Acarologia

A quarterly journal of acarology, since 1959
Publishing on all aspects of the Acari

All information:
http://www1.montpellier.inra.fr/CBGP/acarologia/
acarologia-contact@supagro.fr

Acarologia is proudly non-profit,
with no page charges and free open access

Please help us maintain this system by
encouraging your institutes to subscribe to the print version of the journal
and by sending us your high quality research on the Acari.

Subscriptions: Year 2021 (Volume 61): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2020): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
EXPANDED DISTRIBUTION OF THE BAMBOO SPIDER MITE,
SCHIZOTETRANYCHUS LONGUS (ACARI: TETRANYCHIDAE),
AND PREDATION BY NEOSEIULUS FALLACIS (ACARI: PHYTOSEIIDAE)

BY P. D. PRATT* and B. A. CROFT**

SUMMARY: Schizotetranychus longus Saito is a common pest of bamboo in Japan. We report its new occurrence in the Willamette Valley, Oregon, on bamboo. We assessed the ability of adult females of Neoseiulus fallacis (Garman), a native predaceous mite, to invade S. longus nests after construction times of 5 or 10 days. Frequency of predators in nests decreased from 5 to 10 days, although the predator laid most of its eggs in nests irrespective of construction time. In choice tests, spider mite webbing was more attractive to N. fallacis than eggs, but similar to feces. Predators searched more in proximity to feces than eggs, but resting sites were equally common near both. Survival, activity and reproduction of N. fallacis when given excess of mixed life stages of S. longus, Tetranychus urticae Koch, pollen of Tulipa gesneriana L. or Pseudotsuga menziesii (Mirbel), or no food were measured by holding single adult female N. fallacis for 7 days. Survival, activity, oviposition and immature production of predators were alike for both spider mites, but lower (or higher activity) with pollens or when starved. To see if N. fallacis would suppress S. longus under normal growing conditions, predators were added to infested Sasaella hidaensis (Makino and Uchida) var. ‘Murai’ plants, and mites were monitored thereafter for 5 weeks. N. fallacis significantly reduced levels of S. longus and the rates that it infested bamboo leaves; it nearly eliminated S. longus from plants at the end of the test.

* USDA-ARS, 3205 College Ave., Ft. Lauderdale, Fl. 3314, U.S.A. E-mail: prattp@ezmail.com.
** Department of Entomology, Oregon State University, Corvallis, Oregon 97331-2907, U.S.A. E-mail: croftb@bcc.orst.edu.

INTRODUCTION

Establishment of an exotic pest may depend on the absence of native predators that are adapted to it (GOEDEN & LOUDA, 1976). Also, changes in local environmental conditions caused by a pest can improve microclimates or retard predators, and thereby enhance its establishment. *Schizotetranychus longus* Saito is a pest of bamboo in Japan (SAITO, 1990b). Upon finding a feeding site, this spider mite builds a densely webbed nest within which it reproduces. Saito suggested that the dense webbing and fecal deposits of *S. longus* may protect it from predators (SAITO, 1983), although webbing of some spider mites is attractive to many predaceous phytoseiid mite species (SCHMIDT, 1976). Saito (1990) reported feeding and adaptations of *Typhlodromus (Anthoselus) bambusae* Ehara, a native phytoseiid associated with *Schizotetranychus* species in Japan and concluded that it had coevolved with *S. celarius* to feed and maneuver within the nest of the pest. No studies to date have reported any endemic phytoseiids in the USA that are associated with *S. longus*.

Recent inspections of bamboo revealed infestations of an unknown spider mite in the coastal-temperate regions of Oregon and Washington USA, where ornamentals are widely grown. Preliminary observations of the pest indicated that it was *S. longus*. We sought to confirm this identification and, in the absence of *T. bambusae*, to measure the ability of a native phytoseiid mite to exploit the nest habitat and suppress this spider mite. In temperate-humid areas of the USA, *Neoseiulus fallacis* (Garman) is widely released on ornamentals and other crops to control spider mites (PRATT & CROFT, 1998). Objectives of this study were to measure: 1) propensities of *N. fallacis* to enter the nest of *S. longus*, 2) attractiveness to *N. fallacis* of webbing, feces or eggs of *S. longus*, 3) ability of *N. fallacis* to reproduce on *S. longus* and 4) whether *N. fallacis* could suppress *S. longus* on bamboo plants under normal growing conditions.

MATERIALS AND METHODS

Identification of *S. longus* and predator mite cultures

Initially, an unknown spider mite was collected from commercial bamboo near Coos Bay and Portland, OR, USA. Adults of both sexes were mounted on glass slides and sent to Z. Q. ZHANG, Landcare Research, Auckland, New Zealand for identification. Predators for releases (*N. fallacis*) had been collected from crops in the Willamette Valley, Oregon (HADAM et al., 1986). These cultures had been held for six years or more with yearly additions of field-collected mites. Predator cultures were held at 25°C (± 5)C, 16:8 L:D (light:dark), and 75–95% RH, and fed mixed life stages of the common spider mite, *Tetranychus urticae* Koch, three times per week. Only gravid female predators were selected for use in tests. To adjust for
Invasion of nests by *N. fallacis* and attraction to products of *S. longus*

To quantify the ability of *N. fallacis* to enter webbed nests of *S. longus*, 2.5 × 2.5 cm arenas were created on bamboo leaves (underside up) using a water-soaked cotton barrier (SATIO, 1990a). To allow nest construction, 3-4 *S. longus* adult females were added to each of 16 arenas held at 25 (±1)°C, 75 (±10) RH, and 16:8 L:D. We randomly selected 8 arenas and placed a single gravid *N. fallacis* on each after 5 days of nest construction. The other 8 arenas received a single female *N. fallacis* after 10 days. Sites of entrance of the predator into the nest, resting locations of *N. fallacis* and number and sites of predator eggs were measured at 2, 4, 6, 8, 10, 12, 24, and 36 hours after transfer of predators. Mode of entrance was scored as either entering via existing openings on either side of the nest or boring an entrance into the nest through the webbing. To compare frequencies of these two binomially measured attributes, we used a binomial test with the null hypothesis frequency of 0.5. A P-value < 0.10 was considered evidence that the null hypothesis was false.

To test attraction and arrestment of *N. fallacis*, dual choice arenas were used (SCHMIDT, 1976). Arenas consisted of 2 × 2 cm tile substrate ringed with water-soaked cotton and replicated 18 times (MACRAE & CROFT, 1993). *S. longus* eggs, webbing or feces were removed with different forceps from bamboo leaves [Sasaella hidaensis (Makino and Uchida) var. ‘Murai’] and placed near two diagonal corners and the other *S. longus* product pair was placed near the remaining two corners. Treatments were eggs vs. webbing, webbing vs. feces or eggs vs. feces. Unlike *T. urticae*, *S. longus* defecates outside the nest and any mixing of fecal pellets and webbing can be avoided. A single *N. fallacis* adult female was placed in the center of each arena and location of the predator while searching or resting and number and location of predator eggs were monitored at 1-12, 24 and 36 hours after transfer of the predator. To compare relative attractiveness of the spider mite products, we used a binomial test and significant levels as before.

Feeding and ability of *N. fallacis* to control *S. longus* on bamboo

To measure the ability of *N. fallacis* to feed, reproduce and develop on *S. longus* we constructed 2.5 × 2.5 cm waterproof arenas ringed with a sticky material (Tanglefoot®, The Tanglefoot Co., Grand Rapids MI 49504) and replicated tests eight times (MONETTI & CROFT, 1997). Three adult female predators of about the same age were transferred to each individual arena and excess mixed life stages of *S. longus* were provisioned every 24 h. For comparisons, *N. fallacis* was also held with excess amounts of *Tulipa gesneriana* L. and *Pseudotsuga menziesii* (Mirbel) pollen grains. Arenas with mites and treatments were held at 25 (±1)°C, 70 (±5) RH, and 16:8 L:D for 7 days. Assessments of survivorship, activity (ambulation), oviposition per female per day, and production of immatures (larvae, protonymphs, deutonymphs) per female per day were measured every 24 hours. An index for survivorship of immatures was calculated on day 3-7 by dividing the number of immatures by the number of eggs present two days prior to the sampling of immatures (CROFT et al., 1998). We compared our results with reported values for *N. fallacis* when held under identical conditions with the optimal prey *T. urticae* or no food (PRATT et al., 1999). Means of each measured attribute and food type were compared by analysis of variance (ANOVA) and TUKEY'S HSD.

Preliminary tests showed that *N. fallacis* would feed, reproduce and develop on *S. longus*. Because *N. fallacis* is often used to control pest mites in other ornamental plant systems, we were interested in the ability of *N. fallacis* to suppress *S. longus* on bamboo. In May, 1998, 10, two-year *S. hidaensis* ‘Murai’, of 64 (±17.4) culms each, were potted in 4-liter plastic containers and inoculated with 50 (±12) adult female *S. longus*. Plants were placed in a shaded nursery bed and randomly assigned either release of three adult female *N. fallacis* per plant or no predator release (control). By June 11, *S. longus* averaged 9.6 (±3.1) colonies per plant and three adult female *N. fallacis* were released onto each plant (STRONG &
- 194 -

<table>
<thead>
<tr>
<th>Nest Construction Period</th>
<th>Attribute of N. fallacis</th>
<th>Proportion</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 days</td>
<td>Observed location</td>
<td>Within Nest</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On Leaf</td>
<td>0.35</td>
</tr>
<tr>
<td>10 days</td>
<td></td>
<td>Within Nest</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On Leaf</td>
<td>0.53</td>
</tr>
<tr>
<td>5 days</td>
<td>Mode of Entrance</td>
<td>Natural Opening</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Break-in</td>
<td>0.67</td>
</tr>
<tr>
<td>10 days</td>
<td></td>
<td>Natural Opening</td>
<td>0.73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Break-in</td>
<td>0.27</td>
</tr>
<tr>
<td>5 days</td>
<td>Egg Placement</td>
<td>Within Nest</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Without Nest</td>
<td>0.15</td>
</tr>
<tr>
<td>10 days</td>
<td></td>
<td>Within Nest</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Without Nest</td>
<td>0.00</td>
</tr>
</tbody>
</table>

TABLE I: Invasions of *Schizotetranychus longus* nests by the phytoseiid predator *Neoseiulus fallacis.*

- Duration of nest construction period after inoculation of 3–4 adult female *S. longus* onto a 2.5 x 2.5 cm arena.
- Attributes of *N. fallacis* measured after introduction into colonies of *S. longus.*
- P-value calculated from binomial test, null hypothesis frequency = 0.5.

RESULTS

Identification of S. longus

The unknown spider mite that was collected was *S. longus.* Although infestations by this pest on ornamental bamboo had been observed for about 5 years before this study was begun, this was the first taxonomic identification for these temperate-coastal regions of Oregon. Also, no phytoseiids were associated with *S. longus* within Oregon.

Invasion of nests by N. fallacis and attraction to products of S. longus

N. fallacis readily invaded nests of *S. longus* when webbing was minimal but was somewhat less invasive when webbing was denser (Table 1). When measuring the entrance into nests, *N. fallacis* used both natural openings and created new holes equally as often after 5 or 10 days of web construction. *N. fallacis* laid significantly more eggs within the nest than without, irrespective of the nest construction time (Table 1). When comparing attraction to prey products, *N. fallacis* was associated more with webbing than eggs either when searching (*P* = 0.082) or resting (*P* = 0.052). With feces and eggs, *N. fallacis* searched more near feces (*P* = 0.059) although it was equally probable for them to rest among either product (*P* = 0.855). Webbing and feces were equally attractive to *N. fallacis* when either searching or resting (*P* = 1.0, 0.2 respectively).

Feeding and ability of N. fallacis to control S. longus on bamboo

N. fallacis survived equally well when held with either the optimal prey *T. urticae* or with *S. longus,* but significantly lower survival occurred when held with other treatments (Table 2). Activity of *N. fallacis* was similar between the two species of spider mites but significantly lower when with pollen or starved. Activity of *N. fallacis* was higher when with pollen as compared to the starvation treatment, which may be due to the increased morbidity and mortality of the predator near the end of the 7 d test (Pratt & Croft, 1998). Oviposition rates and immature production were similar when held with either *S. longus* or *T.*
urticae but significantly lower when with pollen or in the starvation treatment. Immature *N. fallacis* had significantly greater survival when with *T. urticae* and the remaining treatments were ordered: *S. longus* > pollen = starvation.

The introduction of *N. fallacis* into bamboo significantly reduced the infestation levels of *S. longus* (*P* = 0.0002, *F* = 42.87, d.f. = 1, 8) and the rate of population increase of the pest. Four weeks after predator releases were made, control plants without predators had a 3-fold increase of new pest colonies (Fig. 1). When infested versus uninfested leaves were compared, those with pest mites quickly reached 60% occupancy by *N. fallacis* after one week and then to above 80% towards the end of the test, whereas on uninfested leaves, predators only increased from 26% to 62% over the 4 weeks (Fig. 2). Clearly, the spatial distribution of *N. fallacis* was closely associated with that of the spider mite prey.

DISCUSSION

We report establishment of *S. longus* on ornamental bamboo in western Oregon, USA. Although this pest overwinters successfully in this region, its long-term survival over a cold winter or multiple cold winters is uncertain because, for the past 5 years, such severe winters have not occurred (unpublished weather records). However, as observed in these studies, *S. longus* seems to survive well in the semi-enclosed nurseries that are used to grow bamboo in the region. Also, contrary to earlier reports (Young & Haun, 1961), this pest is now of economic importance because of the reduction in marketability of spider mite-infested bamboo, and the potential for dissemination of the pest by nursery workers, plant collectors, and home owners is high. Also, the presence of
this pest may hamper development of bamboo cultivation for other purposes within the region.

N. fallacis successfully invaded and preferentially oviposited within the specialized web nest of _S. longus_. These findings are consistent with _N. fallacis_ being classified as a Type II specialist predator of spider mites that produce copious amounts of webbing (McMurtry & Croft, 1997). _N. fallacis_ apparently is well adapted to entering nests of this pest via natural openings at ends of the nest structure or by making openings by brute force anywhere in the nest. The reason for a reduction of within-nest occurrence of _N. fallacis_ after 10 days of nest building by _S. longus_ is unclear. Possibly the denser webbing increases the difficulty in making new openings or in entering a more complex natural opening that results from the longer colonization period. _N. fallacis_ appears well adapted to feeding and reproducing on _S. longus_.

When comparing oviposition rates, _N. fallacis_ produced similar levels of eggs when with either _S. longus_ or _T. urticae_. In addition, oviposition rates when feeding on _S. longus_ are similar for _N. fallacis_ (1.8 ± 0.4) and the co-adapted _T. bambusae_ (1.7 ± 0.2) (Saito, 1990a). In our study, _N. fallacis_ was not given free water and therefore the value reported may be conservative for oviposition when feeding on _S. longus_ (unpublished data). Although others have reported that _N. fallacis_ can do well when feeding on pollen (Zhang & Li, 1989), reproduction was negligible on the types that were assessed in this study. Again, this discrepancy may be because free water was not available to predators or that there are different nutritional values of pollens to _N. fallacis_ (Pratt et al., 1999).

Our results are relevant to control of _S. longus_. Dicke et al. (1990) suggested that attractiveness of mite products might be a useful indicator for selection of predators as biological control agents. In this study, _N. fallacis_ was highly attracted to products of _S. longus_, it readily entered nests, it reproduced as well on _S. longus_ as on _T. urticae_, and it reduced levels of _S. longus_ on densely infested bamboo plants. These findings suggest that _N. fallacis_ may be a good candidate for biological control of _S. longus_ in temperate-humid climates.

To our knowledge, this is the first report that quantifies the attractiveness of a phytoseiid to tetranychid feces versus uncontaminated webbing. Before, Schmidt (1976) found that mixed webbing and feces were more attractive than eggs of _T. urticae to Phytoseiulus persimilis_ Athias-Henriot. Using an olfactometer and _T. urticae_ as the prey, Sabelis et al. (1984) found that feces were more attractive to _P. persimilis_ than webbing (slightly contaminated with feces) and exuvia. We found that webbing and feces of _S. longus_ were similarly attractive to _N. fallacis_, webbing was more attractive than eggs and, when searching, feces were more attractive than eggs. Our results do not support the hypothesis that webbing and feces may protect _S. longus_ from phytoseiids (Saito, 1983). Rather, webbing and feces attracted _N. fallacis_ and aided in locating _S. longus_ during search (Sabelis et al., 1984). Although dense, mature nests may reduce nest entries of _N. fallacis_, the placement of fecal material near the natural openings of the nest may actually direct this predator into the nest. To determine evolutionary benefit of feces placement outside of the nest, tests like those with _N. fallacis_ are needed for the coevolved _T. bambusae_.

ACKNOWLEDGEMENTS

We thank J. A. McMurtry, G. W. Krantz, J. DeAngelis and P. Schausberger of Oregon State University for comments on the manuscript. We also thank P. Schausberger for translation of the summary into German. This is Journal Article 11,418 of the Oregon Agricultural Experiment Station. Oregon State University, Corvallis, OR 97331.

REFERENCES

