Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2020 (Volume 60): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2018): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
A NEW GENUS AND SPECIES OF AMEROBELBIDAE (ACARI: ORIBATIDA) FROM VIETNAM

Sergey G. ERMILOV

Laboratory of Entomology, Phytosanitary Department, Nizhniy Novgorod Referral Center of the Federal Service for Veterinary and Phytosanitary Inspection, Nizhniy Novgorod, Russia. ermilovacari@yandex.ru

ABSTRACT — A new genus, *Roynortonia* n. gen., with its type species, *Roynortonia vietnamica* n. sp., belonging to the family Amerobelbidae, is proposed and described from dark loamy soil of *Lagerstroemia* forest of Cat Tien National Park (southern Vietnam). An identification key to the known genera of Amerobelbidae is presented.

KEYWORDS — oribatid mites; new genus; new species; Amerobelbidae; Vietnam

INTRODUCTION

In the course of faunistic studies of oribatid mite fauna of Cat Tien National Park (southern Vietnam), I found a new species of the family Amerobelbidae (*Ameroidea*). This small family includes five genera with 11 species distributed in the Holarctic region (Subías 2004, online version 2010), but no species was known from Vietnam. On the basis of analysis of generic character states, I propose a new genus, *Roynortonia* n. gen., with *Roynortonia vietnamica* n. sp. as type species.

MATERIALS AND METHODS

Collection locality and habitat of the new species are characterized in the "Material examined" section. Specimens were studied in lactic acid, mounted in temporary cavity slides, then stored in 70% alcohol in vials. All body measurements are presented in micrometers. Body length was measured in lateral view, from the tip of the rostrum to the posterior edge of the ventral plate, to avoid discrepancies caused by different degrees of notogastral distension. Notogastral width refers to the maximum width in dorsal aspect. Length of body setae was measured in lateral aspect.

FAMILY AMEROBELBIDAE

Genus *Roynortonia* n. gen.

Diagnosis

General characters of the family Amerobelbidae (Grandjean 1965). Rostrum rounded in dorsal view. Lamellar lines absent. Rostral (*ro*) and lamellar (*le*) setae setiform, short. Interlamellar (*in*) setae setiform, long. Lamellar setae inserted closer to interlamellar setae than to rostral setae. Sensilli (*ss*) with short cilia. Bothridia modified, with long, rigid projection posteriorly. Dorsosejugal scissure complete,
slightly convex. Notogaster with one pair of short, thin spines anterolaterally. Epimeral setal formula 3-1-3-3. Aggenital neotrichy absent, one pair of aggenital setae present. Epimeral setae 3b modified, long, thorn-like. Epimeral setae 3b, 3c, 4b and 4c positioned adjacent to each other, so that epimeres III and IV without setae laterally.

Type species — Roynortonia vietnamica n. sp.

Etymology — The genus is named in honor of Prof. Dr. Roy A. Norton (State University of New York, College of Environmental Science and Forestry, Syracuse, USA), the distinguished acarologist, for his extensive contributions to our knowledge of the oribatid mites.

Remarks — The family Amerobelbidae comprises five genera: Amerobelba Berlese, 1908, Berndamerus Mahunka, 1977, Hellenamerus Mahunka, 1974, Mongaillardia Grandjean, 1961, Rastellobata Grandjean, 1961. Two other genera, Yambaramerus and Grypoceramerus, have been included in Amerobelbidae, but I question this placement.

Aoki (1996) described Yambaramerus including it in Amerobelbidae. However both known representative of Yambaramerus, Y. arcuatus Aoki and Yamamoto, 2000 and Y. itoi Aoki, 1996, differ from other Amerobelbidae by body proportions (prodorsum and notogaster approximately equal in length in Grypoceramerus; prodorsum obviously shorter than notogaster in other Amerobelbidae), notogastral setae c and la adjacent to each other and separated from other setae (not adjacent to each other or removed from other setae in other Amerobelbidae).

In my opinion, based on these character states Yambaramerus and Grypoceramerus are dissimilar to other genera of Amerobelbidae, and should not be considered members of this family. I do not discuss a place of Yambaramerus and Grypoceramerus in Ameroidea herein, their placement should be addressed in a separate publication.

Roynortonia n. gen. clearly differs from all other genera of Amerobelbidae by the following characters: 1) epimeral setae 3b modified, long, thorn-like, 2) epimeral setae 3b, 3c, 4b and 4c positioned adjacent to each other, 3) absence of aggenital neotrichy. Modified epimeral seta 3b is unique in Ameroidea and as far as I know it is unknown in Brachypyllina. The presence of one pair of aggenital setae is unique in Amerobelbidae, all other genera express aggenital neotrichy; the type species of the new genus has an unusual structure — a long, rigid projection posterior to the bothridium. This is the first record of a bothridium bearing projection in Brachypyllina. However, there are a small number of oribatid species with short bothridial projections in a same position in the Ameroidea, for example, Staurobates schusteri Grandjean, 1966 and Stauroma cephalotum Grandjean, 1966 in Staurobatidae.

The new genus is most similar to Amerobelba in morphology of lamellar setae, absence of lamellar lines, absence of well-developed notogastral tubercles in humeral region (absent in Amerobelba, only very short spines developed in Roynortonia n. gen.), position of notogastral setae.

Key to known genera of Amerobelbidae

1. Epimeral setae 3b modified, thorn-like; aggenital neotrichy absent
 — Epimeral setae 3b not modified, setiform; aggenital neotrichy present

 Roynortonia n. gen. .. 2

2. Dorsal notogastral setae located medially on notogaster, setae c1 and la inserted adjacent to each
FIGURE 1: *Roynortonia vietnamica* n. sp.: A – dorsal view, legs not shown, B – ventral view, gnathosoma and legs partly not shown, C – lateral view, gnathosoma and legs partly not shown. Scale bar (A+B, C) 50 μm.
other Hellenamerus
— Dorsal notogastral setae located both medially and laterally on notogaster 3

3. Sensilli with very long cilia; notogastral setae long, la and lm reaching insertions h3 and lp, accordingly Rastellobata
— Sensilli with short cilia; notogastral setae shorter 4

4. Sexual dimorphism present: males with hook-shaped lamellar setae Mongailardia
— Sexual dimorphism absent: males with normal lamellar setae 5

5. Prodorsum with well-developed lamellar lines; notogastral tubercles in humeral region present Berndamerus
— Prodorsum without well-developed lamellar lines; notogastral tubercles in humeral region absent Amerobelba

DESCRIPTION OF NEW SPECIES

Roynortonia vietnamica n. sp.
(Figures 1 – 3)

Diagnosis

Description
Measurements — Body length 217 (holotype, male), 196 – 229 (six paratypes; two males and four females); body width 114 (holotype, male), 108 – 123 (six paratypes; two males and four females).

Integument — Body color light brown. Surface of body smooth. Granular and cloud-like cerotegument covers lateral parts of body and regions of dorsosejugal scissure and sejugal apodemes. Granules very small (diameter less than 1 μm).

Prodorsum — (Figure 1A, C; Figure 2A–D). Rostral and lamellar setae 10 – 12, minute barbed. Interlamellar setae 36 – 45, barbed. Sensilli long, 57 – 65, setiform, with more than 20 cilia unilaterally. Bothridial projections long, rigid, directed postero-laterally, 20 – 24, smooth. Exobothridial setae very short (4), thin, smooth.

Notogaster — (Figure 1A, C; Figure 2D). Notogastral spines very short (2 – 4), conical. Notogastral setae with indistinct barbs; setae c, la, lm, lp and h3 (24 – 28) longer than others (12 – 16). Notogastral setae inserted on all notogaster surface. All lyrifissures and opisthonotal gland opening distinct; lyrifissures ia located posteriorly to notogastral spines.

Anogenital region — (Figure 1B, C; Figure 2E, F). Two pairs anal (an1, an2, 10 – 12), three pairs adanal (ad1-ad3, 12 – 20), one pair aggenital (ag, 10 – 20) and six pairs genital (g1-g6, 4 – 6) setae setiform, smooth. Lyrifissures iad in direct apoanal position.

Epimeral region — (Figure 1B, C; Figure 2G). Only apodemes 1, 2 and complete sejugal apodeme well-developed. Setae 3b longest (41), thorn-like, smooth, inserted on large apophyses; setae la, 2a, 4a shortest (12 – 16), setiform, slightly barbed; other setae 20 – 32, setiform, with short barbs.

Gnathosoma — (Figure 2H–J). Subcapitulum longer than wide (45 – 49 x 32 – 34). Hypostomal setae setiform, smooth; h (8 – 10) little longer than m (6 – 8) and a (6). One pair of adoral setae (or1, or2) minute (1). Palp (length 32) with setation 0-2-1-3-9(+1w). Solenidion pressed to surface of palpator-sus. Chelicera (57) chelate-dentate. Cheliceral setae setiform, barbed; cha (18) longer, than chb (12).

Legs — (Figure 3A–D). Formulae of leg setation including famulus and solenidia (in square brackets): I (1-5-3-4-20) [1-2-2], II (1-5-3-4-16) [1-1-2], III (2-3-1-3-15) [1-1-0], IV (2-3-2-3-12) [0-1-0]; homology of setae and solenidia indicated in Table 1. All setae setiform. Famulus short, conical. Solenidia ω1 on tarsi I, ω1 and ω2 on tarsi II, σ on genua III thickened, rod-like; solenidia ω2 on tarsi I, φ1 and φ2 setiform; other solenidia thickened, strongly curved in median part.
FIGURE 3: *Rognortonia vietnamica* n. sp.: A – leg I, right, antiaxial view, B – leg II, right, antiaxial view, C – leg III, right, antiaxial view, D – leg IV, right, antiaxial view. Scale bar 20 µm.
Material examined — Holotype (male) and one paratype (male) were obtained from Cat Tien National Park, in southern Vietnam, 11°25' N, 107°25' E, 149 m a.s.l., 20 November 2006, collected by A.E. Anichkin. Five paratypes (one male and four females) were obtained ibid, but: 11°26' N, 107°25' E, 145 m a.s.l., in dark loamy soil of Lagerstroemia forest, February-March 2009, collected by Ilya Smelyanskiy (Siberian Environmental Centre, Novosibirsk, Russia) for consultations. I am very grateful to Dr. Alexander E. Anichkin (Institute of Ecological and Evolutionary Problems, Russian Academy of Sciences, Moscow, Russia) for sending oribatid mite material from Vietnam.

REFERENCES

Ermilov S. G.

COPYRIGHT

This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.