloboppia) mercedesae sp. nov.

The genus Vietoppia Mahunka, 1988 has a little-known distribution. To date, it has been recorded in South Africa, Brazil, Vietnam and Senegal. The species belonging to this genus have a sensillus with a well developed caput, ten pairs of notogastral setae (including \(c_2 \) setae) and the apodema 4 well developed. The genus has two subgenera, which are easily differentiated: Vietoppia s. str. presents notogastral heterotrichy and the pair of adanal setae \(ad_1 \) are in para-anal position; whereas Vietoppia (Paragloboppia) Subías et P. Balogh, 1989 does not show notogastral heterotrichy and setae \(ad_1 \) are in a postanal position.

As a result of a study of oppiid mites that we have been conducting in recent years in southern Spain, we have found a new species belonging to Vietoppia (Paragloboppia). This is the first record of the genus in the Palearctic region.

Vietoppia (Paragloboppia) mercedesae sp. nov.
(Fig. 1)

Some of the specimens are preserved in semipermanent slides with Hoyer and the others are in lactic acid (70%). All of the material is stored in the

* Dpto. Biología Animal I (Entomología), Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain.

Fig. 1: *Vietoppia (Paragloboppia) mercedesae* sp. nov., dorsal view (A) and ventral view (B).

« Colección de la Cátedra de Entomología. Dpto. de Biología Animal I. Facultad de Biología. Universidad Complutense de Madrid, España. » One specimen, stored in lactic acid (from sample Granada 37A), was designated as the holotype.

Size and colour: The specimens are 234–263 μm long by 109–128 μm wide; the colour is light brown.

Prodorsum (Fig. 1A): Rostrum protruding downwards and ending in a trilobate shape (difficult to observe). Rostral setae abruptly bent and strongly ciliated on their external side; alveoli close together.

Lamellar setae well developed and unilaterally ciliated. Interlamellars well developed, also ciliated but thicker than lamellars. Sensillus with a well developed, aciculate caput. Exobothridial setae well deve-
loped and ciliated. Lamellar and translamellar lines poorly developed, although present. Three pairs of bright spots between interlamellar setae.

Notogaster (Fig. 1A): Setae c₂ present, but poorly developed. Nine pairs of well developed and ciliated notogastral setae. Setae la appear before setae lm. Fissurae im present.

Ventral region (Fig. 1B): Formula of epimeral setae normal, 3:1:3:3, epimeral setae smooth and short with exception of setae 3b, 3c, 4b and 4c, which are longer and more or less ciliated. Genital plates with five pairs of genital setae, which are short and smooth. Anal plates have two pairs of anal setae well developed and ciliated like the pair of adgenital and the three pairs of adanal setae. Adanal setae ad₁ in a postanal position. Fissurae iad para-anal.

Discussion

SuBías & P. BALOGH (1989) included two species in this subgenus: the type species (from South Africa) *Vietoppia (Paragloboppia) diversiseta* (Mahunka, 1985) and *V. (P) trichotos* (Balogh et Mahunka, 1977) from Brazil. The species from Senegal, *Vietoppia (Paragloboppia) senegalensis* (Mahunka, 1975), must be also included. *V. (P) mercedesae* is easily differentiated from the other three species. *V. (P) trichotos* is a larger species with a length of 730 to 780 μm. The other two species are similar in size to *V. (P) mercedesae*: *V. (P) diversiseta* measures 264–280 × 152–160 μm and *V. (P) senegalensis* 204–230 × 110–134 μm.

V. (P) diversiseta shows several differences to *V. (P) mercedesae*. Its rostral setae are arched, rather than bent, and their alveoli are very far apart. The rostrum is not protruding and the lamellar and interlamellar setae are very short. The sensillus has a tail and a shorter caput. Finally, the notogastral and ventral setae are short and smooth.

V. (P) senegalensis does not have a protruding rostrum and the rostral setae are not bent abruptly, the lamellar and interlamellar setae are smooth, the sensillus has a tail and a shorter caput and the notogastral setae are smooth.

There is another genus, *Taiwanoppia* Tseng, 1982, described by TsENG (1982) in a paper not considered by SuBías & BALOGH (1989). Although the description of *Taiwanoppia* is not very good, it seems identical to *Vietoppia*, so it is possible that *Vietoppia* could represent a junior synonym of *Taiwanoppia*.

Derivatio nominis: The name of the species is dedicated to Mercedes López SANTAMARÍA.

Acknowledgement

This work was carried out with the support of DGICYT (project PB92-0121).

References
