Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
DOI: 10.1051/acarologia/20152155

Torrenticola trimaculata n. sp. (Parasitengona: Torrenticolidae), a three-spotted water mite from eastern North America: taxonomic history, species delimitation, and survey of external morphology

J. Ray Fisher1, Danielle M. Fisher1, Whitney A. Nelson1, Joseph C. O’Neill1, Michael J. Skvarla1, Ron Ochoa2, Gary R. Bauchan2, Andrea J. Radwell1 and Ashley P.G. Dowling1

(Received 22 December 2014; accepted 17 February 2015; published online 30 March 2015)

1 Department of Entomology, University of Arkansas, Fayetteville, AR 72701, USA. (* Corresponding author) jrfisher@uark.edu, dkeeler@uark.edu, whitneyanelson@gmail.com, joneill@email.uark.edu, mskvarla36@gmail.com, radwell33@gmail.com, adowling@uark.edu
2 USDA-ARS, 10300 Baltimore Ave., Bldg. 012, 5th St., BARC-West, Beltsville, MD 20705, USA. ron.ochoa@ars.usda.gov, gary.bauchan@ars.usda.gov

ABSTRACT — Torrenticola trimaculata Fisher n. sp. is described from eastern North America as the first in a series of descriptions on Torrenticolidae. As such, the study includes expanded discussions of methods, early taxonomic history, and numerous images surveying external morphology using a diversity of imaging methods. Species hypotheses were supported with analysis of the “barcoding” region of COI. Torrenticola trimaculata is found to be a wide-ranging, variable species with two distinct morphs that do not coexist locally. Also, we report the first record of the diatom, Cocconeis placentula Ehrenberg 1838, as epiphytic on water mites.

KEYWORDS — Trombidiformes; Prostigmata; Hydrachnidia; Hydrachnidiae; LT-SEM; Cocconeidaceae

INTRODUCTION

The present study is the first in a series of descriptions from an ongoing taxonomic project on North American Torrenticolidae Piersig, 1902. We have direct access to specimens across the United States and Canada from the substantial holdings of the Canadian National Collection (CNC). These extensive collections provide ample specimens preserved using traditional methods as material preserved in ethanol for molecular analysis. Our ultimate goal is to open Torrenticolidae to other researchers so this ubiquitous taxon can be explored with other disciplines like stream ecology, behavior, and environmental assessment.

Herein, we describe Torrenticola trimaculata Fisher n. sp. (Fig. 1) from eastern North America, which contains two color morphs (Fig. 2). This description is intended as a reference for future descriptions that will be streamlined for time/space efficiency. Toward this end, we have included background information intended to help future students of Torrenticolidae including discussions of taxonomic history, methods, morphology, and a sizable reference list.

Torrenticolidae are common and distinctive water mites found worldwide, excepting Antarctica. Larvae are ectoparasites of adult midges (esp. Chironomidae) and adults are reported to feed on
Figure 1: Torrenticola trimaculata n. sp. habitus of types (montaged from iPhone stereomicrographs): A – Holotype (female): dorsal and ventral habitus, Morph 1; B – Allotype (male): dorsal and ventral habitus, Morph 1. Coloration is not indicative of sex.
Figure 2: Torrenticola trimaculata n. sp. morphs (A-D compound light micrographs; E-F stereomicrographs): A – Morph I female, note large dorsal spots, pigmented gnathosoma and venter (within area of primary sclerotization), and orange legs; B – Morph II female, note small dorsal spots, and colorless gnathosoma, legs, and venter (except for genital plate); C – Morph I male (note same coloration as female); D – Morph II male (note same coloration as female but with hind coxae pigmented); E-F – Dorsal habitus of Morph I & II, respectively.
microcrustaceans (Goldschmidt 2007, Smith et al. 2010). As is typical for lotic-dwelling water mites (Smith et al. 2010), torrenticolids are heavily sclerotized, dorsoventrally flattened, and possess latigrade legs with robust tarsal claws for crawling rather than swimming. Many torrenticolids have distinct color patterns, the adaptive utility of which remains unknown, but perhaps serves as disruptive coloration. Most are denizens of fast-flowing streams, but several species occupy lentic habitats; these are considered recent invasions since they retain lotic-typical morphology. As a group, Torrenticolidae are among the most abundant and species-rich animals in fast-flowing streams; nevertheless, most species remain unknown.

Torrenticolidae comprises six genera, two of which are speciose (Torrenticola Piersig, 1896 and Monactrides Viets, 1926) and four others are less than thirty species combined (Testudacarus Walter, 1928; Pseudotorrenticola Walter, 1906; Neotrac- tides Lundblad, 1941; and Stygotorrenticola Pešič and Gerecke, 2014). Torrenticola—the largest genus—contains nearly 250 described species worldwide, with 76 species known from North America. Most North American species are from Central America, as Goldschmidt (2007) described 36 new species from Costa Rica (raising the total number known from Central America from 19 to 55).

In North America, only 22 described Torrenticola occur north of Mexico, most of which were described by Ruth Marshall (1869-1955) and Herbert Habeeb (1917-1987). Marshall described five of the nine known western species (four from California and one from Wyoming), as well as T. occidentalis, which is now known from Indiana, Ohio, and Wisconsin. Habeeb described 11 of the 13 species known from the northeast, as well as four of the nine western species (from California). One species, T. bittikoferae Crowell, 1960, was named from Lake Erie and another species, T. maglioi (Koenike, 1908) – now considered incertae sedis (Di Sabatino et al. 2009) – was recorded from western Canada (Consroy 1968), but identification of the latter is doubtful and is not included here. In summary, all 22 North American Torrenticola north of Mexico are known from the west (esp. California) or the northeast. However, based on previous collections we have identified many putative species from across the continent, highlighting the need for this type of research.

MATERIALS AND METHODS

Sampling

Mites were collected using protocol detailed in Smith et al. (2010, p.516-518). This involves digging a trench (typically 1-2m) upstream of a 250 µm mesh collection net. Digging depth is determined by a lack of organic debris visible in the water column during a dig, but sediment is generally disturbed several feet below the substrate surface. To reduce sediment accumulation, the sample is transferred into either a gallon bag or large jar. The container is swirled so that mites and organic debris are suspended in the water column and sediment remains at the bottom. The top solution is then poured through a stacked combination of coarse (2mm) and fine (250 µm) sieves. This process is repeated until organic matter is no longer visible in the jar. The course sample is discarded and the fine sample is transferred to a water-filled site-specific container. The container is cooled until the samples can be processed, thus keeping the mites alive.

Processing involves pouring the live material through a 250 µm sieve or hand net and transferring the resulting clump to a shallow water-filled white tray (such as darkroom developing trays). Most water mites swim away from the debris clump and accumulate in the corners of the tray, where they can be collected with a pipette and transferred into a collection jar. Mites can take some time to swim from the clump and should be allowed to continue at least overnight. It is important to note that not all species escape the debris (e.g., Protzia, some Torrenticola, Wandesia), which must be examined occasionally to sample such species. After water mites have been collected from the tray using pipettes, the collection jar is decanted of excess water and then filled with preservative (see Specimen curation below).
Specimen curation

Specimens are preserved using four methods, each having specific benefits. Ideally, some specimens should be preserved with each method from every site. We maintain fluid-preserved specimens in GAW (50% glycerol, 10% glacial acetic acid, and 40% water; also referred to as Koenike’s solution) and in 95% ethanol, and slide-mounted specimens in glycerin jelly and Hoyer’s medium. For investigating external morphology, GAW is preferred because it better preserves color and gently clears the specimens. For investigating internal morphology or for use in molecular analyses, mites are preserved in 95% ethanol.

Specimens were prepared for slide-mounting by: 1) separating the dorsal plates from the venter; 2) separating the gnathosoma and removing one pedipalp; 3) removing legs from at least one side; and 4) removing the genital skeleton from males and eggs from females. Glycerin jelly is considered the preferred mounting media for adult water mites and has been used by many water mite researchers (e.g., David Cook, Herbert Habeeb, Carl Lundblad, Rodger Mitchell, Constantine Motas, Ian Smith, Karl Viets, and Kurt Viets). Benefits of this medium include the following: 1) ease of positioning the specimen parts in desired positions on a slide without shifting during placement of the coverslip; 2) ease of remounting which rarely results in damaged specimens; and 3) superior retention of color. However, glycerin slides tend to be thicker, rendering high-magnification objectives unusable with most microscopes, and optical quality is inferior to other media, which is particularly noticeable at greater than 400x. Certain water mite researchers (e.g., Reinhard Gerecke, Tom Goldschmidt, Vladimir Pešić, Antonio Di Sabatino, and Harry Smit) have therefore adopted Hoyer’s medium, the preferred mounting media for terrestrial mite research (Krantz 1978, Walter and Krantz 2009). Hoyer’s medium has superior optical properties (Singer 1967) although color is immediately destroyed (Fig. 3). Therefore, in addition to glycerin mounts, we also maintain preparations with Hoyer’s medium. Due to the loss of color information, each Hoyer’s-preserved specimen is photographed prior to mounting and the images are stored in our online database.

Eight paratypes are deposited in the Ohio State University Acarology Collection (OSUAC), Columbus, Ohio. Eight paratypes are deposited in the Acari Collection of the University of Arkansas (ACUA), Fayetteville, Arkansas. Eight paratypes are deposited in the Georgia Museum of Natural History (GMNH), Athens, Georgia. All other material (holotype, allotype, and 58 paratypes) is deposited in the Canadian National Collection of Insects, Arachnids, and Nematodes (CNC), Ottawa, Canada.

Morphological terminology

We prefer terminology that is broadly applicable across mites rather than specifically developed for water mites. As a result, we mostly follow Goldschmidt (2007), who also used broadly applicable terminology applied to Torrenticolidae. However, we deviate from this reference in the following instances. First, we prefer “gnathosoma” to “capitulum”. “Capitulum” is usually misapplied to merely the subcapitulum rather than the whole gnathosoma; also, “gnathosoma” is more commonly used across mite groups. This affects only a few terms directly (e.g., “capitular bay”), which are simply renamed (e.g., “gnathosomal bay”). Second, other terms (e.g., “capitular depth”) are more general than necessary (i.e., unnecessarily including the pedipalps) and therefore we use “subcapitulum” instead of “gnathosoma” (e.g., “subcapitular depth”). It is worth highlighting our preference of “subcapitulum” over “infracapitulum” used by some authors. Both terms are morphologically sound, but “subcapitulum” is used more often across mites and has been adopted by major acarological texts (e.g., Kethley 1990; Walter et al. 2009). Third, we avoid the often-used shorthand “palp” and instead refer to “pedipalp” which is more broadly applicable across arachnids. Fourth, pedipalpal podomeres are often referred to by water mite researchers as PI, PII, etc. instead of their actual names. We avoid this shorthand in place of actual terminology: trochanter, femur, etc.
FIGURE 3: *Torrenticola trimaculata* n. sp. color loss in Hoyer’s medium (slide preparation of holotype with separated dorsum and venter):
A – prior to warming in Hoyer’s medium, note dorsal spots and ventral coloration; B – same specimen after warming in Hoyer’s medium, note pigmentation (dark color) is cleared, but structural (red) coloration is retained.
Chaetotaxy of post-larval torrenticolids has been largely unused by authors and perhaps for good reason as it presents several difficulties. Pedipalpal setae among Torrenticolidae are generally conserved and vary minimally within a species. Pedipalpal chaetotaxy is therefore described herein; although we currently favor positional and descriptive terminology over nomenclature implying homology. Conversely, leg setae can vary considerably within a species and adopting a usable chaetotaxic system requires broad investigation across taxa. Therefore, it is outside the scope of this study to examine leg chaetotaxy, even in a descriptive fashion. We have included general comments, but reserve robust examination for future projects on leg morphology.

Images

Line drawings were created digitally with Adobe Illustrator CS6 and a Wacom Cintiq 21UX tablet using procedures outlined in Fisher and Dowling (2010). Photographs were created using iPhone (4S and 5S) cameras held to the eyepiece. Images were stacked using Helicon Focus. Low-temperature scanning electron micrographs (LT-SEM) were made using the protocol outlined in Fisher et al. (2011). Images were edited and placed into figures using Adobe® Photoshop and Illustrator CS6.

Measurements

Compound light micrographs of structures (e.g., venter, pedipalps, legs) were measured digitally using ImageJ (Schneider et al. 2012), which greatly speeds the measurement process when dealing with large numbers of specimens. Selected measurements follow the suggestions outlined by Goldschmidt (2007) with the addition of the area of secondary sclerotization on the dorsal plate.

Molecular phylogenetics

Taxon sampling included the following three-spotted torrent mites: 14 specimens of Morph-1 and one specimen of Morph-2 from the Ozark Mountains; one specimen of Morph-1 and 10 specimens of Morph-2 from the Ouachita Mountains; and one specimen of Morph-2 from east of the Mississippi River (i.e. Indiana). These three-spotted mites were part of a much larger dataset of approximately 500 specimens spanning 100 Torrenticola "morphotypes" from across North America. This dataset will be the focus of forthcoming studies on Torrenticola diversity and therefore is not presented herein.

Genomic DNA was extracted using Qiagen DNeasy Tissue Kit (Qiagen Inc., Valencia, Calif.). The target region of COI was amplified with LCOI and HCOI (Folmer et al. 1994) and purified with Qiagen QUApick PCR Purification Kits. Test gels (1.5% agarose) confirmed PCR product quality. Purified PCR product was sequenced by Macrogen USA, Md. (http://www.macrogenusa.com/). Forward and reverse sequences were reconciled with DNASTAR® Lasergene SeqMan (Madison, Wis.). Resulting contigs were checked for contamination with BLAST searches on GenBank. Sequences were aligned with Clustal X (Thompson et al. 1997) and conservatively edited with BioEdit (Hall 1999). Bayesian analyses were performed with MrBayes (3.2.2) using the Extreme Science and Engineering Discovery Environment (XSEDE) infrastructure on the Cipres Portal (Miller et al. 2010), which submits jobs to the Gordon Compute Cluster, a network of 16 supercomputers sponsored by NSF XSEDE at the University of California, San Diego. Sequences relevant to the present study (i.e. T. trimaculata) are available on GenBank.

Species delimitation

Close inspection of key characters (e.g., pedipalpal projections, sclerite proportions, genital skeleton) revealed considerable variability in each character; however, specimens showing this variation were present within a given region and it was unclear if the variation represented one morphologically diverse species or multiple sympatric species. Further, distinct color morphs were identified (Fig. 2) that did not overlap within a given sample. To address these complexities, we investigated the "bar-coding" region of COI as an independent test of our species hypotheses. Unfortunately, specimens preserved for DNA analyses were only available from
the Interior Highlands (Ozark and Ouachita Mountains) and one collection from Indiana, and thus not representative of the full distribution of three-spotted *Torrenticola* across eastern North America. However, specimens exhibiting the full range of variability seen across eastern North America were present in the Interior Highlands; if these characters are indicative of species boundaries, then they should sort into separate lineages using molecular methods.

The first conclusion from the molecular data is that all specimens in question clearly form a monophyletic lineage (results from larger analysis will be presented in forthcoming studies). Second, color morphs do not represent separate lineages, rejecting them as cryptic species (Fig. 4A). Third, specimens collected from potentially isolated regions (*i.e.* Ozark and Ouachita Mountains) are less than one percent different, indicating some gene flow and thus no species-level divergence between disparate regions (Fig. 4B). Lastly, the specimen from Indiana is less than two percent different from all other specimens and is not topologically divergent (Fig. 4B). A percent difference greater than one percent is expected given the geographic disparity, but a difference of less than two percent does not reject the hypothesis of a wide-ranging species.

Given these results and the characters discussed in the diagnosis, we conclude that three-spotted *Torrenticola* from eastern NA should be considered a
single species – *T. trimaculata*.

TAXONOMIC HISTORY

The literature on *Torrenticola* is full of inconsistencies and discrepancies due to a convoluted early taxonomic history. Some of these issues were addressed briefly by Oudemans (1941) and elaborated upon by Viets (1949), both written in German. Gerecke (2003) detailed much of the history and was the first account written in English. However, his account focused primarily on *Atractides* and there remains much to be discussed with regard to *Torrenticolidae*, as is evidenced by continued confusion about taxon authorship and history. Below is a summary meant to bring together scattered accounts and explain the confusion.

Early history of the genus

The complex early taxonomic history of *Torrenticola* was interwoven with that of *Atractides* Koch 1837 (Hygrobatidae) for over a century. Carl L. Koch (1778-1857) was a prominent German arthropod taxonomist who described the first torrenticolid (*Torrenticola anomala* as *Atractides anomalus* Koch 1837). In that same publication, he also described *A. setiger* and *A. spinipes*. Later, *A. setiger* was combined with *Hydrachna longipalpus* into *Hygrobatidae longipalpus* (Herman 1804). The order of appearance of these species in Koch (1837) will be relevant to later authors and is as follows: *A. anomala*, *A. spinipes*, *A. setiger*.

Five years later, Koch (1842) erected *Hygrobatides (=Hydrobatidae)* to include ten genera (two of which remain: *Atractides* and *Hygrobatidae*) and considered six species to be included within *Atractides*. Of relevance here, in the forward Koch wrote: “solchen beigefügten Figuren, als Typus dienend, bloß ein getreues Bild irgend einer Art der betreffenden Gattungen.” It is this statement that is responsible for much confusion over the next 100 years, because it implies figured species (“solchen beigefügten Figuren”) represent type-species (“Typus”). Given that Koch figured *A. spinipes*, it can be interpreted that Koch (1842) designated *A. spinipes* as the type-species for *Atractides*. However, there are two problems with this deduction. First, early authors (e.g., Thor (1899), discussed below) overlooked this note in Koch’s forward and considered the first-mentioned *Atractides* (*A. anomalus*) to be the type-species. Second, it is difficult to conclusively determine whether Koch’s “Typus” is synonymous with today’s concept of a type-species and requires a linguistic investigation into Koch’s many works. Thus, in contrast to Gerecke’s (2003) otherwise precise and thorough revision of *Atractides* where he refers to Koch’s “unequivocal designation of *spinipes* as *tipus generis*”, the designation of type is actually left to interpretation (Gerecke pers. comm. 2014).

A parallel element that contributed to the confusion of *Torrenticola* and *Atractides* is the problem of *Megapus*. This began when Kramer (1875) described the deutonymph of *A. spinipes* Koch, 1837 and included drawings. He also suggested moving *A. spinipes* into *Nesaea*, but thankfully this was not accepted by other authors. Later, Neuman (1880) erected a new genus – *Megapus* – to accommodate a new species that he considered similar to Koch’s *A. spinipes*; he commemorated this similarity in the specific epithet by naming it *M. spinipes*. However, Neuman’s (1880) description cannot be differentiated from *A. spinipes* Koch 1837. Gerecke (2003) posed the likely scenario that Neuman knew *A. spinipes* only through Kramer’s (1875) drawings, which as we have said, depicted a nymph. In reality, Koch, Neuman, and Kramer probably described the same species. Koenike (1883), recognizing their overwhelming similarity, rightfully synonymized *Megapus* with *Atractides*. However, he considered Neuman’s *M. spinipes* and Koch’s *A. spinipes* as separate species and proposed *A. ovalis* to avoid homonymy. *Atractides ovalis* would remain a confusing species until an elegant solution was proposed by Gerecke (2003), but that is beyond our scope here.

Piersig (1896) set in motion the solution to the taxonomic problem of *Atractides* when he erected *Torrenticolidae* to differentiate *Atractides anomalus* from the other, very different members of *Atractides*. Koenike initially agreed with this decision and described *T. microstoma* Koenike, 1898 (today considered within another torrenticolid
Fisher J.R. et al.

genus—Monatactides) and also described a new ‘A. spinipes’-like mite within Atractides: A. thoracatus
Koenike, 1898. Meanwhile, another prominent taxonomist, Sig Thor, described Rusetria spinirostris
Thor, 1897, without comparison to either Koch’s Atractides or Piersig’s Torrenticola.

Then, in 1899, as an obvious reaction against Piersig, Thor synonymized Torrenticola Piersig, 1896
and Rusetria Thor, 1897 with Atractides. His suggestion was based on the fact that A. anomalus was
the first mentioned Atractides in Koch’s (1837) original description, which would mean A. anomalus is
the type-species for Atractides and previous allocations of A. spinipes-like mites to the genus were
unfounded. However, Thor overlooked Koch’s designation of A. spinipes as ‘Typus’ in 1842. Like we
have said, Koch’s designation can be interpreted several ways, and we do not know if his ‘Typus’ is
consistent with our present concept of a type species. However, it is likely that Thor did not read
this at all, as it was never discussed by him. As a result, Thor (1899) moved T. anomala, T. microstoma,
and T. spinirostris into Atractides. To accommodate the A. spinipes-like mites, he reinstated Megapus
Neuman, 1880. As we have said, Megapus is a synonym of A. spinipes, which Neuman did not know at
the time because his knowledge of A. spinipes came from Kramer’s (1875) drawings.

Unfazed by Thor’s suggestions, Piersig and Lohmann (1901) offered a more comprehensive work
that detailed the synonymies and morphology of Torrenticola, which they considered to have three
species: T. spinirostris, T. microstoma, and T. anomalus. A year later, Thor (1902) erected Atracteidae
to accommodate several genera, including his Atractides (= Torrenticola Piersig). That same year,
Piersig (1902) published a reply to Thor where he synonymized Atractides with Megapus, disregarded
Atracteidae as an ‘erroneous application of the generic name Atractides Koch’, and erected a new
family to accommodate ‘A. anomalus’-like mites: Torrenticolidae.

It has been implied that Thor personalized the disagreements with Piersig (Viets 1949, Gerecke
pers. comm. 2014), and was somehow able to sway Koenike’s opinion of him, which was exacer-
bated by what Viets (1949) called “frequent pointed polemics and animosities (compare Zoologischer
Anzeiger)” [“...oftmals scharfen Polemiken und Animositäten (vgl. Zool. Anz.)”] between Piersig
and Koenike. Regardless of the reason, Koenike changed his mind about Piersig’s Torrenticola and
without explanation, began to describe ‘A. anomalus’-like mites as Atractides and ‘A. spinipes’-like
mites as Megapus: M. vaginalis Koenike, 1905 (later, Atractides vaginalis); and A. maglioi, A. amplexus, and
A. connexus (later considered Torrenticola). Piersig would have likely responded to this and solved
the confusion immediately, but sadly, he died in 1906. As a result, Thor’s and Koenike’s concepts of Atractides and Megapus would persist for the next forty years.

Eventually, the subject was reopened by the prominent Dutch taxonomist Anthonie C. Oudemans,
who at first commented only on the Megapus-problem (Oudemans 1937), but shortly after
acknowledged Torrenticola as the correct genus containing A. anomalus-like mites (Oudemans 1941).
However, these comments were buried in larger works and initially ignored. This is relevant for
North American taxa because ten torrenticolids (four Torrenticola and six Monatactides) were
described from California in 1943 as Atractides (Marshall 1943). It is likely Oudemans would have
furthered the discussion, but he died in January, 1943. Eventually, his suggestions were supported in
the definitive work by Viets (1949) and ultimately incorporated into Viets’s (1956) seminal water mite
catalogue. No Torrenticola have been described as Atractides since the first edition of Viets’s catalogue.

The problem outlined above of Koch’s use of “Typus” may never be conclusively solved. Fortunately
for us, this problem is moot due to the ICZN Principle of the First Reviser, which deals with situations
that cannot be resolved objectively through priority. This principle issues the first subsequent
author that deals with the matter as a whole to be the “first reviser”, and thus their decision remains.
We consider Viets (1949) to be the first reviser, who unambiguously supported that Koch (1842) designated A. spinipes as the type-species by figuring it as “Typus”. Thus, all ‘A. spinipes’-like mites remain
unequivocally linked with *Atractides*, leaving all ‘*A. anomalus*’-like mites free to be removed from that lineage.

For more information on early taxonomic history of *Torrenticola*, the reader should refer to Gerecke (2003) and Viets (1949). For more discussion of recent taxonomic history, the reader should refer to Goldschmidt (2007) and Wiles (1997).

Early history of the family (esp. author confusions)

To detail all familial changes that affected torrenticolid species is outside the scope of this paper. Many changes did not even explicitly involve torrenticolids. A more thorough (but still comprehensive) history is given in the taxonomy section below. Our purpose here is to outline significant designations and correct several misconceptions. For further discussion on early familial relationships, we direct the reader to Wolcott (1901).

When Koch (1837) first described *Atractides*, he did not designate familial placement. It was his next treatment (Koch 1842) where he split water mites with four eyes into Hydrachnides (=Hydrachnidae) and those with two eyes into Hygrobatides (=Hygrobatidae). He also named a third, miscellaneous group called "marsh mites" that included two water mites (*Limnochares* and *Thyas*) and two terrestrial mites (*Alcus* and *Smaris*). The relevant family, Hygrobatides, contained ten genera, only two of which remain in Hygrobatidae today (*Atractides* and *Hygrobatides*).

Piersig (1897, and Lohmann 1901) originally considered the three *Torrenticola* of the time to be Hygrobatinae (Hydrachnidae). Thor (1902), who was still developing the conflict between him and Piersig (see *Torrenticola* history section above), erected Atraceteidae to accommodate several genera including *Atractides*, which he considered synonymous with *Torrenticola*. Finally, Piersig (1902) erected Torrenticolidae to accommodate the three *Torrenticola*.

It is worthwhile to explain a few misconceptions concerning torrenticolid authorships. First, one may find occasional mention of Torrenticolinae Monti, 1910 (e.g., Viets 1958, Imamura 1959b, Rensburg 1971, Cramer 1992) instead of the correct Torrenticolinae Piersig, 1902. Rina Monti (1910) was indeed the first to use Torrenticolinae, although she considered it a subfamily of Hygrobatidae, not Torrenticolidae. But her familial designation is not the reason “Piersig, 1902” is the accurate authorship. Instead, it relates to the ICZN Principle of Coordination of family-groups (Article 36), which states that the author of a family-group name at any rank simultaneously establishes all other family-group ranks for the nominal taxon. This same rule is true of genus or species group names. Thus, when Piersig (1902) erected Torrenticolidae to accommodate *Torrenticola*, even though he did not explicitly state it, he simultaneously created the subfamily, infrafamily, tribe, subtribe, etc., and all of those ranks are authored by him: Torrenticolinae Piersig, 1902; Torrenticolini Piersig, 1902, etc.

Another authorship misattribution is the occasional mention of Torrenticolidae Thor, 1902 (e.g., Smith 1982, p.921; Jin et al 2010, p.111) instead of the correct *Torrenticolae* Piersig, 1902. Current taxonomy-based websites that contain this misinformation contribute to the problem (e.g., EOL, ITIS, GBIF), which will be corrected within completion of our project. This misconception potentially has its origin in the formatting and title of Piersig (1902), in which he erected Torrenticolidae. As we have said, Thor (1902) posed Atraceteidae to accommodate his *Atractides*, which included Piersig’s *Torrenticola*. Thor’s paper was titled “Eigenartige, bisher unbekannte Drüsen bei einzelnen Hydrachniden – – Formen”. Piersig entitled his immediate reply in which he erected Torrenticolidae with simply the citation to Thor’s paper, complete with Sig Thor’s emboldened name. As was typical of certain publications of the time, authorship of Piersig’s work was not at the beginning, but the end of the two-page note, which itself was buried in notes from many other authors. In other words, we posit that authors occasionally locate Piersig’s publication, but are misled by the title and formatting into thinking the article was authored by Thor.

Finally, Oudemans is occasionally credited as the author of *Torrenticola* (e.g., Mitchell 1954,
Conroy 1968). This is likely due to Viets (1949), who mistakenly attributed Oudemans (1941) as the author of the family-group. However, given Viets’s knowledge of torrenticolid history and correct author attributions in his catalogs, it is possible the authors listed in Viets (1949) were meant as contextual points (i.e., examples of authors who used the revised meanings of the families listen therein), not actual authorships of the taxonomic rank.

In summary, the correct authorship of the family-group is as follows: Torrenticolidae Piersig, 1902; Torrenticolinae Piersig, 1902; etc. The correct authorship of the genus-group is Torrenticola Piersig, 1896.

Thor’s hypothetical taxa

Three “taxa” require special attention as they are occasionally found in catalogues and are often met with great confusion when investigated. The first two are Schizatractides Thor, 1923 and Synatractides Thor, 1923, which were meant to be Atractides [=Torrenticola] subgenera based on the fusion of the lateral platelets (“Schiz-” platelets separate; “Syn-” platelets fused). However, Thor did not actually propose these as new names. Instead, he explained his rationale for “initially thinking” (“dachte ursprünglich”, pg.50) of proposing these groups, only to explain in the next sentence that doing so “is not necessary” (“Dies ist aber nicht notwendig”, pg.50) because names for these subgenera already exist (i.e. Atractides, Rusetria).

The third hypothetical taxon deserving special mention is Uraitractides Thor, 1929. This name was mentioned in a discussion about the evolution of transitional forms in certain lineages. Specifically, Thor was discussing an evolutionary sequence for the expansion of the coxae into a ventral shield from the condition in Sperchon and Thyas, which have separated coxae, to the condition of Lebertia, which have coxae expanded into a ventral shield. Thor found the evolutionary sequence incomplete due to the lack of transitional forms that he called “gaps in the system” (“Lücken im Systeme”). To solve this problem, Thor (1929, pg.196) named hypothetical intermediate genera that were meant to fill the gaps in the evolutionary sequence between the following genera (arranged in Thor’s evolutionary order): Sperchon, Hygrobates, Atractides [=Torrenticola], Lebertia, Oxus. The hypothetical genera he named as intermediates are as follows: Urohygrobes, Urohygrobates, Uraitractides, Urolebertia, Proteolebertia, Protoxus.

One is left wondering why these names were ever expressed in print. Regardless, the names associated with Torrenticola (Schizatractides, Synatractides, Uraitractides) and the other hypothetical genera Thor (1923, 1929) proposed (Uroperchon, Urohygrobates, Urolebertia, Proteolebertia, Protoxus) are rendered nomen nuda.

Recent history

The presently recognized familial classification follows Wiles (1997), who tested torrenticolid relationships with a 23-character morphological matrix of 21 species (although he notes that the results are concordant with an unpublished analysis of 45 species). That analysis moved NeaAtractides from its own subfamily to Torrenticolinae, raised MonoAtractides from subgeneric to generic status, and rearranged several subgenera. Otherwise, previous taxonomic schemes were similar (e.g., Cook 1974, Viets 1987, Bader 1988).

There has been much recent progress made by only a handful of taxonomists in the knowledge of Torrenticolidae from Palaearctic (e.g., Di Sabatino and Cicoli 1990; Di Sabatino et al. 2003, 2009; Pešić et al. 2011, 2013; Tuzovskij 2003, 2012, 2013), Afrotropical (Goldschmidt and Smit 2009, Pešić and Smit 2014a), Oriental (e.g., Pešić and Smit 2011, Pešić et al. 2012a, 2012b; Pešić and Smit 2014b; Pešić and Gerecke 2014), and Neotropical regions (Goldschmidt 2007). The present work represents the first in a series of descriptions intended to fill the gap in knowledge of Nearctic species.

Taxonomy

Torrenticolidae Piersig 1902

Lateroculatae: Haller 1882: 37 (in part) • Koenike 1883: 34 (in part); 1895: 211 (in part); 1898: 376.

Familial diagnosis — Torrenticolinae can be differentiated from other lebertioids by being heavily sclerotized; dorso-ventrally flattened; with a dorsal shield comprising a large, central dorsal plate surrounded by a ring of smaller platelets (posterior platelets within a dorsal furrow in Torrenticolinae); and most having six genital acetabula (three in Testudacarinae and other Lebertioidae). Additionally, although not diagnostic, another character that can be helpful in distinguishing torrenticolids from similar looking mites is the V-shaped suture formed by the division between Coxae-I and Coxae-II, and the medial suture formed by Coxae-II. This suture is obvious due to the incomplete suture between Coxae-II and -III, common to many lebertioids.
Fisher J.R. et al.

Rusetria: Thor 1897: 20 • Thor 1902: 408.

Schizatractides: Thor 1923: 50 [hypothetical subgenus; nomen nudum].

Synatractides: Thor 1923: 50 [hypothetical subgenus; nomen nudum].

Uratractides: Thor 1929: 196 [hypothetical genus; nomen nudum].

Type species: T. anomala (Koch 1837) [original designation: Atractides anomalus Koch 1837]

Note: The above taxonomic history is not comprehensive and emphasizes major or often overlooked works. The reader should refer to Viets (1987) for additional information.

Generic diagnosis — Torrenticola can be easily differentiated from other torrenticolines by having short postero-dorsal subcapitular apodemes (long in Monatractides and testudacarines); five palpomeres (four in Neotractides, the only torrenticol with this condition); a gnathosoma that cannot be greatly extended (Pseudotorrenticola have long, slender gnathosomae that can be fully retracted within the body and extended nearly the length of the body); a rostrum of variable length (but never completely reduced as in Monotractides and Stygotorrenticola); and the presence of a medial suture (lacking in Stygotorrenticola, the only torrenticol with this condition).

Torrenticola can be further diagnosed by the following combination of characters. Body dorsoventrally flattened. Integument heavily sclerotized and distinctively sculptured, composed of shallow depressions; each depression representing the opening of many pits that converge within the integument to form a single channel (Fig. 5). Fundamentally, the integument is yellowish; most species also have reddish central coloration on the dorsal plate. These colors are structural and therefore not affected by preservation technique (Fig. 3). Upon this background, many species have developed additional coloration that is typically dark and is affected by preservation technique (Fig. 3), suggesting these colors are not structural but pigmentation.

These color patterns can be striking and highly useful in species identification, although there is often considerable variation. Pigmented color patterns fade over time and are usually destroyed when specimens are mounted in certain media (e.g., Hoyer’s). Further coloration is achieved by internal structures; for example, the white Y-shape of the waste-filled hindgut (Fig 2E-F).

Gnathosoma capable of being withdrawn somewhat into anterior portion of idiosoma, but not attached to extensible tube. Subcapitulum with pronounced rostrum and short postero-dorsal apodemes. Oral opening generally occurs mid-rostrum beneath the chelicerae. Chelicerae elongate, fitting within a dorsally closed groove in subcapitulum, with movable digit modified into an up-turned fang. Pedipalps are five-segmented and variable. Often the femur and genu bear ventrodistal projections that are variously shaped and aid in species identification.

Idiosoma dorsoventrally flattened and separated into dorsal and ventral sclerotized regions by striated membrane with a fold (dorsal furrow) in the middle that contains six thin, posterior-lateral platelets organized in a ring around the posterdorsum, which are usually not visible in slide preparations. The idiosoma bears 5 pairs of lyrifis-
Figure 5: Torrenticola trimaculata n. sp. integument (A-C. light micrographs; D-E. LT-SEM): A – surface-level view depicting many depressions, each containing many pits, note muscle scars are not yet in-focus; B – mid-level view depicting tubular ‘trunks’ formed by the convergence of the branches from each pit; C – bottom-level view depicting bases of trunks, note that the muscle scars are in-focus; D – surface-level view of a single depression containing many pits that represent the openings of the many internal branches; E – lateral aspect of idiosoma with a tear between the dorsum and venter, note the surface-level depressions on the dorsum (top) and inner-level openings of the ‘trunks’ into the body on the venter (bottom).

Dorsum consists of a large dorsal plate occupying most of the dorsum; two antero-lateral platelets (fused with dorsal plate in some groups); and two antero-medial platelets (fused with dorsal plate in some groups). The dorsal plate is divided into

Dorsum consists of a large dorsal plate occupying most of the dorsum; two antero-lateral platelets (fused with dorsal plate in some groups); and two antero-medial platelets (fused with dorsal plate in some groups). The dorsal plate is divided into
FIGURE 6: Torrenticola trimaculata n. sp. primary and secondary sclerotization (Morph-1 female compound light micrographs):

A – dorsum of mature adult depicting area of primary sclerotization (1°) and secondary sclerotization (2°), note dorsal glandularia 5-6 are within 2°; B – dorsum of teneral adult depicting only 1°; C – venter of mature adult depicting 1° and 2°, note ventral glandularia 1, 2, & 4 are within 2°; D – venter of teneral adult depicting only 1°, note associated glandularia and excretory pore are not visible.
FIGURE 7: Torrenticola trimaculata n. sp. leg setae (LT-SEM): A – Leg I trochanter, note hatchet-shape and fringed spatulate setae; B – Leg II telofemur, note fringed spatulate setae and simple setae; C – Leg II & III with coxal glandularium 2 (Cxgl-2) in right foreground, note variously shaped fringed spatulate setae, hexagonal depressions of integument on legs (esp. on telo-femur II), and crenulated distal margins of podomeres.
area of primary and secondary sclerotization, the latter developing long after emergence from the imagochrysalis, and thus not visible when teneral but increasing in size during adult maturity (Fig. 6). Because the excretory pore resides in the area of secondary sclerotization, teneral adults do not have an external excretory pore. The anterio-lateral platelets bear setae that are not associated with glandularia and are called postocular setae (po). The main dorsal plate centrally contains two sites of irregular circles hypothesized to be areas of muscle attachment.

Venter is completely sclerotized, but divided into an area of primary and secondary sclerotization, the latter developing after emergence from the imagochrysalis. Characteristic of the family, sutures between Cx-1/2 and the suture between the medial margin of Cx-2/3 form a Y-shape. Like other lebertioids, the suture between Cx-2/3 is incomplete. Venter with five pairs of glandularia: two pairs on the coxae (Cxgl-2 and -4), three pairs of ventero-glandularia (Vgl-2, -3, and -4), although one pair (Vgl-1) has been reduced to a small seta not always visible in slide preparations.

Genital field bears six pairs of acetabula and is covered by two genital flaps rimmed in numerous setae.

Legs lack swimming hairs and instead have large, fringed spatulate setae clearly used for digging/crawling through sediment (Fig. 7). Legs terminate in two well-developed tarsal claws that fit into a deep tibial groove when retracted (Fig. 8B-D). Each claw is broad and shield-like basally and bifid.

FIGURE 8: *Torrenticola trimaculata* n. sp. tarsal claws (LT-SEM): A – lateral view of protracted claws, note distal bifurcation and proximal shield-like wedge; B – latero-dorsal view of claws partially retracted into tibial groove; C – dorsal view of tibial groove; D – fronto-lateral view of claws fully retracted into tibia.
apically (Fig. 8A–B). The first three pairs of legs are closely abutting and moved anteriorly, so that they are borne on the anterior portion of the idiosoma made by the first three coxae, and emerge dorsally. The fourth pair of legs is located ventrally, near the genital opening, and are significantly longer than the first three pairs. The insertion of the fourth pair of legs is without condyles.

Sexes are clearly differentiated by the size and shape of the genital field (smaller and rectangular in males; larger and trapezoidal in females) and the length of the medial margin of Cx-2/3 (usually significantly longer in males) referred to merely as the medial suture.

Subgeneric diagnosis. Historically, *Torrenticola* has comprised multiple subgenera (e.g., Angelier 1954, Cook 1974, Bader 1988). In a seminal work that used cladistics to test torrenticolid relationships, Wiles (1997) moved most torrenticolid subgenera to other genera, thereby abolishing subgeneric classification. However, he acknowledged the suggestion by Gerecke and Di Sabatino (1996) to resurrect the subgenus *Megapalpis* Halbert 1944 without including members of that subgenus in his analysis. As a result, the current system consists of two subgenera: *Megapalpis*, identified by slender chelicerae, styletiform fangs, and a slender, curved rostrum; and *Torrenticola* identified by the lack of this character combination. The species described herein is clearly not *Megapalpis* and therefore must be regarded by default as within the subgenus *Torrenticola*. However, we refrain from recognizing subgeneric classification until robustly supported phylogenetic hypotheses corroborate such ranks.

Description

Torrenticola trimaculata Fisher n. sp.

(http://species-id.net/wiki/Torrenticola_trimaculata)

LSID — urn:lsid:zoobank.org:act:BE021914-89AE-4DE7-A0DC-18CF80BA78AF

Imago general features. Color variable across two distinct color morphs that do not coexist within a stream (Fig. 2, 9). For both morphs, the integument is yellowish, with a central red structural coloration on the dorsal plate. Both morphs also have pigmentation in the form of three dark spots on the dorsal plate that do not extend beyond the area of primary sclerotization; this pigmentation is destroyed during clearing (Fig. 3). This adequately describes the less pigmented morph (Morph-2: Fig. 2B, D, F), although some specimens express light pigmentation on the genital plates (Fig. 2B) and hind coxae (males) (Fig. 2D), and size and shape of the dorsal spots varies considerably (Fig. 9B, D). The more pigmented morph (Morph-1: Fig. 2A, C, E) is marked by the following: 1) area of primary sclerotization on the venter is darkly pigmented; 2) the three dorsal spots are larger; 3) entire gnathosoma, including pedipalps, is pigmented; 4) dorsal pigmentation can extend to the anteromedial platelets; and 5) legs are pinkish-orange. Although noticeable variability is present in the size and shape of dorsal spots, it is much less extreme in Morph-1 (Fig. 9A, C). As with Morph-2, Morph-1 exhibits considerable variability in size and shape of dorsal spots, as well as the extent and vibrancy of all pigmentation.

Sexes are somewhat dimorphic (Fig. 10). Sexual dimorphism consistent with most/all *Torrenticola* include the following: 1) body slightly smaller in males and consistently ovoid; females larger and vary from round to ovoid; 2) genital fields comparatively small and rectangular in males; female genital plates are larger and trapezoidal; 3) medial suture of males long–comparable to the length of the genital field; female medial suture short–about as long as wide. Additional sexually dimorphic characters that are not shared by most *Torrenticola* include the following: 1) hind coxae not extending anteriorly beyond hind leg insertions in males but do in females; 2) hind coxae not extending far posteriorly beyond the genital field; female hind coxae extend beyond the genital field by approximately half the length of the genital field; and 3) rostrum directed normally (forward) in females, but is directed downwards in males.

Female (n=49) (holotypic measurements in parentheses when available) with characters described in generic diagnosis and general features, with following specifications.
Fisher J.R. et al.

Figure 9: Torrenticola trinaculata n. sp. variation (dorsal shield compound light micrographs): A – Morph I females, note only slight variability in body shape and spots; B – Morph II females, note high variability in body shape, size and shape of spots, and shape of red marking; C – Morph I males, note only slight variability in body shape body and spots; D – Morph II males, note high variability in body shape and spots. Overall light/dark appearance is a result of exposure differences across multiple cameras, not real-life variation.
Gnathosoma (Fig. 11-14) — Subcapitulum [250 – 341 (313) ventral length; 185 – 255 (239) dorsal length; 110 – 169 (142) tall] posterior edge nearly vertical, ventral bend depth slight [4 – 20 (5)], and with short rostrum [95 – 133 (129) long] that is directed forwards. Two pairs of adoral setae rim the rostral opening (Fig. 11-12). Chelicerae [230 – 329 (310) long; 15 – 31 (17) high] unmodified with strongly curved fangs [33 – 74 (56) long]. Each fang with lateral and medial teeth presumably used to anchor to prey after puncturing (Fig. 12B-D). Pedipalps [248 – 338 (311) long] with dentate ventrodistal projections medially on femora and mediodcentrally on genua (Fig. 11, 13). These projections vary across individuals in thickness, length, and shape. Further, their appearance can vary according to their position in a given slide preparation, sometimes even appearing tuberculate/edentate. Regardless, they are never lamellate as in the T. serratipalpis-group identified by Goldschmidt (2007). Trochanters [24 – 38 (35) long; 28 – 43 (33) wide] with one dorso-distal fringed spatulate seta (fss). Femora [80 – 123 (109) long; 48 – 68 (60) wide] with one long simple seta (lss) associated with the ventral projection and six dorsal setae as follows: proximally one short simple grooved seta (sgs); two central fss, and three distal fss (two medial; one lateral). Genua [55 – 85 (77) long; 40 – 56 (51) wide] shorter than femora with one lss associated with the ventral projection, one short sgs laterally, and four dorsal setae as follows: one central lss, and three setae distally as follows: one sgs medially, one
Figure 11: Torrenticola trimaculata n. sp. female gnathosoma: adoral setae (ad); bifurcating short setae (bss), fringed spatulate setae (fss), long simple setae (lss), oral opening (o), posterior-dorsal apodeme (p-d a), posterior-ventral apodeme (p-v a), simple grooved setae (sgs).

lss medially, and one lss laterally. Tibiae [73 – 124 (107) long; 19 – 37 (34) wide] subequal in length to femora, with two short, spiny tubercles mid-ventrally that are edentate and associated with 3-4 lss (Fig. 11, 13E). Mid-dorsally, there are two sss (one proximo-lateral; one disto-medial). Distally, there is one lss doro-centrally; two lss dorso-medially; two lss dorso-laterally; one lss laterally; and one large, grooved, spine-like seta dorso-medially (Fig. 11, 14A-B). Tarsi [20 – 27 (25) long; 12 – 16 (16) wide] are accompanied by four tarsal claws, with the bottom two paired (Fig. 14B), thus appearing as three claws in most slide preparations. Ventrally, there are 2-3 short bifurcating setae (sbs) and dorsally there are three lss (Fig. 14A-B).

Dorsum (Fig. 15-19) — [560 – 765 (723) long; 415 – 596 (543) wide] round to ovoid; armored with a central dorsal plate that is divided into an area of primary sclerotization [435 – 530 (477) long; 365 – 521 (440) wide] and an area of secondary sclerotization posteriorly [extends dorsal plate length by 87 – 176 for a total dorsal plate length of 522 – 706...
FIGURE 12: Torrenticola trimaculata n. sp. rostral opening and fangs (LT-SEM): A – frontal aspect of rostrum showing opening for fangs surrounded by adoral setae (ad); B – lateral view of rostrum with both fangs partially extended; C – lateral view of fangs; D – frontal view depicting extended right fang (left fang just emerging from rostrum), note lateral and medial teeth of right fang probably used for anchoring into prey; E – dorsal view of rostral opening with fangs retracted.

Specimens that have recently emerged from the imagochrysalis (i.e., teneral) have not yet developed the area of secondary sclerotization (Fig. 6). The dorsal plate is bordered by ten platelets: two antero-medials [109 – 178 (130) long; 53 – 86 (69) wide]; two antero-laterals [135 – 220 (178) long; 65 – 101 (86) wide]; and a posterior ring of six smaller platelets in a striated membranous fold (partially visible in Fig. 18). Dgl-4 slightly lateral to Dgl-5 and usually in the area of secondary sclerotization, but occasionally near edge of primary sclerotization.

Eyes are apparently paired and located within sclerotized capsules on the margin of the antero-medial platelets and dorsal covering of the gnathosoma (Fig. 16, 17, 19, 21).

Venter (Fig. 20-25) — [615 – 870 (830) long; 487 – 668 (601) wide] round, fully sclerotized, and divided into primary and secondary areas of sclero-
Figure 13: *Torrenticola trimaculata* n. sp. pedipalp (LT-SEM): A-B – medial (A) and lateral (B) view of genu depicting medial placement of disto-ventral dentate projections; C-D – lateral (C) and inner (D) detail of femoral projection; E – lateral detail of mid-ventral tibial spines. Fringed spatulate setae (*fss*); long simple setae (*lss*); short grooved setae (*sgs*).
FIGURE 14: Torrenticola trimaculata n. sp. pedipalp setae (LT-SEM): A – dorsal view of right tarsus; B – latero-medial view of right tarsus, note dual ventral claws; C – dorso-lateral view of pedipalps. Fringed spatulate setae (fss); grooved spine-like seta (gss); short grooved setae (sgs); short bifurcating setae (sbs); long simple setae (lss)
Fisher J.R. et al.

FIGURE 15: *Torrenticola trimaculata* n. sp. dorsal plates: anterio-lateral platelet (a-l p); anterio-medial platelet (a-m p); dorsal glandularia (Dgl); dorsal plate (dp); muscle scars (ms); post-ocularian setae (po); and area of primary (1°) and secondary (2°) sclerotization.

tization. Gnathosomal bay [119 – 300 (126) long; 68 – 98 (74) wide] not narrow (length/width < 3; 1.9 average). Cx-I narrowed to blunt tip, bearing Cxgl-4 ventro-apically (Fig. 19, 20, 22A-B, 23). Medial length of Cx-II + Cx-III short, barely longer than wide [10 – 42 (28)]. **Genital plates** large [153 – 210 (177) long; 133 – 185 (157) wide] and trapezoidal, extending anteriorly beyond level of Leg IV. Each genital plate rimmed in small setae ranging from simple to slightly barbulate (Fig. 24C). Additional measurements as follows: Cx-I total length 190 – 307 (281); Cx-III width 319 – 410 (399); Cx-I medial length 109 – 155 (155); genital field to excretory pore 140 – 240 (202); genital field to cauda 128 – 342 (341). Ovipositor morphology unknown.

96
FIGURE 16: Torrenticola trimaculata n. sp. dorsum (LT-SEM; gnathosoma removed): anterio-lateral platelet (a-l p); anterio-medial platelet (a-m p); dorsal glandularia (Dgl); dorsal furrow (df); dorsal plate (dp); eye capsule (ec) lateral glandularia (Lgl); muscle scars (ms); pre-ocularial setae (pr); post-ocularial setae (po); and area of primary (1°) and secondary (2°) sclerotization.
Figure 17: Torrenticola trimaculata n. sp. anterio-lateral dorsum (LT-SEM): A – anterio-lateral platelet (a-l p); anterio-medial platelet (a-m p); dorsal glandularia (Dgl); dorsal plate (dp); eye capsule (ec); lateral glandularia (Lgl); lyrifissures (l); pre-ocularial setae (pr); post-ocularial setae (po); B – close-up view of l-2; C – close-up view of eye capsule.
FIGURE 18: Torrenticola trimaculata n. sp. posterio-lateral dorsum (LT-SEM): anterio-lateral platelet (a-l p); dorsal furrow (df); dorsal glandularia (Dgl); dorsal plate (dp); lateral glandularia (Lgl); lyrifissures (l); anterior two posterior-lateral platelets (p-l p) partially visible; and area of primary (1°) and secondary (2°) sclerotization.
Fisher J.R. et al.

Figure 19: *Torrenticola trimaculata* n. sp. Frontal view (LT-SEM). Eye capsule (ec); lyrifissure 1 (l-1); latero-glandularia 1 (Lgl-1); and coxal glandularia 4 (Cxgl-4). Note vertically stacked, dual eyes on eye capsule.
FIGURE 20: Torrenticola trimaculata n. sp. venter (right legs removed; left leg setae omitted; female depicted): coxae (Cx; fused coxae: Cx II+III); coxal glandularia (Cxgl); excretory pore (ep); latero-glandularia (Lgl); medial length of suture between Cx II+III (Cx II+III mL); ventral glandularia (Vgl); and area of primary (1°) and secondary (2°) sclerotization.

MALE (n=37) (allootypic measurements in parentheses when available) similar to female, except with sexually dimorphic characters discussed above, and with following specifications.

Dorsum — [520 – 650 (590) long; 366 – 495 (430) wide] ovoid to narrow. Dorsal plate with area of primary sclerotization [369 – 517 (429) long; 315 – 422 (367) wide] and an area of secondary sclerotization posteriorly [extends dorsal plate length by 107 – 148 (115) for a total dorsal plate length of 476 – 570 (545)]. Anterior platelets as follows: anterio-medials 96 – 120 (100) long and 49 – 75 (61) wide; anterio-laterals 148 – 190 (161) long and 65 – 90 (74) wide.

Venter — [589 – 800 (715) long; 432 – 605 (568) wide] ovoid to narrow. Gnathosomal bay [70 – 125 (100) long; 49 – 85 (76) wide] not narrow (length/width < 3; 1.6 average). Medial length of Cx-II + Cx-III long [58 – 123 (86)]. **Genital plates** small [105 – 150 (131) long; 74 – 125 (95) wide] and rectangular, not extending anteriorly beyond level of Leg IV. Additional measurements as follows: Cx-I total length 212 – 297 (261); Cx-III width 387 – 371 (349); Cx-I medial length 126 – 167 (152); genital field to excretory pore 73 – 140
FIGURE 22: Torrenticola trinaculata n. sp. glandularia (LT-SEM): A – ventral view of gnathosoma and surrounding coxae depicting coxal glandularia (Cxgl); B – close-up of Cxgl-4; C – dorsal glandularium 4 (Dgl-4); D – coxal glandularium 2 (Cxgl-2).
Figure 23: *Torrenticola trimaculata* n. sp. venter (LT-SEM; female depicted); coxal glandularia (Cxgl); excretory pore (ep); ventral glandularia (Vgl); and area of primary (1°) and secondary (2°) sclerotization.
(128); genital field to cauda 150 – 242 (220). **Genital skeleton** (Fig. 25) apically short, broad, and tapering abruptly. Cella proximalis large, with reduced processus proximalia; branchia proximalia well-developed, but branchia distalia only moderately developed.

IMMATURES — unknown.

Etymology — *Torrenticola* (*torrens*, L. a torrent; *-colo*, L. inhabitant) translates to “torrent dwellers” and refers to the lotic habitat of most species. The specific epithet *trimaculata* (*tres*, L. three; *-maculo*, L. spotted) refers to the three dorsal spots of adults.

Habitat — Rocky and sandy areas (especially riffles) of healthy streams.

Distribution — Eastern North America. Given the breadth of material examined from the western US, it can be confidently concluded *T. trimaculata* is absent west of the 100th meridian. The species is probably unable to cross the Great Plains, which should be considered the western-most border. Further, it seems to be absent from the south-
eastern coastal plains. The species is most common in the Appalachian Mountains and Interior Highlands (Ozark and Ouachita Mountains), where it can be the dominant mite in a stream. Morph-1, the more pigmented morph (Fig. 2A, C, E), is known only from the Interior Highlands. It is the dominant morph in the Ozark Mountains, but is less common than Morph-2 in the Ouachita Mountains. Morph-2, the less-pigmented morph (Fig. 2B, D, F), is the only morph east of the Mississippi River. Morphs do not coexist within a given stream.

Common name — Three-spotted torrent mite.

Remarks — Torrenticola trimaculata are easily differentiated from other Torrenticola in eastern North America by the three distinct spots on the dorsal plate (Fig. 1, 2, 9). Additionally, the following characters are important in combination: anterior platelets not fused with dorsal plate; rostrum short (less than maximum depth of subcapitulum) and sexually dimorphic (angled downward in males); ventral bend of female subcapitulum slight; pedipalpal femora and genua bear ventral dentate projections that are not lamellate; hind coxae extend posteriorly beyond the genital plates in females (in line with genital plates in males); and medial suture of females short. Torrenticola trimaculata sp. nov. exhibit considerable variability across many character states, such as coloration, especially within Morph-2 (Fig. 9).

We identified four anomalies that are worth reporting. Occasionally, individuals of Morph-1 were found with reddish coloration of the gnathosoma and surrounding sclerites (Fig. 26A). Although size and shape of the dorsal spots varied considerably, two extremes were identified: 1) spots enlarged so much so that the posterior spots merged into a contiguous U-shape, only found in Morph-1 males (Fig. 26B); and 2) spots so much reduced that the posterior spots were merely comma-shaped, found in both sexes of Morph-2 (Fig. 26C). Finally, one
FIGURE 26: Torrenticola trimaculata n. sp. abnormalities (males depicted; A-C are slide preparations with separated gnathosoma, dorsum, and venter; D-E are LT-SEM): A – red color of gnathosoma and surrounding venter, only occurs in Morph 1; B – posterior spots fused, only occurs in Morph 1; C – posterior spots strongly reduced, only occurs in Morph 2; D – left anterio-medial platelets stunted; E – close-up of D depicting eye capsule (ec), anterio-medial platelet (e-m p), and dorsal glandularia 2 (Dgl-2).
individual had an under-developed anterio-medial platelet (Fig. 26D-E).

Samples often contained at least a few mites with epibionts. Several suctorian ciliates (Ciliophora: Suctorea) are known epibionts on aquatic arthropods, including mites (Dovgal and Pešić 2007, 2012, Dovgal et al. 2008), and our samples occasionally contained small numbers of mites covered in unidentified suctorians. Additionally, unidentified bacteria were surprisingly abundant on the integument surface, especially within depressions (Fig. 22B-D, 27C).

Commonly, mites were covered with epiphytic diatoms identified by Andy Alverson, a diatom specialist at the University of Arkansas, as *Cocconeis placenta* Ehrenberg, 1838 (Fig. 27A-B). *Cocconeis* are common epibionts well-known for adhering to plants and algae (e.g., Sand-Jensen 1977, Ferreira and Seeliger 1985, Hardwick et al. 1992, Siqueiros-Beltrones et al. 2002). However, few records exist of these diatoms adhering to animals; but see Siqueiros-Beltrones et al. (2001) for a record of *C. notata* Petit, 1877 living inside the body of a hydrozoan that itself was epizooic on giant kelp, *Macrocystis pyrifera* (L.) CA Agardh. The present report represents the first record of *C. placenta* as epiphytic on water mites.

Type series — HOLOTYPE (♀): USA, Arkansas, Madison Co., Withrow Springs State Park, War Eagle Creek (36°8’59.3” N, 93°44’26.94” W), 27 Jul 2011, by IM Smith, IMS110034.
ALLOTYPE (♂): USA, Arkansas, Madison County, Withrow Springs State Park, War Eagle Creek (36°8’59.3” N, 93°44’26.94” W), 27 Jul 2011, by IM Smith, IMS110034.

PARATYPES (48♀; 36♂): Arkansas, USA: 2♀ and 3♂ from Madison County, Withrow Springs State Park, War Eagle Creek (36°8’59.3” N, 93°44’26.94” W), 27 Jul 2011, by IM Smith, IMS110034 • 1♀from Marion County, Crooked Creek ex. Northern hog sucker (Hypentelium nigricans) (36°15’9.9” N, 94°26’25.8” W), 27 Jul 2011, by AJ Radwell and HW Robison, AJR070300A • 8♀ and 5♂ from Montgomery County, Ouachita National Forest, South Fork of Ouachita River, 29 Jul 2011, by AJ Radwell and B Crump, AJR110302 • 2♀ and 1♂ from Montgomery County, Ouachita National Forest, Ouachita River, 27 Aug 2011, by AJ Radwell, AJR110307 • 4♀ and 4♂ from Montgomery County, Ouachita National Forest, South Fork of Ouachita River, 29 Jul 2011, by IM Smith, IMS110040 • 1♂ from Montgomery County, Caddo River, 29 Jul 2011, by IM Smith, IMS110037 • 1♂ from Newton County, Ozark National Forest, Mill Creek (36°3’42.12” N, 93°8’7.62” W), 20 Jun 2012, by TD Edwards, TDE 12-0620-010 • 2♀ and 2♂ from Newton County, Ozark National Forest, Little Buffalo River, 2 Sep 2012, by TD Edwards, TDE 12-0902-003 • 1♂ from Newton County, Buffalo National River, Whiteley Creek (35°59’28.14” N, 93°25’37.24” W), 23 May 2012, by TD Edwards, TDE 12-0523-002 • Illinois, USA: 2♀ and 1♂ from Union County, Clear Creek (37°33’ N, 89°23’ W), 13 Sep 1991, by IM Smith, IMS910036A • Indiana, USA: 1♀ from Wayne County (39°51’13” N, 85°8’4” W), 24 Jul 2014, by MJ Skvarla, MS 14-0731-001 • Georgia, USA: 1♀ from Chattooga County, Johns Creek (34°34’ N, 84°5’ W), 4 Jul 1990, by IM Smith, IMS900076 • Kentucky, USA: 1♀ and 2♂ from McCreary County, Rock Creek (36°42’ N, 84°36’ W), 8 Jul 1990, by IM Smith, IMS900082B • Michigan, USA: 2♀ and 2♂ from Barry County, Thornapple River (42°39’ N, 85°17’ W), 29 Jul 1959, by DR Cook, DRC590034 • Missouri, USA: 2♀ and 1♂ from Crawford County, Huzzah Creek, 23 Jul 2011, by IM Smith, IMS110029 • New York, USA: 3♀ and 1♂ from St. Lawrence County, Canton (44°35’ N, 75°10’ W), 15 May 1986, by BP Smith, BPS860508 • 1♂ from USA, New York, Delaware Co., Roscoe (41°55’ N, 74°54’ W), 11 June 1988, by PW Schelter and R MacCulloch, IMS880110 • Nova Scotia, Canada: 1♂ from Victoria County, Baddeck River (44°52’ N, 61°5’ W), 18 Jul 1981, by IM Smith, IMS810082 • Ontario, Canada: 4♀ and 2♂ from Grey County, Saugeen River (44°10’ N, 80°49’ W), 9 Jun 1989, by IM Smith, IMS890028A • 1♀ from Madoc (44°30’ N, 77°28’ W), 4 May 1980, by IM Smith, IMS800033A • 1♂ from Renfew County, Madawaska River (45°21’ N, 76°40’ W), 25 May 1980, by IM Smith, IMS800012 • 1♀ and 1♂ from Lanark County, Mississippi River (45°3’ N, 76°23’ W), 6 Oct 1983, by IM Smith and CJ Hill, IMS830093A • Virginia, USA: 1♀ and 1♂ from Scott County, North Fork of Holston River (36°39’ N, 82°28’ W), 7 Jul 1990, by IM Smith, IMS900080 • 2♀ and 4♂ from Allegany County, Potts Creek (37°44’ N, 80°2’ W), 13 Jul 1990, by IM Smith, IMS900091B • 1♀ and 1♂ from Bath County, Jackson River (38°8’ N, 79°46’ W), 16 Jul 1990, by IM Smith, IMS900100 • West Virginia, USA: 2♂ from Pendleton County, North Fork of South Branch of Potomac River (39°0’ N, 79°22’ W), 17 Jul 1990, by IM Smith, IMS900104.

Type deposition — Holotype (♂), allotype (♀), and 50 (30♀; 20♂) paratypes deposited at the CNC; 4♀ and 4♂ paratypes deposited at the ACUA; 4♀ and 4♂ paratypes deposited at the OSUAC; 4♂ and 4♂ paratypes deposited at the GMNH. The holotype and allotype are slide mounted in Hoyer’s medium; paratypes are a mixture of Hoyer’s and glycerin jelly slide mounts.

ACKNOWLEDGEMENTS

We thank Ian Smith (CNC) for his expertise throughout the project and helpful comments reviewing the manuscript; Andy Alverson (University of Arkansas) for identifying the epiphytic diatoms; Reinhard Gerecke for helpful discussions of taxonomic history; USDA for use of LT-SEM; CNC for slide material; and our friends and families that support us all. This material is based upon work...
supported by the National Science Foundation under Grant No. DEB 1134868. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA; USDA is an equal opportunity provider and employer.

REFERENCES

Di Sabatino A., Gerecke R., Cicolani B. 1992 — The water mites of the family Torrenticolidae Piersig, 1902 (Acari, Actinedida) in springs and running waters of
Sicily (South Italy) — Archiv für Hydrobiologie, Supplement 90: 253-282.

Dovgal I.V., Pešić V. 2012 — Suctorian ciliates (Ciliophora, Suctorea) as epibionts of stream-dwelling aquatic beetles (Coleoptera) and water mites (Acari: Hydrachnida) in the southwestern Palaearctic region — Zootaxa 3166: 34-40.

Enami M. 1940 — Water mites from Izu, I. Rheophilous water-mites from River Inozawa — Scientific Reports of the Tohoku Imperial University, Series IV, Biology 15: 203-259.

doi:10.1515/botm.1985.28.6.245

doi:10.1046/j.1096-3642.06-0.00051.x

doi:10.1080/01647950902980286

Halbert J.N. 1944 — List of Irish fresh-water mites — Proceedings of the Royal Irish Academy, Section B: Biological, Geological, and Chemical Science 50: 39-104.

Neuman C.J. 1880 — Om Sveriges Hydrachnider — Svenska Vetenskapsakademiens Handlingar (N.F.), 1879, 17: 1-123.

Pešić V. 2014 — Checklist of the water mites (Acari, Hydrachnida) of Korea, with description of one new subgenus and two new species — Ecologica Montenegro 1: 204-230.

Fisher J.R. et al.

Smith I.M. 1982 — Larvae of water mites of the genera of the superfamily Lebertioidea (Prostigmata: Parasitengona) in North America with comments on phylogeny and higher classification of the superfamily — Canadian Entomologist 114: 901-990.
Smith I.M. 1982 — Larvae of water mites of the genera of the superfamily Lebertioidea (Prostigmata: Parasitengona) in North America with comments on phylogeny and higher classification of the superfamily — Canadian Entomologist 114: 901-990.
do:10.1093/nar/25.24.4876
Thor S. 1900 — Prodromus Systematis Hydrachidarum — Nyt Magazin for Naturvidenskaberne, Kristiania 38: 263-266.
Thor S. 1923 — Nene acarinassamling vom Wolgadistrikty, welche im grundwasser der Wolva und einiger ihrer Nebenflüsse vom Direktor der Biologischen Wolgastation Dr. A. Behning gesammelt wurd — Raboty Volzhsko-biologicheskoj stantsii 7: 44-57.
Thor S. 1900 — Prodromus Systematis Hydrachidarum — Nyt Magazin for Naturvidenskaberne, Kristiania 38: 263-266.
Thor S. 1923 — Nene acarinassamling vom Wolgadistrikty, welche im grundwasser der Wolva und einiger ihrer Nebenflüsse vom Direktor der Biologischen Wolgastation Dr. A. Behning gesammelt wurd — Raboty Volzhsko-biologicheskoj stantsii 7: 44-57.
Fisher J.R. et al.

doi:10.1002/iroh.19080010304

doi:10.1080/00222939700770671

COPYRIGHT

(C) Fisher J.R. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.