Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:

http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia@supagro.inra.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
A NEW SPECIES OF MYRMOZERCON BERLESE (ACARI: MESOSTIGMATA: LAELAPIDAE) ASSOCIATED WITH ANT FROM IRAN

Esmaeil BABAEIANT1*, Omid JOHARCHI2 and Alireza SABOORT1

(Received 26 July 2013; accepted 30 September 2013; published online 19 December 2013)

1 Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran. (*Corresponding author) babaeian@ut.ac.ir, saboori@ut.ac.ir
2 Department of Plant Protection, Yazd Branch, Islamic Azad University, Yazd, Iran. Joharchi@iauyazd.ac.ir, j.omid2000@gmail.com

ABSTRACT — Myrmozercon sternalis n. sp., a new laelapid mite (Acari: Mesostigmata) is described and illustrated based on females collected in the nest of Formica sp. (Hymenoptera: Formicidae) in Karaj region, Iran. The new species differs from almost all other species in the genus by very elongate peritreme, distinctive and horse-shoe like of the sternal shield and also edentate cheliceral digits. The ecological role of Myrmozercon is not clear, but may be parasites of ants.

KEYWORDS — Myrmozercon; Laelapidae; Formica sp.; new species; taxonomy; Iran

INTRODUCTION

Mites of the family Laelapidae Berlese are cosmopolitan and have varying degrees of associations with both vertebrates and invertebrates (Evans and Till, 1966; Strong and Halliday, 1994; Lindquist et al., 2009). The family has not yet achieved a consistent genus-level classification. The genera Laelaspis Berlese, Holostaspis Kolenati and Gymnolaels Berlese are considered to be Myrmecophiles (Hunter, 1961; Bregetova, 1977; Joharchi et al., 2011). Others such as Myrmozercon Berlese, have a more ambiguous association with ants.

The genus Myrmozercon is reported from Europe, Australia, Africa, Middle East, Transcaucasia, North America and Central Asia. Berlese (1902) established the genus Myrmozercon and designated M. brevipes as its type species. Later, Berlese (1903, 1904), erected a second genus Myrmonyssus Berlese, and proposed two subgenera, namely Myrmonyssus and Laelaspulus Berlese. Rosario and Hunter (1988) and Shaw and Seeman (2009) synonymised Myrmonyssus and Laelaspulus with Myrmozercon.

The genus Myrmozercon belongs to a smaller group of genera of laelapid mites and at present has about 26 species (Baker and Strandtmann, 1948; Hunter and Hunter, 1963; Rosario and Hunter, 1988; Ueckermann and Loots, 1995; Walter, 2003; Shaw and Seeman, 2009; Joharchi et al., 2011; Trach and Khaustov, 2011; Ghafarian et al., 2013; Joharchi and Moradi, 2013).

During a survey to determine the diversity of laelapid species in Karaj region, in 2013, Myrmozercon sternalis n. sp. was found in the nest of Formica sp. The new species has raised the number of known species of this genus from Iran to five.
MATERIALS AND METHODS

Mites were extracted from samples using Berlese-Tullgren funnels, then cleared in Nesbitt’s fluid and finally mounted in Hoyer’s medium on microslides (Walter and Krantz, 2009). The line drawings and examinations of the specimens were performed with an Olympus BX51 phase contrast microscope equipped with a drawing tube. Measurements are presented in micrometers (µm) as follows: minimum-maximum. Dorsal shield length and width were taken from anterior to posterior margins along the midline, and in broadest width point, respectively. Length and width of the sternal shield were measured from the most anterior point to the most posterior point and at the broadest point, respectively. Genital shield length and width were measured along the midline from posterior margin of the sternal shield to the posterior acute margin, and at level of setae st5, respectively. Anal shield was measured along the midline from anterior to the posterior margin of cribrum (which is often folded under), and the width at widest point. Peritreme length was measured from the base of the stigma to the its end (post-stigmatal section). Leg lengths were measured from base of the coxa to the apex of tarsus without the pretarsus. Total cheliceral length was taken from its base to the apex of the movable digit. Fixed and movable cheliceral digits length were taken from the base of movable digit to their each tips. Idiosomal setal notation followed that of Lindquist and Evans (1965) and leg and palp chaetotaxy follows that of Evans (1963 a,b). Idiosomal notation for glands and lyrifissures follows Johnston and Moraza (1991).

The holotype and two paratypes are preserved as permanent slides and deposited in the Acarological Collection, Jalal Afshar Zoological Museum, Faculty of Agriculture, University of Tehran, Karaj, Iran (JAZM), two paratypes in the Acarological Collection, Acarological Society of Iran, Faculty of Agriculture, University of Tehran, Karaj, Iran, two paratypes in the Australian National Insect Collection, CSIRO Ecosystem Sciences, Canberra ACT, Australia (ANIC).

Genus Myrmozercon Berlese

Myrmozercon Berlese, 1902: 699. Type species Myrmozercon brevipes Berlese, 1902, by monotypy.

Myrmonyssus Berlese, 1903: 16. Type species Myrmonyssus diplogenius Berlese, 1903, designated by Berlese, 1904 (synonymy by Rosario and Hunter, 1988).

Myrmonyssus (Laelaspulus) Berlese, 1904: 437. Type species Myrmozercon acuminatus Berlese, 1903, by original designation (syonymy by Shaw and Seeman, 2009).

Diagnosis — The diagnosis of Myrmozercon used here is based on that of Shaw and Seeman (2009) and Joharchi and Moradi (2013).

Myrmozercon sternalis n. sp. (Figures 1 – 3)

Specimens examined — Holotype, female, Iran, Karaj, Najm Abad, 35°52’ N, 50°30’ E, alt. 1124 m a.s.l., 9 March 2013, E. Babaeian coll., in the nest of Formica sp.. Paratypes, seven females, same data as holotype.

Diagnosis — Mellitiphine laelapid mites. Dorsal shield oval shaped, truncated posteriorly and does not completely cover idiosoma, with 38 pairs of setae and one unpaired setae, all setae (excluding j1) long and barbed; sternal shield deeply concave anteriorly, horse-shoe like and free of narrow endopodal shields; genital shield narrow posteriorly; peritremes long, fixed and movable digits without teeth; epistome with serrate anterior margin and femur IV with five setae.

Description — Female

Dorsal idiosoma (Figure 1A) — Length 626 – 653, dorsal shield length 596 – 619, width 450 – 505 (n = 6), oval, truncate at posterior region and not covering entire idiosoma, with reticula pattern on the whole surface, with complement of 38 pairs of setae, and one unpaired postero-median (Jx): 21 pairs (j1-j6, z1-z6, s1-s5, r2-r5) in podonotum and 17 pairs (J1- J5, Z1- Z5, S1- S5, Zx2-Zx3) in opistontonum and
FIGURE 1: *Myrmozercon sternalis* n. sp.: A – dorsal shield; B – detail of a dorsal seta, not to scale; C – epistome; D – subcapitulum; E – palp.
one additional unpaired setae between J2- J3; three pairs of R setae in soft skin posterior to shield, all setae long, thickened and barbed apically (Figure 1B), posterior setae longer than anterior ones and extending well behind the base of next posterior seta. Shield with 21 pairs of pore-like structures, apparently including six pairs of gland pores and 15 pairs of poroids; posterior setigium with a pair of lyrifissures, lyrifissures near the base of J1 large and slit-like, others smaller and ovoid.

Ventral idiosoma (Figure 2A) — Tritosternal base narrow 27 – 37 long, and with pilose paired lacinia 67 – 79 (Figure 2C); presternal platelets absent, sternal shield 25 long along midline, with a few lines, distance between the most anterior point to the most posterior point 176 – 183, 200 – 208 width at widest point, and fused with endopodal extension between coxae I-II and II-III; with strongly concave anterior margin, bearing setae s1-st3 smooth, thin and 50 – 54, 47 – 56, 45 – 50 long respectively, with two pairs of lyrifissures, oriented obliquely; st4 50 – 52 and third pair of lyrifissure on soft cuticle. Endopodal plates beside coxae III and IV, narrow and separate from sternal shield. Narrow exopodal plates enclosing coxa IV posteriorly, go2 in soft cuticle and small parapodal plate between coxa II-III (not illustrated). Genital shield with conspicuous reticulation, 262 – 277 long and 131-141 wide (along midline and at level of st5 respectively, with hyaline and lineate anterior margin, tapered toward the apex and pointed posteriorly, with eight longitudinal cells in the central area bordered by two lines forming an inverted-V, bearing st5 45 – 57 on lateral edges, greatest width a little behind st5, lyrifissure iv5 located on soft cuticle anteromedial to exopodal shield. Metapodal shields narrow, 34 – 40 long and 6 – 8 wide, two small paragenital platelets beside seta Zv1. Opisthogaster with five pairs of lyrifissures and 11 pairs of heterogeneous setae, each seta arising on small and rounded platelet, Zv1 and Jv2 are smooth setae, remaining setae barbed distally. Anal shield sub-triangular and straight anteriorly, 134 – 144 long and 84 – 92 wide, ornament with faint striations in pre-anal region, post-anal seta 74 – 79 thickened, about two times longer than para-anal setae 34 – 45, adanal gland pores gv3 on lateral edges of the shield, near posterior margin of anus, cibrum narrow and inserted on posterior margin, anus large and anterior to flanking para-anal setae. Peritremes long, narrow, 309 – 349 long, extending from stigmata at mid-level of coxae III-IV, extending to level of z1, peritrematal plates smooth, free posteriorly and fused to dorsal shield near s1, bearing three pairs of gland pores gp and three pairs of lyrifissures iv, post-stigmatal section elongate, 55 – 73 long, bearing gland pore gp3 and two ip (Figure 2B).

Gnathosoma (Figures 1C-E, 2D) — Epistome triangular, with denticulate anterior margin (Figure 1E). Subcapitulum (Figure 1D): hypostomal (hp1, hp2, hp3) and capitular setae simple, smooth, 15 – 18, 13 – 17, 42 – 47 and 27 – 32 long, respectively; deutosternal groove with seven rows of denticles, rows progressively widened from the base to the end, preceded anteriorly by a smooth ridge; internal maleae slender, abutting and pointed apically, finely fringed, extending beyond anterior margin of corniculi; external maleae with nine or eleven points; labrum slender, with pilose surface. Corniculi short, membranose and bilobed at tip, 22 – 27 long. Salivary stili thin, distinct and slightly thicker basally. Chelicerae (Figure 2D) with middle segment 99 – 114 long ending in fixed digit 30 – 32, with movable digit edentate, 37 long from base to tip, with fringed arthrodial corona; fixed digit edentate, with only a large, blunt tooth near its base, 32 long, total length 166 – 173; pilus dentilis absent; dorsal seta smooth, posteriord dorsal lyrifissure; antialyx lyrifissure long. Palpi (Figure 1E) 140 – 156 long, with normal setation (2-5-6-14-15); palptarsal apotele two-tined, ventral tine slightly shorter than dorsal tine (Figure 1E); palp trochanter with lateral seta longer, 1.6 times longer than the other seta on the segment; palp genu seta al1 thickened, al2 thickened and apically trifurcate (Figure 1E).

Legs — Legs I-IV (Figures 3A-D) with well developed claws and pulvilli; all setae smooth. Leg I very elongate, 705 – 668 long, legs II-IV 438 – 465, 448 – 455 and 606 – 629 long, respectively. Setation of legs: Leg I: coxa 0/1 0/1 0, trochanter 1/0 2/1 1 (pd1 thickened), femur 2/3/1 2/1 2 (ad3 thin, al1 thickened), genu 2 3/2 3/1 2, tibia 2 3/2 3/1 2 (Fig-
FIGURE 2: Myrmoceron sternalis n. sp.: A – ventral shield; B – detail of peritrematal plate; C – tritosternum; D – chelicera.
FIGURE 3: Myrmozercon sternalis n. sp.: A – leg I, dorsal aspect; B – leg II, dorsal aspect; C – leg III, dorsal aspect; D – leg IV, dorsal aspect.

ure 3A). Leg II: coxa 0 0/1 0/1 0, trochanter 1 1/0 0/2 1, femur 2 3/1 2/1 1 (ad1 thickened, pd2 slightly thickened), genu 2 3/1 2/1 2 (av and pv slightly thickened), tibia 2 2/1 2/1 2 (av and pv slightly thickened) (Figure 3B). Leg III: coxa 0 0/1 0/1 0, trochanter 1 1/1 0/1 1 (al and ad thickened), femur 1 2/1 1/0 1 (al slightly thickened, ad1 thickened), genu 2 2/1 2/1 1 (av and pv slightly thickened), tibia 2 1/1 2/1 1 (av and pv slightly thickened) (Figure 3C). Leg IV: coxa 0 0/1 0/0 0, trochanter 1 1/1 1/0 1 (al slightly thickened, ad thickened), femur 1 1/0 0/1 0 (al, ad and av slightly thickened), genu 2 2/1 3/0 1 (av thickened), tibia 2 1/1 3/1 1 (av and pv slightly thickened) (Figure 3D). Tarsi II-IV with 18 setae (3 3/2 3/2 3) + mv, md.

Etymology — The name of the new species “sternalis” is derived from the distinctive shape of the sternal shield.

Notes — According to the key to species of Myrmozercon occurring in the Palaearctic Region presented by Joharchi and Moradi (2013), Myrmozercon sternalis n. sp. runs to Myrmozercon michaeli Joharchi, 2013 (dorsal shield hypotrichous and truncated, peritreme long, femur I with less than four ventral setae (including two ventral setae), metasternal setae st4 present and almost all dorsal setae barbed in apical end). However, M. sternalis n. sp. differs from M. michaeli and other similar congeners by following combination of characters: (1) sternal shield deeply concave anteromedially and horse-shoe like; (2) dorsal shield setae thickened and elongated; (3) movable and
fixed digits completely edentate; (4) femur I with two ventral setae; (5) peritreme very long; (6) femur and genu IV each with five and nine setae, respectively.

DISCUSSION

Before the start of present study, five species of *Myrmozercon* had been recorded from Iran, *Myrmozercon crinitus* Joharchi, 2013 associated with *Pheidole pal tidula* (Nylander), *M. cyrusi* Ghafarian and Joharchi, 2013 associated with *Monomorium* sp., *M. karajensis* Joharchi, Halliday and Saboori, 2011 associated with *Camponotus* sp., *M. michaeli* Joharchi, 2013 associated with *Messor* sp. and *Myrmozercon tauricus* Trach and Khaustov, 2011 associated with *Crematogaster schmidti* (Mayr) (Joharchi et al., 2011; Ghafarian et al., 2013; Joharchi and Moradi, 2013). Species of *Myrmozercon* have host-specificity and their distribution may be influenced by their host specificity. According to Joharchi and Moradi (2013), nine genera of ants have been reported as hosts in the world and among them *Crematogaster*, *Camponotus* and *Messor* are the most common respectively, however *M. sternalis* n. sp. has been collected in association with *Formica* sp. and this is the first record of this genus as the ant host.

The morphological diversity of the *Myrmozercon* offers considerable challenges to its classification.

All the species included into this genus share some characters: corniculi and cheliceral digits are very short, fixed digit reduced, leg chaetotaxy highly variable and deutosternal groove has at least seven rows of denticles. These features create a very heterogeneous genus with instability in several morphological characters: dorsal shield hypotrichous or hypertrichous; with free or fused sternal shield and endopodal plates between coxae III-IV; presence or absence of v2 on palp trochanter, chaetotaxy of some leg segments, short or long peritreme.

M. cyrusi, also lacks palp coxal setae and has similar chaetotaxy on genu I-IV that was not seen in other species of *Myrmozercon*. Species of the genus *Scissuralaelaps* Womersley and some Haemogamasiidae, such as *Haemogamus pontiger* (Berlese) have reduced sternal shield. Little is known about the association between *Myrmozercon* and ants, but instability in character states within the genus might suggest that *Myrmozercon* is not simply a commensal in its host’s nests and has more intimate relationship such as parasitism or kleptoparasitism, but this has not been studied experimentally.

ACKNOWLEDGEMENTS

We wish to express our appreciation to Dr. Bruce Halliday (CSIRO Entomology, Canberra, Australia) for sending us some important papers for the present work, and to the anonymous reviewers for their valuable comments.

REFERENCES

COPYRIGHT

Babaeian E. *et al.* Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.