Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
TWO NEW EYELESS MITE SPECIES FROM THE WESTERN PROVINCES OF IRAN:
STIGMAEUS LADANAE N. SP. AND STIGMAEUS NASRINAEE N. SP.
(ACARI: STIGMAEIDAE)

Alireza NAZARI1, Mohammad KHANJANI2 and Karim KAMALI1

(Received 29 February 2012; accepted 27 March 2012; published online 22 June 2012)

1 Department of Entomology, Science and Research Branch, Islamic Azad University, Tehran, Iran. nazariazad@yahoo.com, kamali_k@modarres.ac.ir
2 Department of Plant Protection, College of Agriculture, Bu-Ali Sina University, Hamedan, Iran. mkhanjani@gmail.com (Corresponding author)

ABSTRACT — Two new species of the genus Stigmaeus, S. ladanae n. sp., collected from soil under apple trees in Abbas Abad Hamedan, Hamedan province and S. nasrinae n. sp., collected from soil under Apera spica-venti (L.) (Poaceae) in Nahavand, Hamedan province, Iran, are described and illustrated.

KEYWORDS — Raphignathoidea; Walnut; first record; predatory mites; Iran

INTRODUCTION

The members of the family Stigmaeidae are found throughout the world and some of them can feed on the eggs and immature stages of spider mites, eriophyid mites and also immature stages of scale (White and Laing, 1977; Santos and Laing, 1985; Khanjani et al., 2010). They are found abundantly on the trees bark, on or in soil, grass, leaf, mulch, lichen, wood boring beetles, crevices in rock and leaf cavities, and a few of them are parasitic on phlebotomine flies (Dönel and Doğan, 2011). The family Stigmaeidae consists of 32 valid genera and about 500 species so far (Doğan et al., 2011). Fourteen species of the genus Stigmaeus have been reported from Iran, namely: S. alvandis Khanjani and Ueckermann, 2002; S. unicus Kuznezov, 1977; S. elongatus Berlese, 1886; S. candidus Fan and Li, 1993 (= S. mazandaranicus Faraji and Ueckermann, 2006); S. malekii Haddad et al., 2006; S. pilatus Kuznetzov, 1987; S. shabestariensis Haddad et al., 2010a; S. shendabadiensis Haddad et al., 2010b; S. boshroyehensis, Khanjani et al., 2010; S. marandiensis Bagheri et al., 2011; S. uckermanni Pahlavan Yali et al., 2011; S. longipilis Canestrini, 1889; S. planus Kuznetzov (Doğan et al., 2012), S. sphagneti (Hull, 1918): In this paper S. ladanae n. sp. and S. nasrinae n. sp. are described and illustrated from Iran.

MATERIALS AND METHODS

Mites were collected from soil beneath Apera spica-venti (L.) (Poaceae) in Nahavand, and soil under apple trees in Abbas Abad, Hamedan, Hamedan province and mounted directly in Hoyer’s medium (Krantz and Walter, 2009). The specimens were measured, identified and drawn by means of differential interference contrast microscopy 1000X mag-
FIGURE 1: Stigmaeus ladanae n. sp. (female): A – Dorsum; B – Venter; C – gnathosoma.
nification of an Olympus BX51. Body length measurements represent the distance between base of gnathosoma and end of idiosoma; width was measured above coxa III. Setae were measured from the setal base to the tip of the seta; distances between setae were measured between setal bases. Leg measurements are from coxa to pre tarsus.

The terminology and setal notations used in the descriptions of the new species follow those of Kethley (1990). All measurements are given in micrometers (μm) and the measurement of the paratypes is followed in brackets.

FAMILY STIGMAEIDAE OUDEMANS, 1931

Type genus: *Stigmaeus* Koch, 1836 *Stigmaeus* Koch, 1836

Type species: *Stigmaeus cruentus* Koch, 1836

Stigmaeus ladanae n. sp.

(Figs. 1-2)

Diagnosis — All dorsal, ventral and suranal shields reticulated, dorsum with 14 pairs of setae (*h*1 present), eyes and post ocular bodies absent, median hysterosomal shield with two setae (*c1*, *d1*), genital setae two pairs, agenital setae four pairs, genua 5(+1κ) - 5 - 2 - 2, propodosomal setae *ve/ve vi* 1.26 (1.29 - 1.35), ratio *c1/d1-ve*: 0.85 (0.54 - 0.80), *c1/c1-c1*: 0.52 (0.46 - 0.51); *c1-c1*: *d1-d1*: *e1-e1*: *f1-f1*: 0.87 (1 - 1.86): 0.89 (0.81 - 1.60): 0.79 (0.81 - 1.09): 1.0.

Material examined — Holotype female, collected from soil beneath apple trees, *Malus domestica* Borkh. (Rosaceae), Hamedan (34°46'48.13"N, 48°28'11.46"E and altitude 1930 m a.s.l), Hamedan Province, Iran, 8 June 2011, Alireza Nazari; 6 females paratypes with the same data. The holotype female and 5 paratypes females are deposited as slide-mounted specimens in the Collection of the Acarology Laboratory, University of Bu-Ali Sina, Hamadan, Iran and one paratype female will be deposited in the National Collection of Arachnida, Plant Protection Research, Pretoria, South Africa.

Female (*n* = 7) — Color in life red. Idiosoma oval. Measurements of holotype with measurements of paratypes in parentheses: Length of body (excluding gnathosoma) 420 (419 - 441), (including gnathosoma) 523 (510 - 548); width 206 (206 - 245); length of leg I 240 (218 - 242); leg II 188 (175 - 193); leg III 185 (153 - 190), leg IV 223 (208 - 246).

Dorsum (Fig. 1A) — Prodorsal shield oblong and reticulated; bearing three pairs of setae (*vi, ve, sci*), eyes and post ocular bodies absent; dorsal hysterosoma with 10 pairs of setae, almost smooth, four pairs of paired and three unpaired shields and surrounded with entire and reticulated (Fig. 1A). Setae *c2* situated laterally between coxae II-III. Setae *ve* almost as long as or slightly longer than setae *vi*, setae *sci* on lateral propodosomal shields, reticulated; lengths of dorsal setae: *vi* 23 (20 - 24), *ve* 29 (27 - 31), *sci* 28 (22 - 29), *sci* 30 (28 - 32), *c2* 25 (20 - 27), *c2* 41 (32 - 43), *d1* 19 (19 - 24), *d2* 21 (20 - 24), *e1* 22 (20 - 24), *e2* 21 (21 - 24), *f1* 30 (28 - 33), *h1* 32 (28 - 37), *h2* 40 (37 - 44); distances between dorsal setae: *vi-vi* 26 (25 - 44), *ve-ve* 50 (46 - 55), *vi-vi* 32 (25 - 34), *sci-sci* 85 (73 - 88), *sci-sci* 135 (131 - 152), *ve-sci* 47 (41 - 50), *sci-sci* 25 (18 - 34), *c1-c1* 46 (43 - 53), *c1-c2* 73 (57 - 89), *c2-c2* 191 (170 - 206), *c1-d1* 59 (48 - 64), *d1-d1* 47 (37 - 43), *d1-d2* 49 (44 - 56), *d1-e1* 68 (62 - 71), *d1-e2* 51 (48 - 69), *d2-e2* 73 (71 - 77), *d2-e2* 128 (118 - 151), *c1-e1* 42 (25 - 43), *c2-e2* 94 (87 - 121), *c1-e2* 33 (29 - 40), *e1-f1* 40 (30 - 42), *f1-f1* 53 (23 - 53), *f1-h1* 36 (32 - 45), *h1-h1* 33 (31 - 38), *f1-h2* 39 (36 - 43), *h2-h2* 71 (64 - 72), *h1-h2* 17 (15 - 21); ratio: *vi-vi/ve* 0.88 (0.54 - 0.80), *c1/c1-c1*: 0.52 (0.46 - 0.51), *d1/d1-d1*: 0.40 (0.51 - 0.55), *e1/e1-e1*: 0.55 (0.55 - 0.8), *f1/f1-f1*: 0.52 (0.62 - 1.21), *h1/h1-h1*: 0.96 (0.90 - 0.97), *h2/h2-h2*: 0.56 (0.57 - 0.61), *h1/h2* 0.80 (0.57 - 0.84), *c1-c1*: *d1-d1*: *e1-e1*: *f1-f1* 0.87(1 - 1.86): 0.89 (0.81 - 1.60): 0.79 (0.81 - 1.09): 1.0.

Venter (Fig. 1B) — Coxae I-IV and surrounded shields reticulated, coxisternal shields I-II and III-IV not fused in mid-line, longitudinal striae; cuticle transversely striate between coxisternal II-III; coxisternal shields I and III-IV surrounded by longitudinal striae (Fig. 1B). Length of setae *la* 24 (18 - 25), *lb* 22 (8 - 24), *lc* 29 (21 - 32), *lb* 34 (25 - 35), *lc* 37 (28 - 37), *la* 23 (18 - 25), *lb* 33 (18 - 24), *lc* 21 (17 - 24), *la* 21 (18 - 24), *lc* 18 (14 - 19) and *lb* 19 (14 - 20). Aggenital (*ag1, ag4*) setae *ag1* almost as long as *ag2, ag3*; and pseudanal seta *ps* less than two times longer than seta *ps*; measurements of setae: setae *ag1* 18 (14 - 21), *ag2* 18 (16 - 20), *ag3* 22 (17 - 23), *ag4*
Figure 2: Stigmaeus ladanae n. sp. (female): A - leg I; B - leg II; C - leg III; D - leg IV.

22 (19 – 26), g1 19 (16 – 20), g2 29 (19 – 31), ps1 52 (36 – 53), ps2 28 (19 – 28), ps3 44 (38 – 46). Distances: ag1-ag1 33 (25 – 33), ag2-ag2 35 (33 – 38), ag3-ag3 49 (47 – 53), ag4-ag4 46 (46 – 61).

Gnathosoma (Fig. 1C) — Subcapitulum reticulated and with two pairs of subcapitular setae, m 23 (19 – 25) and n 18 (14 – 21), two pairs of adoral setae, or1 7 (4 – 8), or2 9 (7 – 10); distances: or1-or1 7 (5 – 18), or2-or2 14 (11 – 16), m-m 31 (29 – 36), n-n 23

(23 – 25), or 1 – m 25 (22 – 27), m-n 6 (5 – 7) (Fig. 1C).

Chelicerae free 55 (50 – 63), movable digit 25(22 –
27) (Fig. 1C). Palpi five segmented, palp tarsus with
four simple setae + one simple eupathidium + one
solenidion (ω) + one tridentate eupathidium, palp
tibia with two setae + one well developed claw +
one accessory claw, palp genu with one setae and
palp femur with three setae.

Legs (Fig. 2) — Legs about half length of body.
Leg segments setal formulae as follows: coxae 2 - 2 -
2 - 2; trochanters 1 - 1 - 2 - 1; femora 4 - 4 - 3 - 2, genua
5+1κ - 5 - 2 - 2; tibiae 5+1φρ +1φ - 5+1φρ - 5+1φρ -
5+1φρ; tarsi 13 +1ω - 9 +1ω - 7 +1ω - 7 +1ω. Length
of solenidia: ωI 19 (16-20), ωII 17 (14-18), ωIII 10 (7
– 12), ωIV 8 (6 – 9).

Male — Unknown.

Remarks — *Stigmaeus ladanae* n. sp. is closely
similar *S. shabestariensis* Haddad, Lotfollahi and Ak-
bari, 2010 in having:

– setae l3,
– entire suranal shield,
– reticulated dorsal shields,
– the same legs chaetotaxy.

However, the new species differs in:

– lateral prodorsal shield reticulate in *S. ladanae*
instead of smooth in *S. shabestariensis*,

– subcapillulum faintly reticulated instead of
faintly punctate,

– dorsal setae smooth instead of serrated,

– lateral zonal shields unique instead of divided
in *S. shabestariensis*,

– base of setae ps1 reticulated instead of smooth
in *S. shabestariensis*,

– ratio c1/c1-c1 0.52 (0.46 – 0.51) and e1/e1-e1
0.5 (0.55 – 0.8) in *S. ladanae* opposed to 0.40
(0.20 – 0.40) and e1/e1-e1 0.34 (0.33 – 0.34) in
S. shabestariensis,

– coxal plates I-IV and legs segments reticu-
lated in the new species versus smooth in *S.
shabestariensis*,

– aggenital and anal shields reticulated instead
of smooth in *S. shabestariensis*,

– setae ps2 two times longer than ps1 instead
of as long as in *S. shabestariensis*. Also
this species resembles *Stigmaeus pulchellus*
Kuznetsov, 1987 and *S. alvandis* Khanjani and
Ueckermann, 2002 in having all dorsal and
ventral shields, and leg segments reticulated,
eyes absent, two pairs of median zonal shield;
however it differs from that: aggenital shields retic-
ulated, setae sce shorter than *S. pulchellus*, setae ps1
longer than h1, h2, h3 instead of as long as in *S. pul-
chellus* and also it differs from *S. alvandis* in that:

– the suranal shield entire whereas divided in *S.
alvandis*,

– femur IV with two setae opposed to one seta
in *S. alvandis*,

– setae ps1 longer than h1, h2, h3 instead of as
long as in *S. alvandis*.

Etymology — The new species is named in honor
of Mrs. Ladan Mohammadi, wife of senior author,
who kindly helped us in mite collection and who
is already post student (Agricultural Entomology),
Department of Plant Protection, College of Agricul-
ture, Bu-Ali Sina University, Hamedan, Iran.

Stigmaeus nasrinae n. sp.

(Figs. 3-4)

Diagnosis — Prodorsal area with a few reticula-
tions elements centrally, dorsum with 14 pairs of se-
tae (l3 present), eyes and post ocular bodies absent,
genital setae two pairs, aggenital setae four pairs,
genua 5 - 2 - o - 1, palp tarsi with one bifurcate eu-
pathidium, propodosomal setae ve/vi 3.2, ratio vi/vi-
vi 0.59, c1/c1-c1 0.30; d1/d1-d1 0.40; c1-c1: d1-d1: e1-e1:
f1-f1 1.06: 0.77: 0.89: 1.

Material examined — Holotype female, col-
lected from soil under *Apera spica-venti* (L.)
(Poaceae) in Nahavand, Hamedan province (31°14’N, 48°23’E, altitude 1070 m a.s.l.), Iran, 23 September 2011, by Nasrin Nazari. One female paratype with the same data. The holotype female is deposited as slide-mounted specimens in the Collection of the Acarology Laboratory, University of Bu-Ali Sina, Hamadan, Iran. One female paratype will be deposited in the National Collection of Arachnida, Plant Protection Research, Pretoria, South Africa.

Female ($n = 2$) — Color in life red. Idiosoma oval. Measurements of holotype: Length of body (excluding gnathosoma) 370 (374); width 197 (203); length of leg I 167 (165); leg II 138 (134); leg III 130 (132), leg IV 162 (164).

Dorsum (Fig. 3A) — Prodorsum with a few reticulations elements centrally; with three pairs of setae (vi, ve, sci), eyes and pob absent (Fig. 3A); dorsal hysterosoma covered with longitudinal striae, with nine pairs of setae, almost smooth and four pairs of paired shields (Fig. 3A). Setae c_2 situated ventrolaterally between coxae II-III. Setae c_3 (Fig. 3A); lengths of dorsal setae: vi 15 (17), ve 48 (49), sci 13 (16), sce 24 (21), c_1 16 (15), c_2 38 (39), d_1 15 (15), d_2 14 (14), c_1 15 (15), e_2 14 (15), f_1 17 (17), h_1 18 (18), h_2 27 (26), h_3 20 (21); distances between dorsal setae: vi-vi 27, ve-ve 35, vi-ve 15 (16), sci-sci 53, sce-sce 124, ve-sci 34 (32), c_1-sci 66 (64), c_2-sce 124 (127), c_1-c_1 51 (54), c_1-c_2 70 (53), c_2-c_2 172 (175), c_1-d_1 54 (57), d_1-d_1 37, d_1-d_2 49 (50), d_1-e_1 43 (44), d_1-e_2 63 (65), d_2-e_2 55 (57), d_2-d_2 141 (143), e_1-e_1 41 (44), e_2-e_2 128, e_1-e_2 43 (47), e_1-f_1 28 (28), f_1-f_1 48, f_1-h_1 47 (48), h_1-h_1 27, f_1-h_2 48 (46), h_2-h_2 40 (42); ratio: vi-vi-vi 0.59, c_1/c_1-c_1 0.30, d_1/d_1-d_1 0.40, e_1/c_1-c_1 0.36, f_1/f_1-f_1 0.35, h_1/h_1-h_1 0.66, h_2/h_2-h_2 0.67, h_1/h_2 0.66 (0.69), c_1-c_1: d_1-d_1: e_1-e_1: f_1-f_1 1.06: 0.77: 0.89: 1.

Venter (Fig. 3B) — Coxisternal I-II and III-IV present, smooth. Ventral cuticle transversely striate between coxisternal II-III; coxisternallae I-I and III-IV surrounded by longitudinal striae (Fig. 3B).

Length of setae: l_1 20 (19), l_2 18 (17), l_3 25 (26), l_4 39 (38), l_5 25 (29), l_6 21 (18), l_7 21 (23), l_8 17 (16), l_9 18 (16), l_{10} 10 (13) and l_{11} 4c 12 (13). Aggenital (ag_{1-4}) setae ag_1 as long as ag_{2-3}; and genital setae g_1 longer than g_1; pseudanal seta ps_3 almost one half length of setae ps_{1-2}; measurements of setae: ag_1 16 (15), ag_2 14 (13), ag_3 21 (23), ag_4 23 (24), g_1 14 (13), g_2 13 (12), ps_1 19 (18), ps_2 13 (15) ps_3 20 (17). Distances: ag_{1-4g1} 24, ag_{2-2g2} 32, ag_{3-3g3}, ag_{4-4g4} 36.

Gnathosoma (Figs. 3C, 3D). Subcapitulum with two pairs of subcapitular setae and smooth, m 19 (18) and n 19 (19); two pairs of adoral setae, or_1 5 (5), or_2 10 (9); distances: or_{1-ori} 8, or_{2-ori} 12, $m-m$ 22, $n-n$ 26, or_{3-ori} 33 (34), $m-n$ 7 (Fig. 3D). Chelicerae free 58 (60), movable digit 27 (27). Palpi five segmented, palp tarsus with five simple setae, one solenidion ($ω$) 5 (6), one bifurcate eupathidium, palp tibia with two setae + one well developed claw + one accessory claw, palp genu with one setae and palp femur with three setae (Fig. 3C).

Legs (Fig. 4) — Legs about half length of body. Setal formulae of leg segments as follows (specialized sensory setae such as solenidia, in parenthesis): coxae I 2 - 2 - 2 - 2; trochanters 1 - 1 - 2 - 1; femora I 4 - 4 - 3 - 2; genua 5 - 2 - 0 - 1; tibiae 5+1 ϕρ 0 - 1+1 ϕρ; 13 (1ω) - 8 (1ω) - 7 (1ω) - 7 (1ω).

Length of solenidia: $ω_1$ 10 (11), $ω_II$ 7 (6), $ω_{III}$ 4 (4), $ω_{IV}$ 4 (4).

Male — Unknown.

Remarks — Stigmaeus nasrinas n. sp. exhibits most features of the S. elongatus Berlese (in having a few reticulations elements in median prodorsal area, eyes absent, h_3 present, palp tibia with three setae. However the new species differs from the latter in: femora I-IV 4-4-3-2 in the new species instead of 6-6-3-2 in S. elongatus, genua 5-2-0-1 instead of 6-5-3-3 in S. elongatus, tarsi II with 8+1ω oppose to 6+1ω in S. elongates, suranal shield divided instead of entire, aggenital shields with four pairs of setae and two pairs of genital setae instead of five pairs and three pairs respectively in S. elongates. Also closely resembles S. caeculus Barilo in having the same legs chaetotaxy dorsal pattern, however differs from the latter by:

- suranal shield with three pairs of setae (h_1-h_3) in S. nasrinas instead of two pairs in S. caeculus,
FIGURE 3: *Stigmaeus nasriniae* n. sp. (female): A – Dorsum; B – Venter; C – Chelicerae; D – Subcapitulum and palp.
FIGURE 4: *Stigmaeus nasrinae* n. sp. (female): A – Leg I; B – Leg II; C – Leg III; D – Leg IV.

- *seta f₁* set on the platelet in the new species whereas on the soft integument *S. caeculus*,
- aggenital shields entire instead of divided,
- 27 (26) in the new species, 33 in *S. caeculus*.

Etymology — The species is named after Mrs. Nasrin Nazari, who kindly assisted senior author in mite collection.

ACKNOWLEDGEMENTS

The authors wish to thank Prof. Salih Doğan, Erzincan University, Arts and Sciences Faculty, Department of Biology, Erzincan, Turkey for his critical review of this manuscript and valuable comment, and suggestions.

REFERENCES

Khanjani M., Izadi H., Asali Fazay B., Raisi H., Rostami E., Doğan S. 2010 — *Stigmaeus boshroyensis* sp. nov. (Acari: Stigmaeidae) from eastern Iran, with re-description of *Stigmaeus pilatus* Kuznezov — Zootaxa, 2727: 34-44.

Pahlavan Yali M., Khanjani M., Razmjou J. 2011 — A new stigmaeid mite species from Iran (Acari: Stigmaeidae) and re-description of *Stigmaeus longipilis* (Canestrini) — Zootaxa., 3089: 60-68.

COPYRIGHT

Copyright © Nazari A. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.