Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2018 (Volume 58): 380 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2016): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
A preliminary survey of the spider mites (Acari: Tetranychidae) in Latakia governorate of Syria

Ghais ZRIKI1, Alisar SHAABO2 and Angham BOUBOU1

(Received 17 June 2015; accepted 26 August 2015; published online 30 September 2015)

1 Department of Plant Protection, Faculty of Agriculture, Tishreen University, Latakia, Syria. ghaiszriki@hotmail.com; angam78@yahoo.fr
2 Mites Section, Latakia Center for Rearing and Applications of Natural Enemies, Latakia, Syria. alisarshaaboo@hotmail.com

ABSTRACT — This paper reports ten tetranychid mites species on several cultivated and uncultivated plants in Latakia governorate (Syria) in 2011-2012. Three species belong to the subfamily Bryobiinae and to the genera Aplonobia, Bryobia and Petrobia, while seven species belong to the subfamily Tetranychinae and to the genera Eotetranychus, Eutetranychus, Panonychus and Tetranychus. Nine of the mite species identified in this study are reported for the first time from Syria, while one species had already been previously reported. This paper gives information concerning locations, host plants and distribution of each collected species.

KEYWORDS — Tetranychidae; host plants; new records; Syria

INTRODUCTION

The family Tetranychidae Donnadieu is one of the most cosmopolitan and economically important families of the Acari (Bolland et al. 1998). It comprises 1,250 phytophagous species (Migeon and Dorkeld 2006-2013). Among them, more than 100 can be considered as pests and 10 as major pests of agricultural crops all over the world. In Syria, this family is poorly investigated despite the economic damages that theses mites can cause to different agricultural crops. The European red mite Panonychus ulmi (Koch) is the only species reported from this country in the world tetranychid catalog (Bolland et al. 1998) and in the Spider Mites Web database (Migeon and Dorkeld 2006-2013).

The knowledge of faunistic composition in a region is the first step in the establishment of effective control strategies. Thus the aim of this study was to identify tetranychid mites associated with several cultivated plants and natural vegetation covering different localities in the Latakia Governorate of Syria.

MATERIALS AND METHODS

A survey of tetranychid mites was carried out from 27 September 2011 to 22 July 2012, in 41 localities in Latakia governorate in both cultivated fields and natural vegetation. Mites were directly collected from leaves and temporarily preserved in 70 % ethanol. Mites intact were mounted on slides in Hoyer’s medium. The specimens were examined under a phase-contrast microscope (Nikon Eclipse E200).
Identification of mites to the genus level was made using the key to the spider mite genera of the world (Bolland et al., 1998). For species identification, all available published literature of tetranychid mites species description was used (e.g. Pritchard and Baker 1955; Baker and Pritchard 1960; Jeppson et al. 1975; Gutierrez and Helle 1983; Gutierrez and Schicha 1983; Meyer 1987; Ochoa et al. 1994; Ehrara 1999; Flechtmann and Knihinicki 2002; Zhang et al. 2002; Auger et al. 2003; Zhang 2003; Toroitich et al. 2009; Vacante 2010; Seeman and Beard 2011).

The terminology used for the body setation is according to Lindquist (1985). World distribution of each species and host range are according to Migeon and Dorkeld (2006-2013). The specimens were deposited in the Arthropod Collection of the Department of Plant Protection, Faculty of Agriculture, Tishreen University, Latakia, Syria.

RESULTS AND DISCUSSION

Subfamily Bryobiinae Berlese
Genus Bryobia Koch

Bryobia vasiljevi Reck, 1953

Bryobia vasiljevi Reck, 1953
Bryobia repensi Manson, 1967

It occurs on herbage, apple and strawberries (Jeppson et al. 1975). The mite feeds mainly on the upper leaf surface and may cause severe bleaching of the blade. The development of heavy infestations appears to be favored by extremely dry weather (Gutierrez and Schicha 1983).

Specimens examined — 8 ♀♀ and 2 larvae on *Trifolium* sp. (Leguminosae), 3 ♀♀ and 1 larva on *Taraxacum campylodes* (Asteraceae), Latakia city (35°31′17.38″N, 35°46′29.40″E), 23-IV-2012.

World distribution and remarks — This species was recorded in New Zealand, Australia, Chile and many countries in Europe (Gutierrez and Schicha 1983; Migeon and Dorkeld 2006-2013) but not in Syria. This is the first report of *B. vasiljevi* in the Middle East.

Genus Petrobia Ewing 1909

Petrobia (Tetranychina) hartii (Ewing, 1909)

This species occurs on a wide range of host plants. The genus *Oxalis* is considered as its major host plant (Jeppson et al. 1975; Ehrara 1999; Migeon and Dorkeld 2006-2013). In the field, the injury of this mite appears as fine silver stipules on leaves. It prefers the underside of leaves (Ochoa et al. 1994).

Specimens examined — 10 ♀♀ and 5 ♂♂ on *Oxalis corniculata* (Oxalidaceae), Jabeh (35°36′08.72″N, 35°92′57.31″E), 27-IX-2011; 10 ♀♀ and 2 ♂♂ on *O. corniculata*, Al-Hennadi (35°29′18.28″N, 35°51′48.01″E), 19-X-2011; 8 ♀♀ and 2 ♂♂ on *O. corniculata*, Al-Sanobar (35°29′9.16″N, 35°52′7.07″E), 15-IV-2012; 8 ♀♀ and 2 ♂♂ on *Oxalis stricta*, Zeghren (35°42′35.90″N, 35°52′46.5″E), 5-X-2011.

World distribution and remarks — This mite has a worldwide distribution and occurs on wide range of plants. In the Middle East, this species is recorded in many countries and the earliest report was from Egypt by Sayed (1946), (In Migeon and Dorkeld 2006-2013).

Genus Aplonobia Womersly 1940

Aplonobia histricina (Berlese, 1910)

Oxalis pes-caprae is the main plant host of this tetranychid mite but it was also collected on fruit trees in South Australia, New South Wales and South Africa (Gutierrez and Schicha 1983; Migeon and Dorkeld 2006-2013).

Specimens examined — 10 ♀♀ on *O. pes-caprae* (Oxalidaceae), Latakia city (35°35′4.35″N, 35°44′49.86″E), 28-X-2011; 10 ♀♀ on *O. pes-caprae*, Al-Sanobar (35°28′49.49″N, 35°51′35.66″E), 27-III-2011.

Remarks — This species is known from South Africa, Australia and Italy, and infests pear *Pyrus communis* (Rosaceae), *Sphaeralcea ambigua* (Malvaceae) and *Oxalis* spp. (Oxalidaceae) The mite also occurs sporadically on citrus trees. It oversummers as eggs, and resumes development in the autumn (Vacante, 2010). It has been collected in Israel on *O. pes-caprae* (Migeon and Dorkeld 2006-2013). Males are unknown (Gutierrez and Schicha 1983) and females are relatively of a big size 900 – 1050 µm.
Subfamily Tetranychidae Berlese

Genus Eutetranychus Bank 1917

Eutetranychus orientalis (Klein, 1936)

The oriental red mite Eutetranychus orientalis is considered as a major pest of citrus in the Afrotropical, Australasian and Palearctic regions (Meyer 1987; Ferragut et al. 2012). It has also been reported on members of other host families in many countries (Migeon and Dorkeld 2006-2013).

Specimens examined — 10 ♀♀ and 8 ♂♂ on Plumeria alba (Apocynaceae), Raas Iben-Hani (35°35′48.96″N, 35°45′42.93″E), 17-VII-2011; 8 ♀♀ and 6 ♂♂ on P. alba, Latakia city (35°31′47.27″N, 35°48′23.68″E), 29-IX-2011; 10 ♀♀, 8 ♂♂ P. alba, Jableh (35°22′11.45″N, 35°55′28.32″E), 3-X-2011; 10 ♀♀ and 8 ♂♂ on Citrus limon (Rutaceae), Al-Sakahbeh (35°18′47.34″N, 36°1′36.44″E), 28-IX-2011; 8 ♀♀ and 6 ♂♂ on C. limon, Latakia city (35°31′48.60″N, 35°48′22.68″E), 5-X-2011; 8 ♀♀ and 8 ♂♂ on C. limon, Latakia city (35°31′43.51″N, 35°47′18.12″E), 13-X-2011; 8 ♀♀ and 7 ♂♂ on C. limon, Hai Alarabi (35°30′29.70″N, 35°49′5.56″E), 10-XI-2011; 8 ♀♀ and 6 ♂♂ on C. limon, Al Morouj (35°34′47.64″N, 35°45′30.23″E), 17-XI-2011; 8 ♀♀ and 8 ♂♂ on Melia azedarach (Meliaceae), Al-Farous (35°31′43.40″N, 35°47′18.03″E), 7-X-2011; 8 ♀♀ and 8 ♂♂ on M. azedarach, Latakia city (35°31′18.20″N, 35°46′46.30″E), 8-X-2011; 8 ♀♀ and 8 ♂♂ on Juglans regia (Juglandaceae), Latakia city (35°31′43.40″N, 35°47′18.03″E), 7-X-2011; 8 ♀♀ and 8 ♂♂ on Ricinus communis (Euphorbiaceae), Latakia city (35°31′58.11″N, 35°46′39.82″E), 8-X-2011.

World distribution and Remarks — Eutetranychus orientalis has a worldwide distribution (Bolland et al. 1998; Vacante 2010). It was reported before this survey on several plant species in many countries neighboring Syria as Jordan, Turkey and Cyprus (Migeon and Dorkeld 2006-2013).

Genus Eotetranychus Oudemans 1931

Eotetranychus rubiphilus (Reck, 1948)

This species occurs on many plant species belonging to Rosaceae, especially Rubus sp. but it has also been recorded on Vitis sp. and Vitis vinifera.

Specimens examined — 20 ♀♀ and 20 ♂♂ Rubus sp. (Rosaceae), Latakia, Al Qanjara (35°34′43.70″N, 35°48′29.68″E), 13-IV-2012.

World distribution and Remarks — It has been reported from Europe and Asia (Gutierrez and Helle 1993; Migeon et al., 2007; Migeon and Dorkeld 2006-2013). This is the first report of this species in the Middle East.

Genus Panonychus Yokoyama 1929

Panonychus citri (McGregor, 1916)

The citrus red mite Panonychus citri is a major pest of the world citrus causing serious damages (Vacante 2010), especially after using the broad-spectrum pesticides which killed its natural enemies (Kasap 2009). Latakia is the main citrus growing region of Syria and this species is one of the major pest in citrus orchard in this governorate.

Specimens examined — 8 ♀♀ and 1 ♂♂ on C. limon (Rutaceae), Al Qanjara (35°34′43.68″N, 35°48′29.63″E), 30-IX-2011; 1♂ and 4 ♂♂ on C. limon, Al shameea (35°38′12.53″N, 35°48′26.88″E), 13-X-2011; 8 ♀♀ and 4 ♂♂ on C. limon, Janata (35°35′3.18″N, 35°50′1.79″E), 7-XI-2011; 10 ♀♀ and 4 ♂♂ on C. reticulata var. clementine, Al Herajia (35°44′18.73″N, 35°52′57.55″E), 5-X-2011; 8 ♀♀ and 3 ♂♂ on C. reticulata, Al Hannadi (35°29′53.10″N, 35°52′36.50″E), 14-IV-2012.

World distribution and Remarks — Panonychus citri has a worldwide distribution and was reported in many countries neighboring Syria (Bolland et al. 1998; Migeon and Dorkeld 2006-2013) before this study.

Panonychus ulmi (Koch, 1836)

The European red mite Panonychus ulmi has a wide range of hosts; it has been reported on 140 plant hosts (Bolland et al. 1998; Migeon and Dorkeld 2006-2013). Eggs are slightly flattened dorsally striated in a radial form, red with a dorsal stripe. It is a major pest of apple over the world as a result of moving with saplings (Jeppson et al. 1975; Ochoa et al. 1994).

Specimens examined — 10 ♀♀ and 10 ♂♂ on Malus domestica (Rosaceae), Eramo (35°37′5.18″N, 36°8′30.17″E), 21-IV-2012.
World distribution and Remarks — *Panonychus ulmi* has a worldwide occurrence, and was previously reported from Syria by Kady (1965). This species is a major pest in different apple growing regions of Syria.

Genus Tetranychus Dufour 1832

Tetranychus evansi Baker & Pritchard, 1960

The red tomato spider mite *Tetranychus evansi* was first reported from north-east Brazil in 1952 (Silva 1954), from where the species probably originated (Boubou et al. 2011, Boubou et al. 2012). This mite has recently emerged as a new threat to solanaceous crops in Africa and Mediterranean basin, with invasions characterized by a high reproductive output and an ability to withstand a wide range of temperatures (Bonato 1999, Boubou et al. 2011, Migeon et al. 2015).

Remarks — Latakia is one of the main solanaceous crops growing regions of Syria and this mite represents certainly a real menace for agriculture in this region.

Tetranychus turkestani (Ugarov and Nikolski, 1937)

The color of the summer adult female of that species is variable but is often yellow-green. A large spot is always present on each side, beginning just behind the eye spots and extending beyond the middle of the body, with an occasional additional pair of posterior spots, one on each side toward the end of the hysterosoma (Jeppson et al. 1975; Seeman and Beard 2011). *Tetranychus turkestani* and *T. urticae* are very similar and without microscopic examination of the male aedeagus it is impossible to separate between them (Migeon 2005). In our collection, this species was found together with *T. urticae* on some sample (*Trifolium sp.*, *Tribulus terestris* and *Ailanthus altissima*). It is a serious pest of many crops throughout the world, mainly low-growing crops and has been recorded from 270 host plants over the world (Jeppson et al. 1975; Migeon and Dorkeld 2006-2013).

Specimens examined — 10 ♀♀ and 10 ♂♂ on *Solanum melongena* (Solanaceae), Shalfatea (35°32’28.42"N, 35°46’37.17"E) 7-X-2011; 10 ♀♀ and 8 ♂♂ on *Malva* sp. (Malvaceae), Latakia city (35°32’28.42"N, 35°46’37.17"E) 7-X-2011; 10 ♀♀ and 5 ♂♂ on *T. urticae* (Tetranychidae), Latakia city (35°30’54.21"N, 35°46’17.91"E) 8-X-2011; 10 ♀♀ and 8 ♂♂ on *Malva* sp., Latakia city (35°32’30.63"N, 35°47’57.30"E) 12-XI-2011; 10 ♀♀ and 5 ♂♂ on *T. urticae*, Latakia city (35°30’54.21"N, 35°46’17.91"E), 8-X-2011; 8 ♀♀ and 8 ♂♂ on *A. altissima* (Simaroubaceae), Latakia city (35°30’54.21"N, 35°45’17.91"E), 8-X-2011; 8 ♀♀ and 8 ♂♂ on *Fraxinus* sp. (Oleaceae), Latakia city (35°31’30.09"N, 35°47’34.90"E), 13-X-2011; 8 ♀♀ and 8 ♂♂ on *Dianthus* sp. (Caryophyllaceae), Al Hannadi (35°29’19.02"N, 35°51’41.14"E), 21-IV-2012; 8 ♀♀ and 8 ♂♂ on *Trifolium* sp. (Leguminosae) Latakia city (35°31’36.05"N, 35°48’21.44"E), 23-IV-2012; 8 ♀♀ and 8 ♂♂ on *Melia azedarach* (Meliaceae), Latakia city (35°31’26.01"N, 35°47’51.22"E), 24-IV-2012; 8 ♀♀ and 8 ♂♂ on *M. azedarach*, Latakia city (35°31’37.02"N, 35°47’24.87"E), 15-VI-2012; 8 ♀♀ and 8 ♂♂ on *Mentha* sp. (Lamiaceae), Fedeo (35°31’1.80"N, 35°53’24.44"E), 30-V-2012; 8 ♀♀ and 4 ♂♂ on *Rosa* sp. (Rosaceae), Latakia city (35°31’41.36"N, 35°47’36.90"E), 1-VI-2012; 8 ♀♀ and 8 ♂♂ on *Juglans regia* (Juglandaceae), Beshraghi (35°17’52.47"N, 36°5’54.75"E), 21-VII-2012; 10 ♀♀ and 10 ♂♂ on *M. domestica* (Rosaceae), Beshraghi (35°37’49.03"N, 36°8’13.32"E), 21-VII-2012; 10 ♀♀ and 4 ♂♂ on *Phaseolus vulgaris* (Leguminosae), Al Brazeen (35°15’14.04"N, 36°1’23.12"E), 22-VII-2012.

Remarks — *Tetranychus turkestani* is a worldwide distributed species and was reported before this study from many countries in the Middle East.

Tetranychus urticae Koch 1836

The two-spotted spider mite *Tetranychus urticae*, an ubiquitous species, is considered as one of the main
phytophagous mites (Helle and Sabelis 1985). This species is the most polyphagous species of spider mites and the most economically injurious. It attacks around 1,094 plant species in 109 countries around the world. Among the 19 most important agricultural crops in the world, six (citrus, cotton, grapes, apples, beans, and papaya) were reported as being hosts of the two-spotted spider mite (Yaninek and Moraes 1991; Marčič et al. 2009).

Specimens examined — 10 ♂♂ and 8 ♀♀ on *Ricinus communis* (Euphorbiaceae), Latakia city (35°31′16.33″N, 35°48′26.72″E), 27-IX-2011; 10 ♂♂ and 6 ♀♀ on *R. communis*, Al Olaemee (35°38′3.40″N, 35°49′52.67″E), 5-X-2011; 10 ♂♂ and 8 ♀♀ on *S. nigrum* (Solanaeaceae), Qanjaraa (35°34′34.15″N, 35°49′4.97″E), 30-IX-2011; 10 ♂♂ and 8 ♀♀ on *S. nigrum*, Janata (35°35′5.57″N, 35°50′3.18″E), 14-X-2011; 10 ♂♂ and 8 ♀♀ on *S. melongena*, Al Bassa (35°29′55.60″N, 35°50′43.28″E), 20-X-2011; 8 ♂♂ and 8 ♀♀ on *S. melongena*, Al Qanja (35°34′55.41″N, 35°48′43.91″E), 7-XI-2011; 10 ♂♂ and 8 ♀♀ on *Ipomoea* sp. (Convolvulaceae), Al Qanja (35°34′45.68″N, 35°48′27.42″E), 30-IX-2011; 10 ♂♂ and 8 ♀♀ on *Morus alba* (Moraceae), Al Qanja (35°34′44.73″N, 35°48′23.63″E), 30-IX-2011; 10 ♂♂ and 8 ♀♀ on *M. alba*, Wadi Qandil (35°42′36.78″N, 35°52′47.97″E), 5-X-2011; 10 ♂♂ and 6 ♀♀ on *Amaranthus retroflexus* (Amaranthaceae), Al Haraja (35°44′17.81″N, 35°52′59.79″E), 5-X-2011; 10 ♂♂ and 6 ♀♀ on *A. retroflexus*, Al Brazeen (35°15′12.33″N, 36°01′21.36″E), 22-VII-2012; 8 ♂♂ and 10 ♀♀ on *T. terrestris* (Zygophyllaceae), Latakia city (35°30′54.19″N, 35°46′17.89″E), 8-X-2011; 8 ♂♂ and 8 ♀♀ on *S. lycopersicum* (Solanaceae), Al Rahbea (35°16′50.38″N, 35°59′13.08″E), 10-X-2011; 10 ♂♂ and 8 ♀♀ on *S. lycopersicum*, Latakia Janata (35°34′58.51″N, 35°49′48.25″E), 14-X-2011; 10 ♂♂ and 8 ♀♀ on *S. lycopersicum*, Besraghe (35°17′58.54″N, 36°5′50.49″E), 5-VI-2012; 8 ♂♂ and 8 ♀♀ on *Ziziphus jujuba* (Rhamnaceae), Al Mzeraa (35°29′26.57″N, 35°53′32.26″E), 11-X-2011; 8 ♂♂ and 8 ♀♀ on *Prunus persica* (Rosaceae), Al Qanja (35°34′51.68″N, 35°48′45.02″E), 13-X-2011; 10 ♂♂ and 10 ♀♀ on *Prunus armeniaca*, Latakia city (35°31′37.68″N, 35°47′29.55″E), 19-X-2011; 10 ♂♂ and 8 ♀♀ on *Urtica* sp. (Urticaceae) Janata (35°35′2.35″N, 35°50′7.26″E), 14-X-2011; 10 ♂♂ and 8 ♀♀ on *U. urticae*, Al Herajea (35°44′22.77″N, 35°52′58.05″E), 15-X-2011; 10 ♂♂ and 7 ♀♀ on *Polygonum convolvulus* (Polygonaceae), Janata (35°34′45.97″N, 35°49′38.11″E), 14-X-2011; 10 ♂♂ and 8 ♀♀ on *Cucumis sativus* (Cucurbitaceae), Al Berjan (35°17′42.09″N, 35°58′56.37″E), 17-X-2011; 10 ♂♂ and 8 ♀♀ on *Chenopodium album* (Chenopodiaceae), Latakia city (35°31′28.92″N, 35°47′44.14″E), 19-X-2011; 8 ♂♂ and 6 ♀♀ on *Malva* sp. (Malvaceae), Al Shamea (35°36′8.34″N, 35°48′17.74″E), 6-IV-2012; 8 ♂♂ and 6 ♀♀ on *Malva sp*, Al Hanadi (35°29′47.37″N, 35°51′56.74″E), 7-IV-2012; 10 ♂♂ and 5 ♀♀ on *Mellitopus* sp. (Leguminosae), Al Bassa (35°29′55.91″N, 35°50′32.71″E), 23-IV-2012; 8 ♂♂ and 7 ♀♀ on *Sonchus oleraceus* (Asteraceae), Latakia city (35°31′31.95″N, 35°47′27.30″E), 24-X-2012; 10 ♂♂ and 8 ♀♀ on *P. vulgaris* (Leguminosae), Hai Alarabi (35°30′29.74″N, 35°49′5.54″E), 17-VI-2012.

Remarks — *Tetranychus urticae* has a world distribution (109 countries around the world) and was reported before this study from many countries neighboring Syria (Migeon and Dorkeld 2006-2013). In Syria, this species is a key pest in horticultural crops (outdoors and greenhouses). In this study, it was the dominant species and was found in all sites considered. Two forms of this species can be recognized by their green or red body color (Auger et al. 2013), the red form is dominant in our region and in addition, these two forms of that species were found together in the same population.

CONCLUSION

This paper is the first report of tetranychid mites from Syria. Ten tetranychid species belonging to seven genera are reported in the present study. These mites were identified on 83 samples from different localities from Latakia governorate. Four samples contained more than one species of tetranychids on the same leaf. This occurred on *Trifolium* sp. (*T. urticae* and *T. turkestani*); on *A. altissima* (*T. urticae* and *T. turkestani*); on *Malva* sp. (*T. turkestani* and *B. vulgaris*); on *T. terrestris* (*T. urticae* and *T. turkestani*). This study is the first step in a long way to identify phytophagous and predatory
mites in Latakia governorate and in the rest of the country.

ACKNOWLEDGEMENTS

We are grateful to all researchers in Latakia Center of Natural Enemies Rearing for technical facilities during this study. We thank also Alain Migeon (UMR CBGP (INRA – Montpellier – France)) for his valuable assistance, Serge Kreiter (UMR CBGP (SupAgro – Montpellier – France)) and Ziad Barbar (Department of Plant Protection, Faculty of Agriculture, Al-Baath University – Latakia – Syria) for help and support during the work on this paper.

REFERENCES

Kasap, I. 2009 — The biology and fecundity of citrus red mite, Panonychus citri (McGregor) (Acari: Tetranychidae) at different temperatures under laboratory conditions — Turkish J. Agric., 33: 593-600.

COPYRIGHT

Zriki G. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.