Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2019 (Volume 59): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2017): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Tick-borne fever (TBF) was first discovered in tick-infested pastures of Scotland (MACLEOD, 1932; GORDON et al., 1932) but later reported from other parts of Great Britain (HUDSON, 1950; TUTT & LOVING, 1955). It was also recognized in Norway (OVERAS, 1959), Netherlands (BOOL & REINDERS, 1964), Finland (TUOMI, 1966), Ireland (COLLINS et al., 1970), Austria (HINAIDY, 1973) and Switzerland (PFISTER et al., 1987; LIZ et al., 1991). In Switzerland this disease occurs in cattle in several isolated areas, mainly in the regions of veterinary importance (Vaud-Valais and Southern Berne) (LIZ et al., 1991).

The causative agent of TBF is “Ehrlichia phagocytophila”, a rickettsia belonging to the genus “Ehrlichia” of the family Rickettsiaceae and having a great number of strains (WOLDEHIWET, 1983). In domestic animals, E. phagocytophila parasitizes the neutrophil and eosinophil granulocytes and, more rarely, monocytes (TUOMI & VON BONSDORFF, 1966). The spleen is heavily infected and possibly is the main site for the multiplication of the microorganism (SNODGRASS, 1975).

The developmental cycle of the pathogen is found to be simple (WOLDEHIWET & SCOTT, 1988). The microorganisms are phagocyted by granulocytes and monocytes and then enclosed in the invaginating membrane which develops into a vacuole, giving rise to what appears as morulae or clusters. Some particles leave the vacuole to initiate new infections.
FIG. 1: Ultra-thin section of salivary gland tissue, demonstrating a large number of ehrlichia-like microorganisms within acinus cells (arrows) and lumen (double small arrows). Note several intracellular rickettsia-like microorganisms (arrowheads), assumed to be *Rickettsia helvetica* ("Swiss agent"). D: Salivary gland duct; L: Acinus lumen. 4300×.

FIGS. 2: Enlarged view of the two large groups of the microorganisms shown in Fig. 1. Note that within the morula-like group demonstrated in Fig. 2 (arrow), some organisms are particularly long, which may result from the failure of separation of fissioning cells. The presence of cell wall-like septa (arrowheads) in these long forms supports this speculation. 25650×.
Fig. 3: Same legend as for figure 2.

Fig. 4: Ultra-thin section of acinus tissue, showing two microorganisms (arrowheads) in the acinus lumen (L). 17100×.
FIG. 5: Enlarged view of one of the microorganisms (arrow) in the acinus lumen (L) shown in Fig. 4. The microorganism is associated with microvilli (arrowheads) of acinus cells. 59850 x.

FIG. 6: Rickettsia helvetica ("Swiss agent")-like rickettsiae within the cytoplasm (arrowhead) and nucleus (arrow) of a probable hemocyte. 17100 x.
Tick-borne fever in Ireland. - Irish vet.

phagocytophila

more, even in laboratory-reared

grouped in the genus

TBF, despite the morphological resemblance.
in the female gonads of

ticks, midgut cells and salivary glands of its tick vector,

the microorganisms not been detected by microscopy

transmitted

morphology and the developmental cycle of the

varially (reviewed by Foggie, 1951). Although the

ver, subsequent investigations have failed to repeat

results reported by Smith et al. (1976). Furthermore,
even in labatory-reared R. sanguineus that transmitted E. canis under experimental conditions,

microorganisms not been detected by microscopy

have. Therefore, it is speculated that there may be a

complex life cycle of E. canis in its tick vector. Whether a similar life cycle of E. phagocytophila also occurs in its I. ricinus tick vector remains unknown.

During the course of a light and electron microscopic detection of B. burgdorferi mainly using blood-feeding and replete ticks, Ehrlichia-like microorganisms were only found in female gonads but not in other organs (Zhu et al., 1992). In a more recent ultrastructural investigation, a large number of Ehrlichia-like microorganisms were found in acinus cells and lumen of salivary glands in host-searching unfed nymphs collected from vegetation in a forest near Neuchâtel (Figs 1-6). It is particularly interesting that microorganisms within acinus cells were all grouped in large aggregate forms, while in the acinus lumen they are separated particles. The results reveal that Ehrlichia-like microorganisms are able to multiply in the acinus cells and disseminate into the acinus lumen before blood-feeding of nymphal I. ricinus, and suggest that the microorganisms can be transmitted to their vertebrate hosts once salivation begins during the very early period of blood-feeding. Although it remains uncertain whether the detected Ehrlichia-like microorganism was a of strain of Ehrlichia phagocytophila, the results may give some clues for further investigations into the tick relationship of the TBF agent.

REFERENCES


MACLEOD (J.), 1932. — The bionomics of *Ixodes Ricinus* L., the “Sheep Tick” of Scotland. — Parasitology, 24: 382-400.

MACLEOD (J.), 1936. — Studies on tick-borne fever of sheep. II. Experiment on transmission and distribution of the disease. — Parasitology, 28: 320-329.


