Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions:
Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
CALIGONELLA SABOORII N. SP. (ACARI: TROMBIDIFORMES: CALIGONELLIDAE) FROM WESTERN IRAN

Mohammad Ahmad Hoseini, Mohammad Khanjani* and Saeid Javadi Khederi

(Received 17 September 2014; accepted 14 October 2014; published online 19 December 2014)

Department of Plant Protection, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran. maahmadhoseini@yahoo.com, mkhanjani@gmail.com, javadis84@gmail.com (* Corresponding author)

ABSTRACT — A new species of the genus Caligonella Berlese, 1910 (Acari: Trombidiformes: Caligonellidae), C. saboorii n. sp. is described and illustrated. This new species was collected from soil and litter under a walnut tree, Juglans regia L. (Juglandaceae) in Khorramabad, Lorestan Province, Southwestern Iran. A key to all known species of the genus Caligonella is provided.

KEYWORDS — predatory mite; free-living; walnut tree; Khorramabad

INTRODUCTION

The family Caligonellidae was erected by Grandjean (1944) based on genus Caligonella, with C. humilis (Koch, 1838) as type species. Members of this family are small, reddish in life, free-living and can feed on small arthropods. They are often found in various habitats such as soil, leaf litter and bark of trees, moss, storehouses and bird nests (Summers and Schlinger 1955; Meyer and Ueckermann 1989; Fan 2000; Doğan 2003; Ahaniazad and Bagheri 2012; Akyol and Koç 2012). This family currently comprises five genera, of which the genus Caligonella currently contains 9 known species namely: C. humilis (Germany), C. afroensis (Meyer and Ueckermann 1989) (South Africa), C. claviparma (Meyer and Ueckermann 1989) (South Africa), C. scutovata (Meyer and Ueckermann 1989) (South Africa), C. geonoma (Meyer and Ueckermann 1989) (South Africa), C. tunxiensis (Hu and Hu 1997) (China), C. venusta (Khaustov and Kuznetsov 1997) (Ukraine), C. tunica Fan 2000 (China), C. haddadi Bagheria et al. 2013 (Iran). In this study a tenth species of the genus is described.

MATERIALS AND METHODS

The specimens were collected from soil and litter under Walnut tree, Juglans regia L. (Juglandaceae), in Khorramabad vicinity (Lorestan province), Southwestern Iran. The mites were mounted directly in Hoyer’s medium on microscopic slides. The slides were dried at 50°C in an oven, sealed with nail polish and examined under an Olympus BX51 Differential Interference Contrast microscope (DIC). Drawings were made with a camera lucida. The terminology, the setal notations and leg chaetotaxy used in the description of the new species follow that of Kethley (1990). All measurements are in micrometers. The measurements
of the holotype are followed by the variations in the paratypes. A key to species of the genus *Caligonella*, based on females is provided.

Family *Caligonellidae* Grandjean, 1944
Genus *Caligonella* Berlese 1910
Type species — *Caligonella humilis* (Koch, 1838) = *Stigmaeus humilis* Koch, 1838

Genus. Diagnosis — Relatively small, soft-bodied mites, dorsal shields absent or present, with two pairs of eyes. Stylophore bullet-shaped; fixed digits (spinae) undeveloped, at least not present as slender, spinous processes; peritremata arise on anterior tip of stylophore, terminate on its dorsal surface. Palpus stubby, total length not exceeding that of femur I. Claw small in relation to palp tibia (Summers and Schlinger 1955).

Key to species of the genus *Caligonella* (Females).

1. Dorsal shield present .. 2
 — Dorsal shield absent .. 3

2. Anal covers with one pair of setae ... *C. scutovata*
 — Anal covers with two pairs of setae 4

3. Anal covers with three pairs of setae ... *C. venusta*
 — Anal covers with one pair of setae 5

4. Genu II with a solenidion *C. tunica*
 — Genu II without a solenidion 6

5. Solenidia on tibia I equal in length *C. geonoma*
 — Outer solenidion on tibia I longer than inner solenidion .. 7

6. Venter of idiosoma with shield between coxae *C. afroensis*
 — Venter of idiosoma without shield between coxae .. 8

7. Outer solenidion on tibia I two times longer than inner solenidion .. 9
 — Outer solenidion on tibia I more than two times longer than inner solenidion 10

8. Solenidion on tarsus I longer than outer solenidion on tibia I and two times longer than the solenidion on tarsus II *C. humilis*
 — Solenidia on tarsus I- II and outer solenidion on tibia I are equal in length *C. saboorii* n. sp.

9. Outer solenidion on tibia I three times longer than inner solenidion, Solenidia on tarsus I and tarsi II subequal in length *C. hadadi*
 — Outer solenidion on tibia I four times longer than inner solenidion, Solenidion on tarsus I obviously longer than solenidion on tarsus II *C. tunxiensis*

Caligonella saboorii n. sp.
Ahmad Hoseini and Khanjani
(Figs. 1 - 2)

Diagnosis — Dorsal and venter of idiosoma without shield; outer solenidion on tibia I two times longer than inner one; solenidia on tarsi I and II and outer solenidion on tibia I are equal in length; dorsum with three pairs of cupules.

Female (n = 4) — Measurements of holotype: total length of body (including gnathosoma) 420 (400 – 415), length of body (excluding gnathosoma) 315 (305 – 320), width 180 (170 – 185).

Dorsum (Fig. 1a) — Dorsal integument entirely with simple striations, prodorsum without shield and with 11 pairs of subequal setae; one pair of eyes and a pair of post ocular bodies (Pob) present laterally between setae sci and sce. Integument with three pairs of dorsolaterally cupules, ina located behind post ocular bodies, ina antero-lateral to setae d1 and ip posterolateral to setae f1, anal opening posteriorly, with one pair of pseudanal setae (ps1). All dorsal setae are simple, length of dorsal setae as follows: vi 20 (18 – 20), ve 26 (24 – 25), sci 22 (20 – 22), sce 20 (19 – 21), c1 20 (18 – 21), c2 20 (19 – 20), d1 18 (19 – 20), e1 18 (17 – 18), f1 = h1 = h2 18 (17 – 18); distances between dorsal setae: vi–vi 27 (24 – 28), ve–ve 120 (116 – 125), vi–ve 63 (58 – 65), sci–sci 49 (48 – 53), sce–sce 175 (155 – 180), sci–sce 85 (80 – 87), ve–sci 34 (27 – 36), c1–c1 35 (29 – 32), cl–c2 50 (46 – 52), c2–c2
FIGURE 1: Caligonella saboorii n. sp. (Female): a – Dorsal view, b – Gnathosoma, c – Peritreme, d – Ventral view.
FIGURE 2: Caligonella saboorii n. sp. (Female): a – Leg I, b – Leg II, c – Leg III, d – Leg IV.
124 (117 – 127), c1–I 52 (47 – 54), d1–d1 50 (52 – 55),
d1–e 40 (37 – 40), e1–e1 75 (68 – 74), f1–f1 50 (43 – 51),
f1–f1 63 (57 – 68), f1–h1 30 (28 – 30), f1–h2 31 (28 – 32),
h1–h1 24 (21 – 23), h1–h2 29 (27 – 30), h–h2 52 (43 – 47). The ratio of dorsal setae as follows: vi/vi–vi
0.74 (0.75 – 0.89), c1/c1–c1 0.57 (0.62 – 0.65), d1/d1–d1
0.36 (0.36 – 0.36), c1/e1–c1 0.24 (0.22 – 0.25), f1/f1–f1
0.26 (0.25 – 0.29), h1/h1–h1 0.75 (0.73 – 0.80), h2/h2–
h2 0.35 (0.38 – 0.39), h1/h2 1.00 (0.94 – 1.00), c1–c1:
d1–d1: c1–c1: f1–f1: (0.47 – 0.55): (0.79 – 0.91): (1.08 –
1.19): (1.00).

Gnathosoma (Figs. 1b–c) — Chelicerae with proximal components completely fused in midline, forming bullet-shaped stylophore; peritremes confined to dorsal surface of stylophore, with 24–26 chambers on each side (Fig. 3). Palpi five segmented, palp tarsus distally with four eupatidia + one solenidion (4 – 5) long + three setae, palp tibia with three setae and one small claw (6 (5 – 6); palp
genu and palp femur each with one seta (Fig. 2). Subcapitular setae m 35 (34 – 36), n 13 (13 – 15) long,
adoral setae or110 (9 – 10), or2 11 (9 – 10); m–m 30
(28 – 35), n–n 12 (12 – 14) and m–n 18 (18 – 20), or1–
or1 20 (19 – 20), or2–or2 18 (20 – 21), or1–or2 8 (7 – 9)
(Fig. 2).

Venter (Fig. 1d) — Ventral surface striated and three pairs of simple setae present, Isl located on
coxae I but 3a and 4a located on integument, genital
valves without setae, and aggental region with three pairs of setae (ag1–3), one pair of cupules (Iii)
located lateral to setae ag2 (Fig. 4). Length of ventral setae as follows: la 28 (30 – 31), Ib 25 (23 – 26), 1c
27 (24 – 26); 2c 19 (18 – 20), 3a 28 (28 – 29), 3b 20 (17
– 21), 4a 22 (20 – 21), 4b 21 (20 – 22), ag1 22 (21 – 24),
ag2 16 (17 – 18), ag3 14 (13 – 15). Distances: ag1–ag1
60 (55 – 63), ag2–ag2 32 (28 – 31), ag3–ag3 43 (38 –
45), ag1–ag2 65 (63 – 68), ag2–ag3 29 (30 – 32). Anal
valves in dorsal position and with one pair of setae
ps1 15 (14 – 16).

Legs (Figs. 2) — Leg measurements are from coxa to pretarsus; leg I 280 (270 – 285); leg II 212
(210 – 215); leg III 220 (212 – 226), leg IV 253
(245 – 250); Setal formulae of leg segments as follows:
coxae 3-1-2-1; trochanters 1-1-1-1; femora 2-2-
2-2; genua 5+1κ–5-2-2; tibiae 5+1ϕ–1+1+ϕ–5-4-4; tarsi
15+1ω–11+1ω – 9 - 9 (Figs. 5-8). Outer solenidion of
tibia I (ϕρ) 11 (10 – 11) twice as long as inner solenidion (ϕ) 5 (4 – 5); solenidion on tarsus I 10 (10 – 11),
solenidion on tarsus II 10 (10 – 10).

Differential diagnosis — Caligonella saboorii n.
sp. resembles C. haddadi and C. humilis by having the same leg setal formulae but differs from C. had-
dadi by three main characters: (1) the length of dor-
sal setae in new species (17 – 26) longer than those
C. haddadi (14 – 17); (2) the outer solenidion of tibia
I two times as long as inner solenidion in C. sa-
boorii n. sp. instead of three times longer than inner
solenidion in C. haddadi; (3) the outer solenidion on
tibia I (10 – 11), solenidion on tarsus I (10 – 11) and
solenidion on tarsi II (10 – 10) are equal in length
in new species whereas outer solenidion on tibia I
(15 – 16), longer than solenidion on tarsus I (11 – 12)
and solenidion on tarsus II (10 – 10) in C. haddadi.
The new species shares with C. humilis the identi-
cal setal formulae of legs and one pair of pseudanal
setae but can readily be distinguished from the latter
by: (1) the length of dorsal setae in new species
(17 – 26) longer than those C. humilis (13); (2) the
outer solenidion on tibia I and solenidion on tarsus
I are equal in length versus outer solenidion on tibia
I shorter than solenidion on tarsus I in C. humilis;
(3) The solenidion on tarsus I and solenidion on tarsus
II are equal in length in the new species whereas
two times longer than on tarsus II in C. humilis.

Type materials — The holotype female and three
paratype females were collected from soil and litter
under Walnut tree, Juglans regia L. (Juglandaceae) in
Khorramabad vicinity Lorestan province (33°56'N,
48°39'E, a.s.l. 1703 m), 8 July, 2012, by Mohammad
Ahmad Hoseini. The holotype female and two paratype females are deposited in the Collection
of the Acerology Laboratory, University of Bu-
Ali Sina, Hamedan, Iran. One paratype female, will
be deposited in the mite Section of National Collection
of Arachnida, Plant Protection Research Instit-
te, Pretoria, South Africa.

Etymology — This species is named in honor
of Prof. Alireza Saboori, Department of Plant Pro-
tection, College of Agriculture, Tehran University,
Karaj, Iran.
REFERENCES

COPYRIGHT