Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIÉ-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under
the reference ID 1500-024 through the « Investissements d’avenir » programme
(Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the
Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and
reproduction in any medium, provided the original author and source are credited.
SECOND SPECIES OF LARVAL BURSAUSTIUM HAILTINGER, 2000
(ACARI: ERYTHRÆIDAE) FROM IRAN

by A. SABOORI
(Accepted December 2001)

SUMMARY: The larva of Bursaustium norbakhshi n.sp. (Acari: Erythraeidae) is described from Shahrkord, Iran. This is the second species of Bursaustium that is described in the world.

HAILTINGER (2000) described the new genus Bursaustium based on a larva collected from Turkey. In this paper I describe the larva of Bursaustium norbakhshi sp. nov. from Iran. The terminology and abbreviations are adapted from WELBOURN & JENNINGS (1991). Measurements are given in micrometers.

Bursaustium norbakhshi sp. nov. (Figs. 1-9)

Holotype larva: Idiosoma 495 long by 218 wide. One eye 17 in diameter on each side of the crista metopica, without ocular plates. Dorsum with ~154 setae ranging in length from 17 to 24 (Fig. 1). Scutum absent. Trichobothria AM and SS with setules on distal half; AL, ML and PL bear long setules (Fig. 6). Crista metopica distinctly visible.

Ventral surface of idiosoma with one pair of barbed sternala 1a and 4 barbed setae between coxae I and II; sternala 2a between coxae II; between coxae II and III with 89 barbed setae; between coxae III with 8 barbed setae; behind coxae III, 54 barbed setae (Fig. 2). NDV = 154 + 155 = 309. Coxae I-III each with 1 barbed seta. Dorsal, ventral and leg setae with long setules. Setules on median part of setae are longer than others (Fig. 3).

Gnathosoma with nude adoral seta and barbed subcapitular setae (Fig. 4). Cheliceral blade without teeth. Palpal trochanter without seta. Palpal femur with 2 barbed setae. Palpgenu with 1 nude seta (Fig. 5). Tibia with 2 barbed and a very fine conical setae. Tarsus with 3 nude and 2 barbed setae, 2 solenidia and 1 eupathidium; palpal tibial claw entire (Fig. 4). Palpal setal formula: 0-BB-N-BBN-2B3N2 o.e.

Leg setal formula: Leg I: Ta-1w, 2z, 19B; Ti-2φ, 1κ, 11B; Ge-1e, 1κ, 11B; TFe-5B; BFe-3B; Tr-1B (Fig. 7). Leg II: Ta-1w, 1e, 21B; Ti-2φ, 11B; Ge-1e, 1κ, 9B; TFe-5B; BFe-3B; Tr-1B (Fig. 8). Leg III: Ta-1z, 21B; Ti-1φ, 11B; Ge-1e, 9B; TFe-5B; BFe-3B; Tr-1B (Fig. 9). Microseta on Ti I large and thick. Microsetae on Ge I & II fine.

IP = 237 + 202 + 244 = 683 holotype.

1. Department of Plant Protection, College of Agriculture, Tehran University, Karaj, Iran; E-mail: saboori@chamran.ut.ac.ir & saboori2000@yahoo.com
FIGS. 1-6: Bursaustium norbakhshi sp. nov. larva. 1. — Idiosoma, dorsal view. 2. — Idiosoma, ventral view. 3. — Dorsal idiosomal seta. 4. — Gnathosoma, ventral view (adoral seta (right) not shown). 5. — Palp, dorsal view. 6. — Crista metopica.
Table 1: Metric data of *Bursaustium norbakhshi* sp. nov. larva

<table>
<thead>
<tr>
<th>Character</th>
<th>Holotype</th>
<th>Character</th>
<th>Holotype</th>
<th>Character</th>
<th>Holotype</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL</td>
<td>495</td>
<td>2a</td>
<td>12</td>
<td>Ta II(H)</td>
<td>17</td>
</tr>
<tr>
<td>FW</td>
<td>218</td>
<td>1b</td>
<td>22</td>
<td>Ti II</td>
<td>31</td>
</tr>
<tr>
<td>AW</td>
<td>36</td>
<td>2b</td>
<td>12</td>
<td>Ge II</td>
<td>39</td>
</tr>
<tr>
<td>MW</td>
<td>24</td>
<td>3b</td>
<td>12</td>
<td>TFe II</td>
<td>14</td>
</tr>
<tr>
<td>PW</td>
<td>-</td>
<td>GL</td>
<td>78</td>
<td>BFe II</td>
<td>24</td>
</tr>
<tr>
<td>AA</td>
<td>10</td>
<td>Or1</td>
<td>12</td>
<td>Tr II</td>
<td>19</td>
</tr>
<tr>
<td>SB</td>
<td>7</td>
<td>Sc1</td>
<td>24</td>
<td>Cx II</td>
<td>39</td>
</tr>
<tr>
<td>ISD</td>
<td>41</td>
<td>Sc2</td>
<td>12</td>
<td>Ta III(L)</td>
<td>39</td>
</tr>
<tr>
<td>AP</td>
<td>31</td>
<td>Ta I(L)</td>
<td>44</td>
<td>Ta III(H)</td>
<td>17</td>
</tr>
<tr>
<td>AL</td>
<td>-12</td>
<td>Ta I(H)</td>
<td>17</td>
<td>Ti III</td>
<td>43</td>
</tr>
<tr>
<td>ML</td>
<td>19</td>
<td>Ti I</td>
<td>39</td>
<td>Ge III</td>
<td>51</td>
</tr>
<tr>
<td>PL</td>
<td>24</td>
<td>Ge I</td>
<td>48</td>
<td>TFe III</td>
<td>21</td>
</tr>
<tr>
<td>AM</td>
<td>36</td>
<td>TFe I</td>
<td>19</td>
<td>BFe III</td>
<td>27</td>
</tr>
<tr>
<td>SS</td>
<td>-24</td>
<td>BFe I</td>
<td>31</td>
<td>Tr III</td>
<td>24</td>
</tr>
<tr>
<td>DS</td>
<td>17-24</td>
<td>Tr I</td>
<td>19</td>
<td>Cx III</td>
<td>39</td>
</tr>
<tr>
<td>PDS</td>
<td>19-24</td>
<td>Cx I</td>
<td>37</td>
<td>IP</td>
<td>683</td>
</tr>
<tr>
<td>1a</td>
<td>15</td>
<td>Ta II(L)</td>
<td>36</td>
<td>IP</td>
<td>683</td>
</tr>
</tbody>
</table>

Remarks: *B. norbakhshi* is similar to *B. gaspari* Haitlinger, 2000. It differs from *B. gaspari* by fn Ta (19-21-21 v.s. 13-13-17), fn Ti (11-11-11 v.s. 11-10-10), fn Ge (11-9-9 v.s. 11-8-8), fn TFe (5-5-5 v.s. 4-4-4), fPp (0-BB-N-BBN-2B3N2w~ v.s. 0-BB-N-NN-5No5), shorter leg I (237 v.s. 296), leg II (202 v.s. 252), leg III (244 v.s. 296) and IP (683 v.s. 844).

Material examined: Holotype larva (ARS-20010606-1), Iran, Shahrkord, H. Norbakhsh, 20 June 1992, free-living on wheat. Holotype is deposited in the Acarological Collection, Department of Plant Protection, College of Agriculture, Shahid Chamran University, Ahwaz, Iran.

Acknowledgements

The project on which this paper was based was supported by a grant from the Zoological Museum, College of Agriculture, Tehran University, Karaj, Iran.

References
