Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
DESCRIPTION AND LIFE CYCLE
OF *SULADECTES HUGHESAE ANTIPODUS* SUBSPEC. NOV.
(ACARI : HYPODERATIDAE)
ASSOCIATED WITH *SULA BASSANA SERRATOR* GRAY
(AVES : PELECANIFORMES) IN NEW ZEALAND.

BY A. FAIN * and John M. CLARK **

** Summary:** A new subspecies of *Suladectes hughesae* Fain, 1969, *S. hughesae antipodus* subsp. nov. (Acari : Hypoderatidae), is described from three gannet, *Sula bassana serrator* Gray, rookeries in New Zealand. The life cycle of this genus is described for the first time. Quiescent deutonymphs were found under the skin of these birds, whilst moulting deutonymphs and adult stages, females and males, were collected from their nests.

Introduction:

A new subspecies of *Suladectes hughesae* Fain, 1969, *S. hughesae antipodus* ssp. n. is described from the gannet, *Sula bassana serrator* Gray, from New Zealand.

The parasitic quiescent deutonymphs (also called hypopis) were found in great number under the pectoral skin of the bird whilst deutonymphs in the moulting stage and adults, males and females, were collected from the nests and occasionally from the feathers of the birds. All the developmental stages were observed.

The family Hypoderatidae comprises at present about 70 valid species or subspecies and 30 genera or subgenera. Among these species five, belonging to two genera, were collected from rodents, whilst all the others were found in association with birds (Fain and Lukoschus, 1977 and 1986).

Almost all the described species are known only from their quiescent deutonymph living in the subcutaneous tissues of their hosts. The complete life cycle in this group of mites is known for only one species *Hypodectes (Hypodectoides) popus* (Nitzsch, 1861), a common parasite of the pigeon (Fain and Bafort, 1966 and 1967).

In nine other species, all from birds, only a part of the life cycle has been observed and some stages still remain unknown.

In *Phalacroectes (Phalacroectes) whartonii* Fain, 1967, parasitic of Ciconiiformes, all the stages have been observed except the protonymph (Fain and Lukoschus, 1986).

* Institut royal des Sciences naturelles de Belgique, Rue Vautier, 29, 1040-Bruxelles.
** Dudley Rd. East, RD 6, Inglewood, Taranaki, New Zealand.

In *Phalacrodeetes* (*Freheleetes*) *gaudi* Fain and Beaucournu, 1972, parasitic in cormorants (*Pelecaniformes*), only the parasitic hypopus and the nidicolous tritonymphs with vestigial legs and gnathosoma have been described.

In *Neottialges* (*Pelecanetes*) *evansi* Fain, 1966, only three stages have been described: the hypopus parasitic in cormorants and the male and the active tritonymph, both living in the nests of these birds (Fain and Beaucournu, 1972).

In *Bubulcoideetes* *brevitarsis* Fain and Lukoschus, 1986 only males and females containing larvae and a prelarva were observed from the nests of *Bubulcus ibis* (Ciconiiformes, Ardeidae).

Another species also known only from nidicolous stages (females, males and a protonymph) is *Neotitylodesetes* (*Heronideetes*) *mendezi* Fain and Lukoschus, 1986.

Finally, there are four species which are known only from either the nidicolous male (e.g. *Phalacrodeetes* *panamensis* Fain and Lukoschus, 1986 from the nest of *Bubulcus ibis* and *Hypodeetes* *samsinaki* Fain and Lukoschus, 1986 from the nest of a wild pigeon), or from the nidicolous female (e.g. *Neotitylodesetes* *mexieanus* O'Connor, 1981 from the nest of *Glaucidium* sp. (Strigiformes) and *Gypsodeetes* *verrucosus* Fain, 1984 from the nest of a vulture (Falconiformes).

FAMILY HYPODERATIDAE Murray, 1877

Genus *Suladectes* Fain, 1969

This genus was created for a new species, *Suladectes Hughesae* Fain, 1969 represented by deutonymphs found under the skin of a gannet, *Sula bassana* which died in London Zoo.

By the shape of the legs III and IV this genus belongs to the complex "Neottialges" and at first aspect it resembles the subgenus *Caloeneetes* (Fain, 1966) characterized by the strong sclerotization of the idiosomal cuticle.

Suladectes is, however, clearly distinct from *Caloeneetes* and from the other subgenera of *Neottialges*, in the quiescent hypopi by the absence of a sternum. The epiptera I are either short and contiguous in the midline, or long but widely separated in midline by punctate cuticle. In the strongly sclerotized specimens these epiphras are fused posteriorly with their respective epimerites to form at each side a closed, or almost closed, coxal I field. In *Caloeneetes* and the other subgenera of *Neottialges* the epiphras are fused in the midline, forming a distinct sternum. Another character which separates *Suladectes* from *Caloeneetes* is the presence in the former of a primary Y or T-shaped genital sclerite. In *Caloeneetes* the area separating the genital papillae is punctate and more or less heavily sclerotized but there is no distinct primary sclerite. Moreover in *Suladectes* the genital papillae are widely apart and strongly divergent, which is not the case in *Caloeneetes*. In males of *Suladectes* spines p and q of tarsus IV are strongly unequal, whilst in those of *Neottialges* these spines are equal or subequal.

MATERIAL EXAMINED

Quiescent deutonymphs were collected by J.M.C. from the subcutaneous tissues from a female of the Australasian gannet *Sula bassana serrator*, found dead at sea in the coastal New Zealand waters, near Great Barrier Island, Hauraki Gulf, North Island, New Zealand. This bird was collected by Mr. I. Hayton of New Plymouth, N.Z.

Deutonymphs either very young or in the moulting stage, as well as free males, females and larvae, were collected by Tullgren funnel from nest material in the three following N.Z. host nesting rookeries:

2. Clova Bay, Malbourough Sounds, 30 November, 1981;

Deutonymphs were also collected by insecticide dusting of the host plumage at the Cape Kidnappers Saddle rookeries (22 October, 1982).

All the rookery material was collected by Mr P. O'Brien of the N.Z. Ministry of Agriculture and Fisheries and preserved and held in the National Museum of New Zealand. All the measurements used here are in micrometers.
The genus *Suladectes* was previously represented by only the type species, *S. hughesae* Fain, 1969. We describe herein a new subspecies of *hughesae* from the Australasian gannet, *Sula bassana serrator* from New Zealand.

Suladectes hughesae antipodus subs. nov.

Female (figs. 1-7, 14-15) : Length and width of idiosoma in 4 paratypes : 1140 × 720 ; 1100 × 750 ; 1080 × 700 ; 1050 × 744. *Dorsum* covered by 2 very finely punctate median shields (a propodonotai and a hysteronotal). Postero-lateral regions finely verrucose. Sejugal furrow well developed. Oil gland apertures large, situated between setae 12 and 13. Most of dorsal setae forming long cylindriconical spines. Lengths of setae: *vi* 150 ; *si* 165 ; *se* 450 ; *dl* and *d2* 160 ; *d3* 180 ; *d4* 600 ; *d5* 150 ; *l1* and *l2* 180 ; *l3* 160 ; *l4* 120 ; *l5* 600 (ventral) ; *h* 450. *ve* lacking. Setae *s cx* thin and short. *Venter* : Epimera I fused in a well developed sternum. Other epimera free.
Opisthogaster verrucose. Vulva situated between coxa IV and containing in the depth a large and thick sclerite in an inverted U. Setae sh 400. The 3 pairs of genital setae are 60-30 and 165 long. Anus pre-terminal, with 6 pairs of anal setae of which 2 pairs vestigial. Bursa thick, its opening at the ventral rear of the body, its first part stongly sclerotized. Chelicerae normal. Gnathosoma relatively small. Legs I to IV 435-438-510-578 long (excluding the pretarsi and the trochanters). Chaetotaxy of legs: tarsi I to IV with 13-12-10-10 setae. On tarsi I and II setae u and v are very thin and paramedian, s is a spine situated relatively far from the apex, p and q are spine, the other setae are thin. Tarsi II lacking setae aa. Tarsi III and IV with 4 spines and 6 thin setae. Tibiae with 2-2-1-1 spines. Solenidia: w1 short and basal; w2 (only present on tarsus I) situated close to seta s; w3 is apical. All tibiae with a long solenidion phi. Genu I with 2 very unequal solenidia sigma.

Male (figs 8, 9, 10-13): A paratype is 1005 long and 495 wide. Cuticle as in the female except that the posterolateral regions and the opisthogaster are not verrucose and that the hysteronotum presents two large, lateral, sclerotized areas. Penis situated between coxae IV. Posterior region forming two lobes bearing two large copulation suckers 50 diameter. In almost all the specimens these lobes are turned inwards so that the suckers are facing each other. Legs as in female, except tarsus IV which bear 8 seate or spines and 2 small copulatory suckers.
Tritonymph: Most of the deutonymphs found free in the nest of the birds contained adults (males or females). All these adults were enveloped by a transparent membranous pouch, bearing two small conical membranous projections at one extremity. These pouches represent vestigial tritonymphs.

Large deutonymph (holotype) (figs 16-22):
Length and width 1980 × 900; in 4 paratypes 1800 × 840; 1800 × 720; 1680 × 770; 1590 720. Cuticle punctate and more or less strongly sclerotized as in the typical form. Epimera not fused in the midline but remaining separated. In the most sclerotized specimens these epimera are fused posteriorly with the epimerites I at each side and form closed coxal fields separated in the midline by sclerotized cuticle. Median genital sclerite Y or T-shaped. Lengths of idiosomal setae (in holotype and 4 paratypes): vi and ve lacking; se e 75-100; sc i 5-9; d1 25-40; d2 25-35; d3 25-30 d4 80-130; d5 6-10; l1 60-80; l2 25-30; l3 20-25; l4 5-10; l5 9-15; h 40-50; sh 30-40; ga and gp 15-20. Setae cxI and
cxIII are lacking. Lengths of tarsi I to IV: 32-36-70-51. In 3 paratypes the tarsi III and IV are 70 to 72 and 50 to 53 long respectively. Chaetotaxy of legs and other characters as in the typical form.

Small deutonymph: In two nests (from Gannet Island and Cape Kidnappers) we found a few specimens of very small deutonymphs (length 200 to 220, width 120 to 125), which represent the infective stage of the species. They differ from the large tissular deutonymphs by their very small size and the presence of primitive epimeria I to IV and sternum. All the other characters are identical to those of the large deutonymphs. Lengths of tarsi I-IV: 35-42-70-55; apical spine of tarsi I and II 12 to 15 long; setae d5, l5 and d4, 9, 8 and 125 long respectively.

Protonymph: One of our small deutonymphs is still enclosed in its protonymphal skin. This protonymph closely resembles the larva, except that it has 4 pairs of legs instead of 3 pairs and that it has a few more setae. The idiosomal and leg setae are thin, except the setae p and q of tarsi which are spines. Gnathosoma badly oriented, but apparently small.

Larva: We have seen three larvae collected from nests of Gannet Island and Cape Kidnappers. One larva measures 250 × 150. Gnathosoma 24 long and 25 wide. Cheliceral digits very small. Setae of
FIGS. 16-17: *Suladectes hughesae antipodus* n.ssp. Deutonymph in ventral (16) and dorsal view (17).

legs and idiosoma as in protonymph. Coxae I with a pair of thin setae and a pair of very short Claparède's organs. Most of the female found free in the nests contained numerous eggs (up to 30 per female), some of them containing a fully developed larva. A few free larvae were found in some nests.

Prelarva: The prelarva is vestigial and represented by a transparent sacklike membrane, bearing...
2 small conical and pointed appendages. These appendages become visible in the eggs a short before that the larvae are developed. They are ecdysing organs and proably serve to break the wall of the egg.

Remarks

1. *Suladectes hughesae antipodus* differs from the typical subspecies, in the hypopus, mainly by the much shorter lengths of some idiosomal setae. We give herein the lengths of these setae in the typical form followed by the lengths in the new subspecies in parentheses (measurements made in holotype and in 4 paratypes for each of the subspecies) : se 120-150 (75-90); dl 110-120 (25-40); $d2$ 80-90 (25-35); $d3$ 50-90 (25-30); $d4$ 125-150 (80-130); $d5$ 70-90 (6-10); $l1$ 110-140 (60-80); $l2$ 50-75 (25-30); $l3$ 33-40 (20-25); $l4$ 5-8 (5-10); $l5$ 8-9 (9-15); h 100-120 (40-50); sh 75-90 (30-40).
2. The adults in the genus *Suladectes* are the closest to those of the genus *Neottialges* at least in the subgenera where they are known, i.e. *Heronidectes*, *Ardeidectes* and *Pelecanectes*. However, in these subgenera the male tarsi IV bear 2 equal, large, apical spines (in *Suladectes* these spines are unequal), and the propodonotum in the adults bears two, well-sclerotized, paramedian shields (they are lacking in *Suladectes*). Moreover, in *N. (Pelecanectes) evansi* the tritonymph is not vestigial as in *Suladectes*, but well developed and active. In *Heronidectes* only the male and female and in

Figs. 23-26: *Suladectes hughesae antipodus* n.ssp. Larva in dorsal (23) and ventral view (24); gnathosoma ventrally (25). Tritonymphal skin: anterior extremity (26).
Ardeidectes only the female are known, so that we have no idea about the morphology of the hypopus. The hypopi of Suladectes are closest to those of Neottialges (Caloenectes) and we might expect that their corresponding adults are also similar.

3. The infective stage of the mite is the small hypopus, only present in nests occupied by birds in their reproductive period. These hypopi penetrate actively through the skin of the nestlings soon after their birth. Gannets become adult and able to reproduce after a period of 4 to 5 years (Wodzicki, 1967). The mites therefore have to wait in the birds during this long period. Skin invasion of adult birds in their reproductive period seems improbable because the presence in them of an hormone (? prolactin) which induces the mobilization and the rejection of the tissular hypopi out of the body.

Types

Paratypes : 18 deutonymphs with same data as holotype ; 10 deutonymphs in moulting stages and found in the nest of the same bird from Gannet Is.; 22 females (12 from Gannet Is., 5 from Clova Bay and 5 from Cape Kidnappers) and 8 males (1 from Gannet Is., 4 from Clova Bay, 3 from Cape Kidnappers); 5 small hypopi and 3 larvae from nests in Gannet Island or Cape Kidnappers.

Holotype, 3 deutonymph, 14 female and 13 male paratypes deposited in the National Museum of New Zealand. One deutonymph, one male and one female paratype in the British Museum (Natural History) London. Other paratypes in the Institut royal des Sciences naturelles de Belgique.

Acknowledgements

The authors wish to thank Riccardo Palma of the National Museum of New Zealand for allowing access to their collection of material from three gannet rookeries. Mr O'Brien and Mr. I. Hayton are thanked for collecting material.

Addendum

Recently the junior author found, under the skin of a cadaver of an adult Sula bassana serrator from Taranaki beach, a young hypopus 360 μm long, belonging to Suladectes hughesae antipodus. Moreover, several other small hypopi were recovered from the NaOH digest of the skin and feathers of a part of the same cadaver. These findings prove that adult birds can be infected by these young hypopi.

References

