Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:

http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.inra.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Paragigagnathus iraniensis n. sp. (Acari: Phytoseiidae) from Western Iran

Mohammad KHANJANI\(^1\), Mehdi KARIMI\(^1\), Bahman ASALI FAYAZ\(^1\) and Edward A. UECKERMANN\(^2,3\)

(Received 14 January 2016; accepted 14 February 2016; published online 19 May 2016)

\(^1\) Department of Plant Protection, College of Agriculture, Bu Ali-Sina University, Hamedan, Iran. mkhanjani@gmail.com (* Corresponding author); me.karimi92@basu.ac.ir; basalifayaz@gmail.com
\(^2\) ARC-Plant Protection Research Institute, Private Bag X134, Queenswood, Pretoria, 0121 South Africa. UeckermannE@arc.agric.za; edalbert@lantic.net
\(^3\) School of Environmental Sciences and Development, North-West University, Potchefstroom Campus 2520, South Africa.

ABSTRACT — A new species belonging to the family Phytoseiidae, Paragigagnathus iraniensis n. sp., is described and illustrated from specimens collected on almond trees, Prunus dulcis (Mill.) D.A. Webb (Rosaceae), infested with two spotted spider mites (Tetranychidae) in Hamedan region, Iran. An identification key to all known species of the genus Paragigagnathus is provided.

KEYWORDS — Mesostigmata; Neoseiulini; Amblysiinae; almond; Hamedan

INTRODUCTION

The genus Paragigagnathus (Mesostigmata: Phytoseiidae) was described by Amitai and Grinberg (1971) with type species P. tamaricis, from Tamarix sp. (Tamaricaceae), Israel. This genus is one of the ten genera belonging to the tribe Neoseiulini, subfamily Amblysiinae (Chant and McMurtry 2007). To date ten valid species are described [from different hosts such as almond (2 species), mostly Tamarix spp (7 species) and Acacia sp. (2 species) in Africa, Middle East, South and Central Asia, Southeast Europe, namely: P. amantis (Chaudhri, Akbar and Rasool 1979); P. bidentatus (Kuznetsov, 1994); P. cataractus (Ueckermann and Loots 1988b); P. desertorum (Amitai and Swirski 1978); P. insuetus (Livshitz and Kuznetsov 1972); P. madnaensis Alatawi, Kamran and Basahih 2015; P. molestus (Kolodocha 1989); P. namibiaensis (Ueckermann and Loots 1988a); P. strunkovae (Wainstein 1973); P. tamaricis Amitai and Grinberg 1971 [= Paragigagnathus tawfiki (Yousef 1974) in Chant and McMurtry (2003)]. The species of this genus were placed in two species groups based on setae ST3 set on or off sternal shield, desertorum and strunkovae groups, respectively (Chant and McMurtry 2003). Kolodocha (1994a, b) reviewed and re-described seven species of this genus. Paragigagnathus amantis was excluded because of its poor description by Chant and McMurtry (2003) and Hajizadeh et al. (2010) but referred to as an uncertain species by Chant & McMurtry 2007. However, in the phytoseiid world catalog and database it is listed as a valid species (Moraes et al. 2004; Demite et al. 2016). In order to clarify the taxonomic status of this species, Honey et al. (2015) provided adequate characters and confirmed it as a valid species belonging to desertorum species group. In this study an 11th
species of *Paragigagnathus* belonging to *desertorum* species group from Hamedan Province, Iran is described and illustrated. Furthermore, an updated identification key and comparison of characters of all known species of the genus is presented.

Materials and Methods

The specimens were collected from leaves of almond trees, *Prunus dulcis* (Mill.) D.A. Webb (Tetranychidae), infested with two spotted spider mite (Tetranychidae), using a stereomicroscope. The mites were then directly mounted on microscope slides in Hoyer’s medium. The slides were dried in an oven at about 50 °C and examined under an Olympus BX51 microscope (Differential Interference Contrast). A camera Lucida apparatus was used for the drawings. The classification system used follows that of Chant and McMurtry (2007).

Family Phytoseiidae Berlese, 1916: 33

Subfamily Amblyseiinae Muma, 1961: 273

Tribe Neoseiulini Chant and McMurtry, 2003

Genus Paragigagnathus Amitai & Grinberg, 1971: 327

Type species: *Paragigagnathus tamaricis* Amitai and Grinberg, 1971: 327

Diagnosis: As defined by Chant & McMurtry 2003.

Paragigagnathus iraniensis n. sp.

(Figure 1)

Female (Fig. 1) (n=8)

Dorsum (Figs. 1A-B) — Dorsal shield heavily sclerotized and reticulated, 370 (365 – 371) long, 240 (240 – 245) wide at level of setae RI, with 17 pairs of smooth setae [ex. J5 (figs. 1, 2)] and six pairs solenostomes (gd1, gd2, gd5, gd6, gd8, gd9). Length of setae: j1 18 (17 – 19), j3 26 (24 – 26), j4 17 (16 – 18), j5 15 (15 – 16), j6 19 (18 – 20), J2 23 (23 – 24), J3 15 (15 – 16), z2 25 (24 – 26), z4 26 (25 – 27), z5 18 (18 – 19), Z1 23 (23 – 24), Z4 30 (30 – 32), Z5 41 (40 – 41), z4 34 (33 – 35), S2 39 (39 – 40), S4 40 (39 – 41), S5 41 (40 – 41), r3 24 (23 – 25), R1 20 (20 – 21).

Chelicerae (Fig. 1C) — Chelicera 150 (147 – 151) in length; Fixed digit with three teeth, pilus dentilis not distinct, movable digit 20 (19 – 21) long and with a tooth (Fig. 1C).

Tectum (Fig. 1D) — The anterior margin of the tectum convex and pointed antromedially and 25 (23 – 26) wide (Fig. 1D).

Venter (Fig. 1E) — Venter of idiosoma with eight pairs of opisthogastric setae. Sternal shield smooth, anterior margin convex and posterior margin indistinct with two pairs of setae sub equal in lengths [ST1 20 (19 – 21), ST2 18 (18 – 19)], two pairs of lyrifissures (iv1-2) posterior to setae ST1 and ST2, respectively. Distance between setae: ST1 42 (40 – 42), ST1-2 38 (38 – 39), ST2-2 47 (46 – 48). Setae ST3 set on soft integument and 20 (19 – 21) in length; forth sternal setae (ST4) 20 (20 – 22) long and set on small metasternal shields, each with one small lyrifissure (Fig. 5). Genital shield truncate and 110 (100 – 112) long, 50 (48 – 50) wide at level setae ST5, ST5 20 (19 – 21) long. Two pairs of elongate metapodal shields, primary shield almost twice as long as secondary shield [47 (46 – 48), 20 (20 – 21)]. Ventrianal shield smooth and anterior margin notched, 110 (110 – 111) long, constricted at level of setae JV2 and broadest at level of setae Pa [46 (45 – 47), 58 (58 – 60) wide, respectively]. Pre-anal region with two pairs of pre-anal setae ZV2 and JV2 and one pair of pores [distance between pores 9 (9-10)]. Anal opening surrounded with 3 setae (Pa and Pst). Opisthogastric cuticle bearing five pairs of smooth setae (ZV1, ZV3, JV1, JV4, JV5) and five pairs of lyrifissures on small platelets. Length of opisthogastric setae: ZV1 15 (14 – 15), ZV2 15 (14 – 15), ZV3 13 (12 – 13), JV1 14 (13 – 14), JV2 12 (11 – 13), JV4 10 (10 – 11), JV5
Figure 1: Paragigagnathus iraniensis n. sp. (Female): A – Dorsal view of idiosoma; B – Dorsal seta J5; C – Chelicera; D – Tectum; E – Ventral view of idiosoma; F – Spermatheca; G – Genu II; H – Basitarsus IV.
Spermatheca (Fig. 1F) — Calyx dish-like followed by an annulated neck 5 (5 – 6) long and 10 (10 – 11) wide at junction with vesicle; major duct thick and 25 (25 – 26) long, minor duct very fine (Fig. 1F).

Peritremes (Fig. 1A) — Stipped; extending to level of setae j1, 170 (165 – 172) long (Fig. 1A).

Legs II, IV (Figs. 1G-H) — Genu II with seven setae, 2-2/0-2/0-1 setae (Fig. 1G); Basitarsus IV with one robust macroseta 20 (19 – 22) long (Fig. 1H).

Remarks — The Iranian new species closely resembles the Paragigagnathus strunkovae from Tajikistan in having ventri-anal shield with two pairs of pre anal setae and one pair of pores, only posterior dorsal setae set on prominent tubercles, setae J5 serrated, movable digit of chelicera with one tooth, setae ST4 on metasternal shields, however, it differs from the later by:
1) Setae ST3 set on soft cuticle in P. iraniensis instead of set on metasternal shields in P. strunkovae;
2) Spermatheca with dish shaped calyx in new species opposed to funnel shaped in P. strunkovae;
3) Ventrianal shield with notched anterior margin in the former whereas convex in the later;

Material examined — The specimens were collected from leaves of almond trees, Prunus dulcis (Rosaceae), infested with two spotted spider mite, Tetranychidae, in the Kondor village (34°43’N, 48°15’E, 2010 m a.s.l.), 20 Sept. 2015, Tuyserkan county, Hamedan province, Iran, by M. Karimi. The holotype female and five paratype slides are deposited in the Collection of the Acarology Laboratory, University of Bu-Ali Sina, Hamedan, Iran and two paratype females will be deposited in the National Collection of Arachnida, Plant Protection Research, Pretoria, South Africa.

Key to species of Paragigagnathus Amitai & Grinberg of the world (Females)

1. Ventrianal shield with two pairs of preanal setae ... 2
 — Ventrianal shield with three pairs of preanal setae ... 5
TABLE 1: Comparisons species of the genus Paragigagnathus

<table>
<thead>
<tr>
<th>Taxa/Ch.</th>
<th>Setae on tubercles*</th>
<th>Setae J5</th>
<th>ST3 on platelet</th>
<th>ST4 Dorsal setae</th>
<th>Calyx</th>
<th>Mov. digit</th>
<th>St IV Pre-anal seta (pair/pore)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. amantis</td>
<td>O.P.D.S. Smooth</td>
<td>-</td>
<td>-</td>
<td>Short stout</td>
<td>Dish shaped</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>P. bidentatus</td>
<td>O.P.D.S. Serrated</td>
<td>-</td>
<td>-</td>
<td>Short stout</td>
<td>Dish shaped</td>
<td>2</td>
<td>+</td>
</tr>
<tr>
<td>P. cataractus</td>
<td>O.P.D.S. Serrated</td>
<td>+</td>
<td>+</td>
<td>Long, slender</td>
<td>Dish shaped</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>P. desertorum</td>
<td>A.P.D.S. Smooth</td>
<td>-</td>
<td>-</td>
<td>Long, stout</td>
<td>Dish shaped</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>P. insuetus</td>
<td>O.P.D.S. Serrated</td>
<td>-</td>
<td>+</td>
<td>Short setiform</td>
<td>Funnel shaped</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>P. madinaensis</td>
<td>O.P.D.S. Smooth</td>
<td>-</td>
<td>-</td>
<td>Long, slender</td>
<td>Dish shaped</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>P. molestus</td>
<td>O.P.D.S. Smooth</td>
<td>+</td>
<td>+</td>
<td>Short setiform</td>
<td>Funnel shaped</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>P. namibiaensis</td>
<td>O.P.D.S. Smooth</td>
<td>-</td>
<td>-</td>
<td>Short setiform</td>
<td>Funnel shaped</td>
<td>1</td>
<td>+</td>
</tr>
<tr>
<td>P. tamaricis</td>
<td>A.P.D.S. Serrated</td>
<td>+</td>
<td>+</td>
<td>Short stout</td>
<td>Dish shaped</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>P. iraniensis n. sp. = tawfiki</td>
<td>O.P.D.S. Serrated</td>
<td>-</td>
<td>+</td>
<td>Short stout</td>
<td>Dish shaped</td>
<td>1</td>
<td>+</td>
</tr>
</tbody>
</table>

Note:
- O.P.D.S.: Only posterior dorsal setae
- A.P.D.S.: All posterior dorsal setae
- All dorsal setae serrated and dorsum with lateral incision at level of seta r3 in P. cataractus
- The third sternal setae ST3 set on posterior sternal lobes in P. namibiaensis
- Setae ST3 on sternal shield in P. amantis and P. namibiaensis

2. Only posterior dorsal setae set on prominent tubercles ... 3
 — All dorsal setae set on prominent tubercles P. tamaricis Amitai & Grinberg [=P. tawfiki (Yousef)]

3. Movable digit of chelicera with one tooth, setae ST4 on metasternal shields 4
 — Movable digit of chelicera with two teeth, setae ST4 on soft cuticle P. bidentatus (Kuznetsov)

4. Setae ST3 on metasternal shields, spermatheca with funnel shaped calyx P. strunkovae (Wainstein)
 — Setae ST3 on soft cuticle, spermatheca with dish shaped calyx P. iraniensis n. sp.

5. All dorsal setae smooth (ex. setae J5 or Z5), all or only posterior dorsal setae set on prominent tubercles, dorsal shield without lateral incision at level of setae r3 P. cataractus (Ueckermann and Loots)

6. Setae ST4 set on metasternal shields 7
 — Setae ST4 set on soft cuticle P. desertorum (Amitai and Swirski)

7. Dorsal shield with five pairs of solenostomes, setae ST3 inserted on sternal shield, setae J5 serrated P. insuetus (Livshitz and Kuznetsov)
 — Dorsal shield with six pairs of solenostomes, setae ST3 on metasternal shields, setae J5 smooth P. molestus (Kolodochka)

8. Only posterior dorsal setae set on prominent tubercles, tarsus IV with macroseta, movable digit of chelicera with one tooth 9
 — All dorsal setae set on prominent tubercles, tarsus IV without macroseta, movable digit of chelicera without tooth P. desertorum

9. Sternal shield with three pairs of setae (ST1-3), dorsal shield setae short (11 to 35 μm) 10
 — Sternal shield with two pairs of setae (ST1-2), dorsal shield setae slightly long (15 to 48 μm) Paragigagnathus madinaensis
 — Alatawi, Kamran and Basahih

10. Spermatheca with dish shaped calyx, posterior margin of sternal shield normal and without lateral lobes P. amantis (Chaudhri, Akbar and Rasool)
 — Spermatheca with funnel shaped calyx, posterior
margin of sternal shield with lateral lobes and bearing setae ST3 P. namibiaensis (Ueckermann and Loots)

ACKNOWLEDGEMENTS

The authors sincerely thank Vice Research of Bu-Ali Sina University, Hamedan, Iran, for financial support. We are also thankful to Prof. Alexander A. Khaustov (Tyumen State University, Tyumen, Semakova 10, 625003, Russia) for supplying some of the literature.

REFERENCES

